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Several studies on analogical transfer to algebra word problems have demonstrated 
that adapting solutions learned from worked examples to nonisomorphic problems 
of the same type is challenging and that most instructional aids do not alleviate this 
difficulty. At the same time, various authors have suggested that transfer difficul-
ties sometimes originate in students’ lack of disposition to relate algebraic formulas 
to the real-world situations to which they refer. We designed a noninteractive in-
tervention encouraging students to elaborate situation models for base and target 
problems, and to ground algebraic formalisms in these representations. One experi-
mental group simulated situation models by physical object manipulation, whereas 
another experimental group performed those simulations mentally. Both conditions 
outperformed a control group that did not run simulations. This intervention was 
more effective when the transformations posed by target problems were intrinsically 
more difficult to assimilate into the learned equation. Implications for the design of 
instructional interventions are discussed.

Keywords: analogy; transfer; algebra word problems; problem solving; situation model 
simulation

Solving a problem by analogy implies transferring a solution from a known problem 
(the base problem [BP]) onto a new problem whose solution is unknown (the target 
problem [TP]). In learning environments, the solution to a BP serves as scaffolding for 

the application of a general method until the student has gained the fluidity required to apply 
this general method directly (LeFevre & Dixon, 1986; Pirolli & Anderson, 1985). In a series of 
studies of analogical transfer to algebra word problems, Reed, Dempster, and Ettinger (1985) 
provided participants with a worked example of a basic task-completion problem (i.e., a step-
by-step solution to a concrete problem), and investigated the extent to which college students 
can adapt the learned procedure to solve problems with structural variations. For example, 
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after learning to calculate the time that two painters would require to jointly paint a wall given 
the amounts of time that each one would need to paint it on his own, a new problem introduc-
ing a structural variation could be one in which the problem text stated that, overall, one of 
the painters worked 1 hr more than the other. When solving this TP by analogy to the worked 
example, the extra hour painted by the second painter needs to be introduced into the original 
equation: r1 ! t1 " [r2 ! (t1 " 1 hr) # 1 (with r1: rate of the first painter; r2: rate of the second 
painter; t1: time taken by the first painter). Reed et al. (Experiments 3 and 4) found that al-
though 70% of the students transferred the base solution to structurally equivalent TPs, only 
12% could solve problems introducing structural variations. In subsequent studies, Reed 
and colleagues complemented worked examples with several instructional aids intended to 
help students introduce the structural variations into the base equations (e.g., construction 
of tables relating base and target quantities and variables, Reed & Ettinger, 1987; provision of 
rules for introducing specific structural variations into the base equations, Reed & Bolstad, 
1991; and instruction on unit cancelation, Reed, 2006). At least regarding task completion 
problems like those used in this study, the earlier mentioned interventions were generally 
unsuccessful, with success rates not surpassing 35% (see Reed 1999, for a review). According 
to Reed (2006), a possible limitation of this kind of interventions may have been their almost 
exclusive focus on algebraic operations.

Several studies have found that when students engage in elaborations such as generating 
self-explanations or decomposing solution procedures into different subgoals, they improve 
their ability to transfer solutions learned from worked examples to novel but related problems 
(see, e.g., Chi, Bassok, Lewis, Reimann, & Glaser, 1989). However, as conventional worked 
examples rarely elicit the spontaneous production of this kind of elaborations (Renkl, 1997), 
various successful interventions have been developed to promote them (e.g., Gerjets, Scheiter 
& Catrambone, 2006; Renkl, Stark, Gruber, & Mandl, 1998).

As advocated by various authors (e.g., Koedinger, Anderson, Hadley, & Mark, 1997; Nathan, 
1998; Nathan, Kintsch, & Young, 1992; Reed, 2006), a successful way of aiding the construc-
tion of equations for word problems consists in stimulating students to ground algebraic 
formalisms in the situation models of the problems, that is, in an approximate perceptual-like 
representation about how the events described by the problem text take place in the real world. 
As opposed to experts, novices do not tend to ground equations in situation models, thus fail-
ing to notice, for example, when a problem’s solution—albeit mathematically correct—leads 
to a semantically absurd situation (Paige & Simon, 1966). Greeno (1989) explains many of 
these results as instances where abstract and situational representations coexist as discon-
nected systems, leading problem solvers to perform operations on symbolic expressions that 
are no longer faithful to the situations to which they are intended to refer. It is by establish-
ing a correspondence of the symbols to the situation that one roots the formalisms into the 
space of permissible and expected events (Greeno, 1989). Based on evidence that fostering a 
connection between formalisms and their real-world referents helps participants build equa-
tions (e.g., Nathan et al., 1992), our main purpose was to determine whether a stimulation to 
ground equation structures in the situation models of the problems would also help partici-
pants adapt learned solutions to novel algebra problems with structural variations.1

