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Abstract Four layers of environmental information, namely 1) monthly atmospheric temperature and rainfall,

2) annual ground and underground moisture, evaporation, surface adjacent specific humidity, and

temperature, 3) monthly Normalized Derived Vegetation Index (NDVI), and 4) soil physical attri-

butes, were used separately to define the expected geographical distribution and environmental niche

of the spinose ear tick, Otobius megnini (Dugès) (Acari: Ixodida: Argasidae), an endophilic argasid, in

both tropical and neotropical regions. The best predictive values were obtained from ground-derived

climate. Air-derived features ranked second. The remaining environmental information had poor

discriminatory abilities. The most informative variables in the distribution of neotropical popu-

lations are ground temperatures, with surface humidity ranking second. In the tropics, surface

humidity is the most important factor delineating the distribution of O. megnini. Marginality scores

are similar for tick populations in both biogeographical regions, but specialization factors are differ-

ent, supporting the findings that both populations are regulated by different variables. Similarly,

models trained with records of one biogeographical region and projected into the other one, resulted

in poorer predictions than when trained with the homologous set of records. Populations of the tick

in the tropics experience a different range of temperatures than their neotropical relatives, whereas

marginality scores are similar. The conclusion is that each population uses particular portions of the

environmental niche, probably because of different climate or competitor constraints on either bio-

geographical region.

Introduction

The spinose ear tick, Otobius megnini (Dugès) (Acari:

Ixodida: Argasidae), is a one-host ectoparasite primarily

of large wandering ungulates, and is thought to have

had its original center of distribution in the arid lands

of southwestern North America (Keirans & Pound,

2003). From that locality, it was introduced into Cen-

tral and South America, Australia, and South Africa,

whence it spread to Lesotho, Botswana, Namibia, Zim-

babwe, Zambia, and Madagascar (Keirans & Pound,

2003; Mayberry, 2003). The larvae, as well as a variable

number of nymphal stages, feed for long periods of

time deep in the ear canal of their hosts. After the final

nymphal stages have completed feeding, they drop from

the host. The subsequent moult to adults, mating, ovi-

position, incubation of eggs, and larval eclosion and

survival occur under the surface of the soil. Otobius

megnini is of economic importance as a parasite of cat-

tle, sheep, goats, and horses; furthermore, reports of

human infestation are also quite frequent (Keirans &

Pound, 2003).

Almost every species of soft tick (Acari: Ixodida: Argasi-

dae) has developed a strategy towards so-called endophilic

behaviour. They are ‘burrow parasites’, whose non-para-

sitic stages live in the nests of their hosts, and attach to the

hosts when they are available. This strategy protects soft

ticks from climatic extremes and permits them to colonize

habitats in which external climatic conditions could

be potentially detrimental to their survival. In contrast,

exophilic ticks commonly restrict their distribution to

narrow segments of a climate niche, lest their quest for

hosts in an unprotected environment expose them to

harmful external elements.
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Since the pioneering works on ticks (i.e., Hugh-Jones,

1989; Cumming, 2000), researchers have endeavoured to

develop a methodology for mapping the potential distri-

bution of some of the major tick species (i.e., Estrada-

Peña & Venzal, 2006; Lynen et al., 2007), as well as to

elucidate the probable impact of climate change and

understand the principal factors regulating the spatial

distribution of ticks (Cumming & Van Vuuren, 2006;

Estrada-Peña & Venzal, 2007). These methods assume

that each species occurs within specific ranges of environ-

mental variables that are conducive to its survival and

reproduction. Species occurrence can be predicted by the

inclusion of appropriate variables into what are com-

monly referred to as climate suitability models: the rela-

tionships are generated from a sample of correlations of

species’ presence ⁄ absence with specific values for environ-

mental variables. Although concerns have been raised

about some assumptions made in the construction of

these models (Thuiller et al., 2005), they remain an

important tool in clarifying the relationships between liv-

ing organisms and their environment.