Situation model simulations of certain algebra problems can be carried out either physi-
cally (e.g., via manipulating physical objects) or mentally. In domains as diverse as text 
comprehension (Glenberg, Gutierrez, Levin, Japuntich, & Kaschak, 2004), metaphor com-
prehension (Wilson & Gibbs, 2007), and arithmetic (Glenberg, Willford, Gibson, Goldberg, & 
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Zhu, 2011), physical and imagined simulations yielded comparable effects. A second objec-
tive of this study was to assess whether imagined simulations are as effective as physical 
simulations in helping participants transfer solutions to TPs with structural variations.

The type of variations imposed by TPs has received little attention within studies of ana-
logical transfer to algebra word problems. In a recent study, Booth and Koedinger (2012) 
found that the advantage of complementing story problems with diagrams was greater for 
the more difficult problems. Our third objective was thus to determine whether a stimulation 
to base the transfer process in situation models of the problems interacts with the difficulty 
inherent in assimilating a given structural variation into the learned equation (henceforth, 
adaptation difficulty). In what follows, we flesh out a theoretical proposal about the relative 
adaptation difficulty posed by each of the TPs used in this study.

Figure 1 displays the task-completion problems used as BP and TPs, together with Reed’s 
(1987) representation of the different levels at which the basic equation for task-completion 
problems can be represented. In Reed’s schema, knowledge is represented as a propositional 
web of nodes (concepts) and predicates (attributes and relations). Concepts appear in rect-
angles, operations and relations between concepts appear in circles, and numerical values 
(or the procedures needed to obtain them) appear in ovals. Vertical lines indicate permissible 
substitutions. While the highest level corresponds to the upper principle w1 " w2 # wtotal, 
the intermediate level corresponds to the variables r and t; when multiplied, their product 
conforms the left terms of the principle. The lowest level refers to the known and unknown 
quantities and the procedures needed to obtain them. We added dotted lines to represent the 
variations introduced by the different TPs used in this study. Based on Reed’s idea about the 
different levels at which the equation of task-completion problems can be represented, it was 
hypothesized that the adaptation difficulty of a given structural variation is determined by the 
degree of comprehension of the equation structure that is required to assimilate such varia-
tion into the base equation.

In the TP with a speed variation (TPspeed), calculation of the speed of one of the painters 
only requires that one knows the amount of time it would take him to finish the task on his 
own. This value is obtained by doubling the amount of time taken by the other painter to fin-
ish the task. Given that knowledge of the equation structure is not involved in this variation, 
it was postulated that it would not pose adaptation difficulties.

In the TP with a work variation (TPwork), there are two ways of assimilating the pre-
painted chunk of wall into the base equation: (1) r1 ! t " r2 ! t " 1/3 # 1 and (2) r1 ! t " r2 ! 
t # 1 ! 1/3. Because both alternatives presuppose comprehension of the upper level of the 
equation structure (i.e., w1 " w2 # wtotal), it was postulated that assimilating this variation into 
the equation would be more difficult than in TPspeed.

In the TP with time variation (TPtime), there are three ways of introducing the extra hour 
spent by the second painter into the base equation: (1) r1 ! t " r2 ! t " r2 ! 1hr # 1; (2) r1 ! t 
" r2 ! t # 1 $ r2 ! 1hr, and (3) r1 ! t " r2 ! (t 1 1hr) # 1. In all of the cases, the problem solver 
needs to understand that there is a certain amount of time during which the second painter 
works unaccompanied by the first painter, and that the portion of wall corresponding to that 
period comes from multiplying his speed (r2) by such duration (1h), as dictated by the inter-
mediate level of the equation structure. Because all three alternatives require comprehending 
not only the upper but also the intermediate level of the equation structure, we postulated that 
assimilating this variation into the equation would be more demanding than either TPwork 
or TPspeed.
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To assess whether transfer was in fact more difficult for TPtime than for TPwork and 
more difficult for TPwork than for TPspeed, an independent group of eighteen 12th graders 
at Estación Limay High School (the same population as in the experiment reported here) 
received the BP and its solution. Each participant was asked to solve each of the TPs based 
on the BP and its solution. Transfer performance was 72% for TPspeed, 56% for TPwork, and 
17% for TPtime, thus supporting our theory-driven prediction concerning the adaptation dif-
ficulties posed by each TP. Our third objective was thus to assess whether the benefit of our 
intervention, as was the case with Booth and Koedinger’s (2012) study, would be greater for 
TPs for which transfer is intrinsically more demanding.