The adaptation of soft ticks towards endophilic behav-

iour precludes a straightforward association between the

presence of the ticks and a given set of climate or vegeta-

tion-derived features. This hampers the evaluation of the

climate niche occupied by a species and the role of restric-

tive variables in delineating its distribution. Such sets of

environmental features are commonly used for exophilic

ticks in the demarcation of their habitat preferences. Cli-

matic conditions that would otherwise potentially restrict

the survival of a tick species would be cushioned by the

protective effect of the ground layer, hence permitting the

survival of viable populations. Endophilic traits thus

require the determination of the usefulness of sets of data

as markers for the suitability of habitats for soft ticks,

different from those used for exophilic species.

The main purpose of this paper was to evaluate the per-

formance of different sets of environmental data as mark-

ers of the recognized niche of the tick O. megnini. The

second aim was to build models of distribution around the

particular distribution of the tick on two sets of sites (tro-

pics and neotropics). Furthermore, we used the recorded

distributions of the tick in Africa and the Neotropics to

ascertain by comparison of the most restrictive environ-

mental variables, whether each population has evolved

divergent preferences towards a given habitat niche.

Materials and methods

Sources of tick records

Records for O. megnini include the results of surveys per-

formed in Argentina, South Africa, and Namibia during

the last 20 years. Furthermore, published records for the

neotropical region from Mexico to Argentina (compiled

by SN and AAG) and for the tropics (originally compiled

by Cumming, 2000) were used when accurate information

on the locality of collection was available. The final set

included 146 records of O. megnini in the neotropics and

405 in the tropics (Figure 1).

Environmental raster layers

Four sets of variables were used to outline the environ-

mental niche. WorldClim is a set of interpolated climate

values over the surface of the Earth (Hijmans et al., 2005).

A complete explanation of interpolation procedures can

be accessed at http://www.worldclim.org. This set is herein

termed ‘atmospheric climate’, from which we used the

monthly values of both minimum and maximum temper-

atures as well as rainfall at a resolution of 10�. We also used

a series of monthly Normalized Derived Vegetation Index

(NDVI) images captured at 0.1� resolution by NASA Earth

Observations (NEO, http://neo.sci.gsfc.nasa.gov) between

2001 and 2007. The individual NDVI layers were processed

to produce monthly averages at the nominal resolution

across the above mentioned period. NDVI is a surrogate

for photosynthetic activity, and it has been acknowledged

as one of the best single variables in the recognition of hab-

itat suitability for Ixodes ricinus (L.) ticks (Estrada-Peña,

1999). Environmental descriptive variables for both atmo-

spheric climate and NDVI sets were used as monthly vari-

ables, instead of computing the mean and standard

deviation of both temperature and rainfall.

Abiotic variables at ground level could potentially more

adequately reflect the environmental niche of the targeted

tick because of its endophilic behavior. We thus in addi-

tion used the GLDAS-DISC series of assimilation models

including monthly values of evapotranspiration, humidity,

and temperature at soil level, as well as temperature and

moisture content at variable depths in the soil at a resolu-

tion of 0.25�. This set is herein called ‘ground climate’ and

full details are available at http://agdisc.gsfc.nasa.gov/data/

browse/GLDAS/GLDAS_NOAH025_M. This set has 11

monthly variables, leading to an unrealistically high num-

ber of colinearly correlated variables. It was therefore

decided to work only with annual values. Monthly values

were converted to mean, maximum, minimum, and stan-

dard deviation of evapotranspiration (kg m-2 s-1), surface

adjacent specific humidity (kg kg-1), and temperature (�C)

at ground level, as well as temperature (�C) and moisture

(kg m-2) content at depths between 1 and 10 cm below the

soil surface. This procedure was designed to balance the

inclusion of values involving one complete year and sea-

sonality, whereas keeping to a minimum the number of

variables that retain ecological significance. The fourth set
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of environmental raster layers included soil physical

characteristics (the ISRIC-WISE set; Batjes, 2005). This

database included soil properties at a resolution of 0.5�.

We utilized only the available quantitative variables,

namely percentage of clay, sand and silt, total porosity

(%), water retention capacity, conductivity, and terrain

drainage. Qualitative variables for soil, according to the

standard designations of FAO, were not included.

The resolution of the data layers used affects the results,

as a specific grain size in descriptive variables must match

the resolution of the database of tick records. A recent

study by Guisan et al. (2007) compared the differences in

model performance with a 10-fold change in grain size, as

applied to 50 species, with 10 different model methodolo-

gies and applied to extents ranging from national to conti-

nental scales. Their results showed that difference in

performance between fine- and coarse-grain models only

reveal slight-to-moderate changes across techniques. Their

conclusions were that change in grain size does not sub-

stantially affect species distribution models. On the other

hand, improvements of the model fitting could be

expected with an adequate combination of explanatory

variables from separate datasets. However, because of the

different resolutions, this could be performed only after

downscaling or upscaling some variables, which are diffi-

cult to interpolate (i.e., soil attributes). Consequently, each

set of originally obtained environmental variables was used

separately.

Fitting niche-based distribution models

There is considerable controversy about how to best mea-

sure performance of the models, and the influence of auto-

correlation on such a measurement. One example is the

problem of non-independence between data used for cali-

bration of models and that used for validation (Araújo

et al., 2005). Non-independence is often the result of using

spatially autocorrelated data to calibrate and validate the

models, and one of the consequences is that the perceived

ability of models to make realistic predictions may be

inflated (Segurado et al., 2006). If the values of a variable

depend on the distance between sample points, a set of clo-

sely spaced observations effectively provides less informa-

tion than the same number of observations more widely

separated in space. This could be a serious shortcoming in

models, as species’ occurrences tend to be aggregated at

most spatial scales, and the more aggregated species’

occurrences are, the more likely it is that environmental

variables will show some explanatory power simply

because of the fact that environmental conditions tend to

be more similar at neighbouring sites (Segurado et al.,

2006). Patterns of species’ distributions may be spatially

autocorrelated because of contagious population dynam-

ics and historical factors, but they may also be the result of

spatial structure among environmental predictors (Storch

et al., 2003). Species and the environment may share spa-

tial structure because of the effect of spatially structured

environmental predictors and non-environmental contin-

gencies that may or may not be related amongst them

(Borcard et al., 1992). Segurado et al. (2006) studied the

effect on final performance of models of two methods to

account with spatial autocorrelation and concluded that

forcing the inclusion of a covariate term to cancel spatial

autocorrelation of species distribution represents a prob-

lem, first because models tend to underestimate the

importance of environmental variables that co-vary with

species’ occurrences, second because those models cannot

be extrapolated to regions where no occurrence data are

available. Therefore, we decided not to include a covariate

term in our modelling methods.

The reliability of different modelling algorithms to pro-

ject the niche preferences of an organism is also subject to

debate (Elith et al., 2006). Different modelling techniques

calibrated on the same species can produce different

results. A preliminary test (results not included) using

presence + absence algorithms based on two sets of sites

(tropics and neotropics) in which the tick was absent after

active surveillance provided considerable bias in the out-

put of the different algorithms, ascribable only to the use

of different absence or pseudo-absence layers. We then

used a method based on presence-only data, the MaxEnt

algorithm version 3.2.1, originally developed by Phillips

et al. (2006). This algorithm produces predictions from

incomplete information by estimating the most uniform

distribution of points of occurrence across the area of

study. This maximum entropy method has emerged as

one of the three most reliable techniques for predicting

species distributions (Elith et al., 2006). The method out-

puts an estimated probability of occurrence of the tick for

every cell of the grid, using a set of pseudo-absence data as

background information.