In the present experiment, all participants studied a worked example of a task-completion 
algebra problem prior to solving the three TPs presented in Figure 1. Whereas the physical 

(a)

Base problem (BP): Peter can paint a wall in 10 hours, while John can paint that same wall in 15 hours. If they start paint-
ing the wall together at 12 o’clock, at what time will it be finished?

Target problem with speed variation (TPspeed): Ned can paint a wall in 8 hours, while Louis takes twice as long to 
paint the same wall. If they start painting the wall together at 12 o’clock, at what time will it be finished?

Target problem with work variation (TPwork): Bob can paint a wall in 20 hours, while Mark can paint that same wall 
in 12 hours. One third of the wall has been painted by other painters. If Bob and Mark start painting what is remaining of 
the wall at 12 o’clock, at what time will it be finished? 

Target problem with time variation (TPtime): Fred can paint a wall in 8 hours, while Bob can paint that same wall in 
12 hours. They mostly paint it together but, overall, Bob paints one more hour than Fred. If painting started at 12 o’clock, 
at what time will it be finished?

FIGURE 1. Top (a): Base problem and target problems used in the present experiment. 
Bottom (b): Hierarchical representation of the equation structure of task-completion 
problems (adapted from Reed, 1987). Dotted lines indicate the adaptation required by each 
of the target problems. Note. tt: total time; pt: painter.
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simulation group (PSG) had to simulate situation models of the BP and the TPs via 
manipulating physical objects, the imagined simulation group (ISG) was asked to simulate 
those situation models internally. The no simulation group (NSG) was not asked to simulate 
the situation models during any phase of the experiment.

METHOD

Participants and Design

Sixty 12th year students at Estación Limay High School in Rio Negro, Argentina, volunteered 
to participate in the experiment. They were randomly assigned to each of the three groups 
(20 to the PSG, 20 to the ISG, and 20 to the NSG). In this 3 % 3 design, the type of simula-
tion of the situation models of the problems (physical, imagined, and no simulation) received 
between-subjects manipulation, whereas the adaptation difficulty of each of the TPs (low, 
medium, and high) received within-subjects manipulation.

Materials and Procedure

All participants were told that their task would be to carry out a problem-solving activity 
comprising a pretest, an instruction on how to solve such type of problems, and three test 
problems. After describing the procedure followed with the PSG, we indicate the differences 
between the PSG and the other groups.

At pretest, participants of the PSG were given the BP and were allotted 5 mins to solve it 
by any means possible. However, they were encouraged to construct an appropriate equation. 
Because no participants gave an appropriate equation at pretest, all the participants were re-
quired to carry out the subsequent phases of the experiment.

During the instructional phase, participants of the PSG were first asked to perform a 
qualitative simulation of the situation depicted by the problem text, in which the objects 
and their corresponding interactions are represented with approximations rather than exact 
magnitudes. They were presented with a magnetic rectangle vertically attached to its base 
(i.e., a toy wall) and two toy painters located at opposing edges of the visible side of the wall. 
Participants were asked to read the BP aloud at a slow pace. After each sentence was com-
pleted, the experimenter asked participants to simulate the content of the sentence with the 
given materials. In this way, they were asked to simulate each painter painting the wall alone 
and then to use both painters together to represent how the situation unfolds from beginning 
to end. During the simulation, participants had to indicate which aspect of the situation the 
problem was asking them to calculate. After carrying out this qualitative simulation of the 
BP, participants were given 5 mins to study a worked solution for the BP (Table 1), which 
remained available during subsequent phases.