Models were trained separately for the tick records in

the tropics and the neotropics, as one of the aims of the

current study was to test whether different restrictive vari-

ables are applicable to each population in its particular

environmental niche. Testing or validation is required to

assess the predictive performance of the model. The most

commonly used approach is to partition the data ran-

domly into ‘training’ and ‘test’ sets, thus creating quasi-

independent data for model testing (Fielding & Bell, 1997;

Guisan et al., 2007). Model validation statistics were

based on 10 replicate random partitions of the localities

into the test (25%) and training (75%) data. For each rep-

licate, we calculated the number of test localities omitted

from the prediction and applied a binomial test to check
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statistical significance. The validation test required the use

of a threshold to define ‘suitable’ and ‘unsuitable’ areas,

so we adhered to the approach of Pearson et al. (2007) by

using the lowest presence threshold (LPT). LPT is a rela-

tively conservative index because it identifies sites that are

at least as suitable as the lowest value associated with the

presence of the species. The more customary receiver

operating characteristic analysis was not used because of

recent criticism about bias (Lobo et al., 2007). Explana-

tory variables are defined as most informative when they

have the greatest influence on the final model. These vari-

ables are considered to be the most suitable for the

description of an organism’s environmental niche. To

determine such a set of variables, the increase in regular-

ized gain is added to the contribution of the correspond-

ing variable in each iteration of the training algorithm, or

subtracted from it if the change to the absolute value of

lambda is negative.

We were interested in assessing whether tropical and

neotropical populations of the tick use different portions

of the available environment, either because of diverging

evolution towards different niches or because of different

constraints within their actual niches in the two regions of

distribution. Niche overlap among the tropical and neo-

tropical populations was checked using the methods

reported by Peterson & Holt (2003). The best model was

used to predict the geographical distribution of each popu-

lation (autopredictions) and those of the other population

(allopredictions). We used the ratio of alloprediction to

autoprediction as an inverse measure of inter-population

niche differentiation or niche overlap; the greater this

value, the less the apparent difference of geographical vari-

ation in a species niche (Peterson & Holt, 2003). We fur-

ther used herein the approach developed by Hirzel et al.

(2002) to check the relationships of the recorded tick dis-

tribution and their corresponding available niche in both

tropics and neotropics. The method computes a group of

uncorrelated factors from the raw environmental informa-

tion that provided the best model, summarizing the main

environmental gradients in the region considered, simi-

larly to common ordination techniques such as Principal

Component Analysis. However, it derives these factors

using data only from known species presence, thus provid-

ing factors with biological meaning. The first axis (margin-

ality factor) is chosen to describe the marginality of the

niche with respect to the regional environmental condi-

tions, by maximizing the difference between the environ-

mental mean value of the species’ presence, and the

global mean environmental value of the entire region

studied. The following axes (specialization factors), sorted

according to decreasing amounts of explained variance,

were used to represent the species’ degree of specialization

in the rest of the (orthogonal) environmental gradients

identified in the study area. Biomapper 3.1 software

Figure 1 Map of the tropical and neotropical regions displaying the locality records used in determining the distribution of Otobius

megnini. Dots represent the reported presence of the tick.
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(Hirzel et al., 2002, see http://www.unil.ch/biomapper)

was used to calculate marginality and especialization.

Results

For predictions applied to tropical (T) and neotropical

(N) populations, the LPT scores were 0.12 and 0.11,

respectively, with a mean omission error of 0.02 and 0.06,

respectively, and 9 ⁄ 10 partitions recording minimum

training presence at a binomial probability of P<0.05 using

the GLDAS-DISC data set of ground climate. For the

atmospheric climate set, the LPT values were 0.10 and

0.12, respectively. Omission error for T occurred in 2 ⁄ 10

replicates and P = 0.11; omission error for N occurred in

1 ⁄ 10 replicates with P = 0.12. NDVI series provided LPT

values of 0.07 and 0.11 for T and N, as well as higher omis-

sion errors (P = 0.29 and 0.25, in 5 ⁄ 10 and 4 ⁄ 10 replicates,

respectively, for T and N). Errors were higher when

ground-derived physical attributes were used (P = 0.41

and 0.39, in 6 ⁄ 10 and 6 ⁄ 10 replicates, respectively, for T

and N, with LPT values of 0.31 and 0.22). Therefore, the

ground-derived climate value is the better descriptor for

the niche of O. megnini. This best model captured 403 ⁄ 405

and 142 ⁄ 146 tick records in T and N. Figures 2 and 3 show

the geographical range of suitable niches for T and N,

respectively, computed using the different sets of descrip-

tive variables.