Once the allotted study time had elapsed, participants were required to carry out a simu-
lation of the quantitative situation model of the problem and to relate each component of 
the quantitative simulation to its corresponding expression in the equation. As opposed to 
the qualitative situation model—in which the unknown magnitudes were represented with 
approximations—the quantitative situation model requires taking into account the exact 
magnitudes taken from the problem’s solution. To this end, participants were provided with 
a toy clock set to 12 o’clock and 20 small boxes, each containing several magnetized strips 
with widths corresponding to fractions of the wall (from 1/2s to 1/20s), and labeled accord-
ingly. Participants received a sheet of paper displaying the base equation with its calculated 
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values—that is, 1/10 ! 6 hr " 1/15 ! 6 hr # 1—and requiring them to perform a series of 
tasks. First, they had to (a) indicate where in the equation the part completed by the first 
painter was represented, and (b) represent in the wall how many times the first painter com-
pleted his hourly portion of the wall (this could be accomplished by placing the appropriate 
strips on the wall and advancing the arrows of the clock each time the first painter completed 
his hourly chunk of wall). This two-step sequence was repeated for the second painter. Finally, 
participants were asked to (a) mark in the equation the part that represents the sum of the 
fractions painted by both painters and (b) represent with the strips how both painters worked 
together on an hour-by-hour basis.

During the transfer phase, participants received the three TPs displayed on the top part of 
Figure 1, presented in counterbalanced order. After receiving each TP, participants ran a qual-
itative simulation of its situation model (i.e., only the wall and toy painters were available). 
After the qualitative simulation of the TP was completed, participants were asked to carry out 
the qualitative simulation of the BP once again and to identify any differences between them. 
After comparing each TP to the BP in terms of their qualitative situation models, participants 

TABLE 1. Worked Example of the Task-Completion Problem Used as Base Analog in the 
Experiment

(A) Base problem: Peter can paint a wall in 10 hours, while John can paint that same wall 
in 15 hours. If they start painting the wall together at 12 o’clock, at what time will it be 
finished? 

Solution: This problem is a work problem in which two people work together to complete 
a task. The amount of task completed by each person is found by multiplying his rate of 
work by the amount of time he works, which is expressed as follows: Rate of work % Time 
of work # part of work done

Because Peter takes 10 hr to paint the wall, he finishes 1/10 of the wall in 1 hr. In t hr he 
finishes 1/10 ! t. John finishes 1/15 of the wall in 1 hr. In t hr he paints 1/15 ! t. The fol-
lowing table summarizes this information:

Worker
Rate of Work  

(Part of Task/hr)
Time of Work 

(hr)
Work Done  

(Part of Task)

Peter 1/10 t 1/10 ! t
John 1/15 t 1/15 ! t

If the task is finished, the sum of the fractional part finished by Peter and the fractional part 
finished by John must equal 1; (1/10) ! t " (1/15) ! t # 1

Solving for t yields the following: (1/10 " 1/15) ! t # 1

                                              then, (3/30 " 2/30) ! t # 1; 

                                              Finally, t # 30/5 h # 6h.          

Answer: if they started at 12, then they finish at 6. 
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were given 6 mins to find the appropriate equation for the TP via adapting the learned equa-
tion. The generic equation for task-completion problems was displayed below the text of each 
TP (i.e., r1 ! t1 " r2 ! t2 # wtotal). A rectangle was provided to introduce the equation for the prob-
lem, and blank space was left to write down the necessary calculations. Because participants 
were not required to solve the equation, the lower part of the page was left for participants to 
explain how the solution to the equation, if calculated, should yield an answer to the problem. 
This additional information would allow us to determine whether participants understood 
the relation between the unknown and the final answer to the problem. For example, in 
TPtime, the solution to the most common correct equations yields the time taken by the first 
painter, who is said to have worked 1 hr less than the second painter. Given that the painting 
started at noon, calculating at what time the wall will be completed requires that the problem 
solver adds 1 hour to the eventual solution of the proposed equation. This sequence was re-
peated for each of the TPs, and all simulations were videotaped.

The procedure followed by the ISG was identical to that of the PSG, except for the fact that 
all simulations were carried out internally. Prior to running each simulation, participants of 
the ISG were presented with the materials used by the PSG for their corresponding activities 
(i.e., the wall and toy painters for the qualitative simulations, and the wall, painters, clock and 
boxes of strips for the quantitative simulation of the BP), which remained visible throughout 
the internal simulations. Even though participants in the ISG were encouraged to include 
the materials in their simulations, they were asked to close their eyes and to perform the 
simulations mentally.