Most informative variables in the delineation of climate

niches for O. megnini are those which resulted in the maxi-

mum gain of the model when used in isolation (i.e., the

most useful information by itself). Regarding neotropical

populations and the ground climate set, most informative

variables were the annual mean, maximum, and minimum

temperature at ground level and depths of 1–10 cm. Mean

and minimum humidity at the same depths were of sec-

ondary significance. Standard deviations of both annual

A B

C D
Figure 2 Extent of environments suitable

for Otobius megnini in the neotropics using

four sets of environmental information.

Minimum suitability is displayed in blue,

and maximum in yellow. Data layers used

to develop each model were: (A) monthly

Normalized Derived Vegetation Index

(NDVI) values for the period 2001–2007,

(B) physical characteristics of the soil,

(C) monthly air climate values including

rainfall and minimum and maximum

temperature (1970–2000), and (D) annual

values recorded between 2000 and 2007 for

temperature, evaporation, and moisture at

ground level, and temperature and

moisture content at depths of 1–10 cm

below ground surface.
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temperature and humidity, as well as all variables derived

from evaporation, were not significant. Amongst the

atmospheric climate set, temperature and rainfall between

November and April (summer in the region) resulted in

the highest gains in the model. The most informative

NDVI variables for neotropical populations were the val-

ues between November and May. Every variable derived

from the physical attributes of the soil was selected as being

of high-ranking importance in the final model, even if that

model provided a poor fit with actual records. Regarding

tropical populations and the ground climate set, most

informative variables were maximum and minimum

moisture, with mean, minimum, and standard variation of

temperature rated second. Models built with the atmo-

spheric data set pointed to precipitation from April to Sep-

tember as the most informative variables, whereas

temperature during the same period was ranked second.

Values between May and September were the better

explanatory NDVI variables for the niche of O. megnini in

the tropics. As with the neotropical populations, the

models indicated that all soil attributes were of high

significance.

Marginality and specialization were computed only for

the set of ground-derived climate. The first selected axis,

which maximizes the absolute difference between global

environmental mean and the species mean (the marginal-

ity factor), explained 64% of the specialization for neo-

tropical populations and 62% for tropical ones. These high

A B

C D

Figure 3 Extent of suitable environment

for Otobius megnini in the tropics using four

sets of environmental information.

Minimum suitability is displayed in blue,

and maximum in yellow. Data layers used

to develop each model were: (A) monthly

NDV1 values for the period 2001–2007; (B)

physical characteristics of the soil; (C)

monthly air climate values including rainfall

and minimum and maximum temperature

(1997–2000); and (D) annual values

recorded between 2000 and 2007 for

temperature, evaporation, and moisture

at ground level and temperature and

moisture content at depths of 1–10 cm

below ground surface.
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percentages of specialization pointed out the importance

of these first factors in explaining both marginality and

niche breadth of each of the two populations. Mean and

minimum temperatures were the variables with higher

marginality coefficients for neotropical populations, show-

ing that the scores of these variables in the presence cells

differed from the mean values in the region (Table 1).

Mean humidity at ground level had a higher coefficient of

the specialization factor. Mean and minimum tempera-

tures were the variables related to the marginality factor of

tropical populations (Table 1). It is important to notice

that both populations had a similar marginality, whereas

the variables associated with marginality and specialization

factors were different.

Figure 4 represents a comparative overview of tempera-

ture and humidity at ground level recorded for the envi-

ronment and for the tick presence sites in the tropics and

the neotropics. These variables were chosen because they

are the most informative for niche delineation as well as

marginality and specialization factors. Tropical popu-

lations of O. megnini were absent from sites with tempera-

tures higher than 15 �C because these sites had low

humidity values. However, sites within the range of tem-

peratures higher than 15 �C in the neotropics were always

within a range of humidity higher than 0.008 kg of water.