The procedure followed by the NSG was similar to that of the simulation groups except 
that each simulation task was replaced by a non-simulation task equivalent to the former 
in terms of the reconsideration of problem information it elicited (see Table 2 for a detailed 
comparison between conditions). Neither group received feedback while performing any of 
the tasks.

RESULTS

Because all participants failed to formulate an equation for the BP at pretest, no participants 
were excluded from the analysis. Solutions to TPs were scored as correct only when (a) all 
given and inferable data were correctly incorporated in the equation and (b) the participant 
correctly stated how the solution of the equation, if calculated, would yield the correct an-
swer. Figure 2 displays the percentages of correct solutions in the three transfer conditions 
of the study.

Across TPs, transfer to problems with structural variations averaged 68%, which clearly 
surpasses performance observed by Reed and colleagues in several studies (see Reed, 1999, for 
a review). Because of ceiling effects in TPspeed (95% of correct solutions in the NSG), the sub-
sequent analysis of the advantages of the simulation of situation models on analogical transfer 
will be limited to the performance measures of TPwork and TPtime. A 2 % 3 mixed effects 
analysis of variance (ANOVA) with repeated measures was accomplished to assess the effects 
of the adaptation difficulty (TPwork: medium; TPtime: high) and the type of situation model 
simulation (PSG, ISG, and NSG) on analogical transfer. Main effects were observed for both 
independent variables: adaptation difficulty, F(1, 60) # 31.933, MSE # 0.104, p & .001, and 
type of situation model simulation, F(2, 60) # 10.476, MSE # 0.222, p & .001. An interaction 
between both factors was also found to be significant, F(2, 60) # 3.433, MSE # 0.104, p & .05.
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Paired comparisons revealed that the PSG (83% of correct answers) outperformed the 
NSG (38%), p & .001 (Bonferroni adjustments). The ISG (75% correct) also outperformed the 
NSG, p & .001. These results confirm our hypothesis that promoting situation model simula-
tions aids transfer of a base solution to structurally different TPs. Bonferroni comparisons 
also revealed that performance in both simulation groups did not differ, p ' .05.

To determine whether the promotion of transfer advantage found in situation model sim-
ulation was higher for structural variations bearing greater adaptation difficulty, two separate 
2 % 2 ANOVAs with repeated measures on the factor adaptation difficulty were conducted. 
One ANOVA compared NSG with ISG, and the other compared NSG with PSG.

The 2 % 2 ANOVA with type of situation model simulation (no simulation and imag-
ined simulation) as a between-subjects factor and adaptation difficulty (medium and high) 
as a within-subjects factor revealed a significant interaction, F(1, 40) # 5.712, MSE # 0.107, 
p & .05. Bonferroni comparisons found that the ISG outperformed the NSG in TPtime (65% 
vs. 10%), p & .001, but not in TPwork (85% vs. 65%), p ' .05. Contrasts for paired samples 
revealed that performance in TPwork was higher than that in TPtime, both within the ISG, 
t(19) # 2.179, p & .05, and the NSG, t(19) # 4.819, p & .001. Similarly, a 2 % 2 ANOVA with 
type of simulation (no simulation and physical simulation) as a between-subjects factor and 
adaptation difficulty (medium and high) as a within-subjects factor revealed a strong tendency 
toward interaction between these factors, F(1,40) # 3.931, MSE # 0.114, p # .055. Bonferroni 
comparisons showed that the PSG reliably outperformed the NSG both in TPtime (70% vs. 
10%), p & .001, and TPwork (95% vs. 65%), p & .05. Contrasts for paired samples showed that 
performance on TPwork was higher than on TPtime, both within the PSG, t(19) # 2.517, p & 
.05, and the NSG, t(19) # 4.819, p & .001. The observed interactions suggest that the advan-
tage of simulating situation models is greater for variations posing a greater adaptation dif-
ficulty. The simulations carried out by the PSG revealed that participants correctly simulated 
the qualitative situation model of the TPs as well as their relevant differences with that of the 
BP in 95% of the trials. The quantitative simulation of the BP and its solution was carried out 
successfully in 90% of the trials.
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Imagined simulation group