Autoprediction was 99.5% for neotropics and 97.2% for

tropics. However, alloprediction varied greatly between

populations. Models trained for the neotropical records

produced a 97% of alloprediction when projected into the

tropics, at the cost of 32% false-positive cells (Figure 5).

Models trained with the tropical records showed 52% allo-

prediction when projected onto the neotropics, with 35%

false-negative cells. In summary, marginality scores sup-

ported the hypothesis that both populations occupy a sim-

ilar fraction of the available niche. Values obtained for

alloprediction and the different involvement of variables

in the specialization factors pointed to the hypothesis

that both populations occupy a different portion of the

available niche in either tropics or neotropics.

Discussion

This study reports the first assessment of the niche occu-

pied by a soft tick that spends its non-parasitic stages under

the surface of the soil, or in cracks and crevices in poorly

maintained premises (Dreyer et al., 1998). The cushioning

effect of refuges associated with that endophilic life strategy

is likely to enable O. megnini to expand its distribution into

areas otherwise unsuitable for its survival. Therefore, the

tick depends heavily upon an adequate niche for the

non-parasitic stages to complete their life cycle. Consider-

ing that poorly maintained premises constitute a suitableTa
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environment for the non-parasitic stages, it is important to

also consider the human influence in the establishment of

O. megnini. This influence is, however, probably more

significant for the local spread of the tick than in the deter-

mination of its distribution at a regional level.

Because of the inherent difficulty of interpolating data

sets into a common scale without introducing important

errors, we purposely adhered to two recent findings in the

field. First, that changes in the grain scale of explanatory

variables have little effect on final model results (Guisan

et al., 2007), and second, that there is no way to handle the

spatial autocorrelation without introducing covariate

terms in models (Segurado et al., 2006). Choosing a grain

size for modelling is partly a technical issue. For instance,

grain size is related to the grid cell size of available environ-

mental data or characteristics of the species data [e.g., geo-

graphical accuracy, sample size, or field survey constraints

(Huettmann & Diamond, 2006)]. Changing the grain size

can influence the perception of a phenomenon, such as

patterns of presence. However, the above-mentioned study

showed that there are no reasons to consider that grain size

will always inflate a given modelling procedure. In any

Figure 4 Average range of climate condi-

tions recorded for sites where Otobius meg-

nini was present in the tropics and

neotropics, compared with background val-

ues (pseudo-absence set of MaxEnt algo-

rithm). Temperature at the ground surface

(in �C) and humidity at the same level (in

kg of water per kg of soil) were selected to

illustrate differences. (A) Sites where

O. megnini has been recorded and

(B) pseudo-absence set.
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case, the resolution of the records database was higher than

the resolution of the explanatory variables. In measure-

ment of model performance, an overestimation of the

model may occur both because of spatial autocorrelation

between the calibration and validation data sets and spatial

autocorrelation within explanatory variables (Segurado

et al., 2006). When there is more than one candidate vari-

able to explain a species’ distribution, the assessment of

the effect of spatial autocorrelation on models requires a

more complex and thorough approach. Nevertheless, even

if spatial autocorrelation inflates variable significance, this

does not mean that the final model configuration will

exclusively include the most autocorrelated variables. The

thorough study by Segurado et al. (2006) concluded that

the inclusion of a contagion term to cancel spatial autocor-

relation tended to underestimate the importance of envi-

ronmental variables that co-vary with species’ occurrences.

We adhered to that conclusion and decided not to force

the inclusion of such a contagion term.