No simulation group

TPspeed TPwork TPtime
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f 
co

rr
ec

t e
qu

at
io

ns

FIGURE 2. Percentages of correct solutions in the three conditions of the experiment.
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Reed et al. (1985) documented the serious difficulties faced by college students when 
it comes to assimilate a structural variation into a learned equation. Several authors (e.g., 
Koedinger et al., 1997; Nathan, 1998; Nathan et al., 1992; Reed, 1999) have suggested that 
stimulating students to ground algebraic formalisms in the situation models of the problems 
helps them build equations for word problems. In line with this finding, this study set forth 
to determine whether a stimulation to ground equation structures in the situation models of 
the problems would also help participants in adapting the learned solutions to nonisomor-
phic TPs, a task that had proven immune to several prior interventions (see, e.g., Reed, 1999, 
2006). To that end, we presented three groups of participants with a worked example of task-
completion algebra problems. In addition to studying the BP and its solution, participants in 
two experimental conditions were asked to simulate the situation model of the BP and to ex-
plicitly relate critical aspects of such simulation to their counterparts in the learned equation. 
Whereas the PSG had to perform such simulations via manipulation of physical materials, 
the ISG had to carry out those simulations internally. During the transfer phase, participants 
of all groups received three TPs introducing structural variations, which demanded adapt-
ing the base equation to different extents. Whereas for some of the TPs, assimilating the 
structural variations only required comprehending a few isolated components of the base 
equation, in other TPs, assimilating the structural variation required a more articulated and 
complete comprehension of the equation structure. After reading each of the TPs—but be-
fore attempting to generate the appropriate equations—participants were again encouraged 
to simulate the situation model of the TP, and to contrast it against that of the BP to pinpoint 
their differences. Participants of a control group received the same worked example and the 
same TPs as the simulation groups but with the difference that for each simulation activity 
carried out by the experimental groups, the control group had to perform a nonsimulation 
activity that was equivalent to the simulations in terms of the inferences and the reconsidera-
tion of problem information it promoted.

The situation models generated by participants of the PSG demonstrated that students in 
our study were able to build appropriate situation models for the BP and TPs, and to compare 
them to pinpoint their differences. This first result suggests that student’s tendency not to 
ground their formalisms in situation representations of the problems is somewhat disposi-
tional and not the result of cognitive limitations (see, e.g., Walkington, Sherman, & Petrosino, 
2012). However, the fact that they succeeded in generating such representations should not 
be taken to prove that building appropriate simulations is attainable by any learner and for 
any type of problem. As it occurs with the comprehension of the diagrams that complement 
the information provided by texts, the generation of simulations for increasingly complex 
problems might rely on several individual skills, such as spatial ability, working memory ca-
pacity, or training (see Acevedo Nistal, Van Dooren, Clarebou, Elen, & Verschaffel, 2009, for 
a review). Research in both mathematics education and cognitive development suggests that 
students sometimes need effective instruction to correctly understand or generate external 
representations (Fueyo & Bushell, 1998; Uttal, Scudder, & DeLoache, 1997).

The main target of our study was to assess whether a set of activities promoting a con-
nection between situation models and equation structures would help students adapt the 
learned solutions to novel problems introducing structural variations. As in the case of dia-
grams (see, e.g., Beckmann, 2004), we reasoned that simulations of situation models could 
help participants in deciding what operations to use and in evaluating whether those opera-
tions are conceptually sound. As predicted, the groups that were asked to ground equation 
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structures in the situation models of the problems outperformed a control group not required 
to carry out such simulations. An analysis of the relation between participants’ solution strat-
egies and their relative probabilities of leading to correct equations can shed light on the 
specific ways through which our intervention might have helped participants in adapting 
the learned solutions to novel problems. In the case of TPwork, the challenge consisted in 
introducing into the basic equation the fraction of wall that had already been painted. As was 
mentioned in a previous section, this fraction can be introduced either into the left term of 
the basic equation (Strategy 1) or into the right term, albeit with the opposite sign (Strategy 2). 
An inspection of participants’ solutions showed that the probability of placing the appropriate 
sign to the inserted fraction differed across strategies. Although 97% of participants’ attempts 
to insert the fraction into the right term involved the appropriate sign (the “$”), only 25% 
of the attempts to insert it into the left term led to the correct sign (the “"”). Now focus-
ing on differences between groups, protocols revealed that although participants of the NSG 
showed a slight preference for the former strategy, participants in the simulation conditions 
almost invariably attempted to introduce the prepainted fraction into the right term (i.e., the 
alternative that had higher chances of leading to the correct sign). In light of this difference, 
we speculate that our intervention to ground equation structures in situation models might 
have helped participants in interpreting the right term as the total work to be completed 
and thus to regard it as the natural place from which to subtract the portion of wall that was 
already painted.

Regarding TPtime, the challenge rests in the fact that the second painter works 1 hr more 
than the first. This variation to the basic problem can be assimilated by setting the working 
time of the second painter to be t1 " 1h (Strategy 3) or by introducing the work that resulted 
from this extra hour either into the left term (Strategy 1) or into the right term of the equation 
(Strategy 2), albeit with a different sign. As with TPwork, participants’ solutions showed that 
these strategies had different probabilities of leading to a successful equation. While attempts 
to follow Strategies 1 and 2 were infrequent but always successful, the attempts to follow 
Strategy 3 were successful in only 49% of the cases, with all errors originating in an omission 
of the parentheses.

The superior performance of the simulation groups stems from a more accurate use of 
parentheses during attempts to introduce the extra hour directly (Strategy 3) as well as from 
a more frequent use of Strategy 1 than in the NSG. Thus, we speculate that the grounding 
of equations in situation models might have helped participants represent the extra hour of 
the second painter as a separate chunk of painted wall of size r2 · 1 hr, leading either to intro-
duce this expression into the left term of the equation (Strategy 1) or else to acknowledge the 
anomaly that would arise from omitting the parentheses that are required to insert the extra 
hour directly (Strategy 3).

The present results extend prior research by Nathan and colleagues (Nathan, 1998; Nathan 
et al., 1992) in two ways. On the one hand, they demonstrate that the advantage of encour-
aging students to generate situation models of the base and TPs goes beyond helping them 
generate proper equations for task-completion problems: It can help them transfer a learned 
solution to nonisomorphic problems introducing structural variations. On the other hand, 
the fact that our participants benefitted from such simulations without receiving any kind of 
feedback suggests that this type of intervention could in principle be applied to standard non-
interactive instructional contexts (e.g., classroom activities and homework problem-solving), 
far easier to implement than computer-based tutoring systems.
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As was suggested, one of the main transfer advantages of carrying out the requested sim-
ulations might have consisted in fostering an accurate conceptualization of the relevant simi-
larities and differences between the BP and the TPs, thus assuring greater control during the 
process of assimilating the critical differences into the base equation. It should be taken into 
account, however, that the transfer performance of our independent group was higher than 
the performance obtained by Reed et al. (1985) on very similar problems. Just as in Booth and 
Koedinger’s (2012) study on the benefit of diagrams, it is possible that taking advantage of 
interventions of the type pursued in this study requires some basic mathematical skills. Fur-
ther studies would be necessary to ascertain whether the benefit of simulating the situation 
models of the problems may also generalize to students with weaker mathematical abilities.

As opposed to the high amount of surface features shared by the TPs and the BP used in 
this study, the presence of perceptual and thematic mismatches might complicate both notic-
ing the relevant similarities between the problems and adequately conceptualizing the critical 
differences that the problems might maintain. For example, consider asking participants to 
transfer a learned procedure from the BP used in this study to a hypothetical TP that is iso-
morphic to our TPwork, but in which two pipes jointly fill a tank at different rates, with a given 
fraction of the tank already filled at the onset of the process. Even if participants were invited to 
simulate both problems with highly realistic manipulatives (e.g., toy painters " wall " paint 
and toy pipes " tank " water, respectively) and even to tell the differences between them, it 
is likely that the change in content will add some opacity to the partial isomorphism between 
the problems. Fyfe, McNeil, Son, and Goldstone (2014) have thoroughly discussed the trade-
off between realistic and idealized simulations: While grounding an abstract principle in 
realistic representations is best for eliciting an adequate comprehension of the principle but 
suboptimal for later recognizing such principle when embedded in a different content, the 
opposite is true for idealized representations. As demonstrated in a recent series of studies 
(e.g., Braithwaite & Goldstone, 2013; McNeil & Fyfe, 2012; see Fyfe et al., 2014, for a review), 
this trade-off can be circumvented by means of starting off with realistic simulations, and 
progressively fading away their concreteness in favor of more abstract, or general, represen-
tations. Going back to our example, it is conceivable that a progression from rather realistic 
simulations such as those used in the PSG and the ISG of this study toward more idealized, 
“stripped away” representations of the BP (e.g., two bars or dots approaching each other at 
different speeds) could help students acknowledge the relevant similarities between seem-
ingly distinct situations, while at the same time allowing an appropriate conceptualization of 
eventual structural differences between the problems.