The two climate data sets (atmospheric and ground-

derived) performed almost equally well in the description

of the tick niche. Best predictive ability was obtained with

a set of climate variables obtained above and below ground

surface, including temperature, humidity, and evaporation

at a temporal resolution of 1 year. Entering monthly

(atmospheric) variables may not be a suitable alternative

for the detection of O. megnini niche, as the seasonal pat-

tern of activity of the tick may vary even within a locality

(Theiler & Salisbury, 1958; Drummond, 1967; Gugliel-

mone & Mangold, 1986). As stated by Nava et al. (2009),

photoperiod does not drive the seasonal regulation of

O. megnini, and the factors governing dissimilar seasonal

patterns remain largely unexplored. We did some tests

based on the atmospheric data set included as yearly means

and standard deviations of every variable, which provided

poorer results (data not included) probably because of the

low number of explanatory variables.

The use of remote sensing in modelling is based on the

capture of measurements of radiation from a satellite and

their links to the species to be mapped (Crombie et al.,

1999). The NDVI is the most commonly used vegetation

index in vector-borne disease-related studies (Kitron &

Kazmierczak, 1997). This index has been used to classify

habitat suitability for various arthropods, such as the ticks

Ixodes scapularis Say (Ogden et al., 2006) and Ixodes pacifi-

cus Cooley & Kohls (Eisen et al., 2006), Anopheles spp.

mosquitoes (Shililu et al., 2003), and Culicoides spp.

(Purse et al., 2004). Its usefulness, however, seems to be

poor when applied to O. megnini. This can most probably

be ascribed to the lack of correlation between the preferred

sites for tick development and the seasonal dynamics of

the surrounding vegetation, as already mentioned for

other tick species by Cumming (2000). Poor results were

also obtained when the physical attributes of the soil were

used. Soil characteristics do not satisfactorily represent the

limiting variables for an endophilous tick, as they do not

include essential variables such as the effect of temperature

on development or the effects of rainfall on survival.

The differences identified in models trained with

records from the tropics or the neotropics and further

projected onto the other region are striking. These differ-

ences are further confirmed by the results of marginality

and specialization scores, and the comparison of critical

Figure 5 Projection of the predicted habitat suitability for

populations of Otobius megnini in the tropics and the neotropics

using models trained with records of the alternative region.

Models were trained with records of each region using the set

of ground climate values, and then projected onto the other

region.
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variables between environment and sites of reported tick

presence. Although the overall significance of these results

is difficult to ascertain, they might provide evidence of dif-

ferent mechanisms of adaptation among tick populations.

The invasive range of a living organism is hard to deter-

mine based only on its recorded occurrence, because it is

subject to various environmental pressures, including cli-

mate and competitors (Thuiller et al., 2005). Environ-

mental constraints within the new (invaded) habitat may

have exerted different levels of pressure, directing evolu-

tion of the imported population. Furthermore, the geo-

graphic origin of the founder propagules and the

representativeness of the genetic pool of the total popu-

lation could have major implications for their ability to

spread into new areas. The present study indicates that

tropical populations of O. megnini colonize only a small

fraction of the habitat that should be suitable according to

the preferences of neotropical populations. Analysis of

ground climate recorded at the capture sites of both popu-

lations indicates differences in restricting variables.

Whereas temperature is a limiting factor for the tick in the

neotropics, humidity is the main limiting factor for tropi-

cal populations, with temperature playing only a second-

ary factor. An analysis of the distribution of temperature

and humidity values in both tropics and neotropics clearly

indicates that sites with temperature higher than 15 �C

over the ground surface are associated with low values of

soil humidity in the tropics, whereas these sites are asso-

ciated with higher ground humidity values in the neotrop-

ics. Our interpretation is that distribution in the tropics is

primarily delineated by the ground humidity, preventing

the tick from colonizing sites within the preferred range of

temperature values. Because models trained for neotropi-

cal records consider moisture as a variable of secondary

interest, the model projected onto the tropical region

overestimates the suitable area and overpredicts the

distribution of O. megnini.

Further studies on the predictive value of environmental

information derived from the nearctic range of distribu-

tion of the species, from where it is argued that the tick

originated (Keirans & Pound, 2003), together with empiri-

cal data on the factors regulating seasonal activity, and

phylogenetic comparisons between populations, should

provide a greater understanding of the regulatory and

invasive processes accompanying the spread of O. megnini.
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