The second objective of our experiment was to investigate whether an internal simula-
tion of situation models would be as effective as a physical simulation in promoting ana-
logical transfer. In line with previous studies comparing the benefits of physical and mental 
simulations on text comprehension (Glenberg et al., 2004), comprehension of metaphors 
(Wilson & Gibbs, 2007), and solution to simple arithmetic problems (Glenberg et al., 2011), 
we found that both types of simulations yielded comparable effects on analogical transfer 
to nonisomorphic algebra problems. The fact that performance of the ISG was not inferior 
than performance of the PSG suggests that at least for problems not prone to overloading 
working memory (e.g., the task-completion problems included in this study), transfer per-
formance can be boosted by rather austere interventions, which do not require investing in 
expensive manipulative objects. Given the sufficiency of mental simulations for represent-
ing the situation models of certain problems, a sensible educational goal could consist in 
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promoting participants’ disposition to carry out these activities when appropriate. However, 
external representations may prove more beneficial than imagined simulations for problems 
whose situation models impose a greater cognitive load (e.g., a similar TP but with four 
painters instead of two). Inviting students to decide in what cases physical representations 
can be safely surrogated by internal simulations seems to be a powerful way of promoting a 
greater understanding of representations in general, as well as of the relative advantages and 
disadvantages of different types of representations for problem solving (see e.g., diSessa & 
Sherin, 2000).

The third objective of our study consisted in assessing whether the effectiveness of an 
intervention to ground equation structures in the situation models of the problems interacts 
with the intrinsic transfer difficulty of the TPs. In a recent study using diagrams, Booth and 
Koedinger (2012) found that the advantage of complementing story problems with such 
representations was greater for the more difficult problems. Consistent with such results, 
our intervention to ground equation structures in the situation models of the problems 
was maximally useful for the problems that had proven to impose a greater transfer diffi-
culty to an independent group of participants. Our interpretation of this interaction is based 
on the different levels of depth at which the equation of task-completion problems can be 
represented (Figure 1). Based on this hierarchical representation, we had predicted a gra-
dient of transfer difficulty across TPs, which was confirmed by an independent group of 
participants. The fact that the relative effectiveness of our instructional intervention across 
TPs reproduced this exact ordering invites hypothesizing that the importance of grounding 
equation structures in the situation models of the problems is greater for structural varia-
tions whose incorporation into the learned equation demands a deeper knowledge of the 
equation structure, that is, more levels in Reed’s (1987) hierarchical representation of task-
completion problems. Future studies should explore whether the predictive power of this 
kind of hierarchical representations generalizes to word problems governed by different 
equation structures.

Taking a broader perspective, the observed variation in transfer difficulty across TPs 
also relates to the theoretical discussion about the relative difficulty of the component sub-
processes of analogical reasoning. After analyzing several results from analogical problem 
solving in algebra and combinatorics, Holyoak, Novick, and Melz (1994) argued that the ad-
aptation subprocess is, in general, a more difficult subprocess than mapping and inference 
generation. Albeit indirectly, our results also shed light on the intrinsic difficulty of adapta-
tion and the extent to which it can vary. Taking into account that most participants in the 
NSG were able to map the elements of the TPs onto their counterparts in the BP as well as to 
detect the critical differences between the problems—two preconditions that should be met 
when assessing the difficulty of the adaptation process—the observed variability in transfer 
performance across TPs suggests that adaptation can range from the very difficult to the very 
easy. As before, we conjecture that at least within the domain of algebra word problems, part 
of this variability relates to the number of different layers in the representation of the base 
equation that should be comprehended to assimilate a given structural variation into the 
equation. Beyond its relevance for the study of analogical transfer, advancing our understand-
ing of the cognitive demands posed by each particular structural variation seems crucial for 
honing in on the optimal sequence of practice exercises to be presented during instruction, 
thus fostering a gradual and complete exploration of the variables and relations involved in 
the structure of the problems.
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NOTE

1. The intervention assessed in this study was not limited to the encoding of the base analog. In a 
way similar to other interventions aimed at alleviating adaptation difficulties (e.g., Reed & Bolstad, 1991; 
Reed & Ettinger, 1987), our intervention also involved the processing of target analogs.
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