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Li and Miao [Phys. Rev. A 85, 042110 (2012)] proposed a non-Hermitian Hamiltonian that is neither Hermitian
nor PT symmetric but exhibits real eigenvalues for some values of the model parameters. In order to explain
this fact, they resorted to PT -pseudo Hermiticity and to a so-called permutation symmetry. Here we show that
the spectrum of this Hamiltonian can be easily analyzed in the usual way in terms of exact or broken antiunitary
symmetries that appear to be more relevant than the permutation symmetry. In addition, we show why the authors’
Hamiltonian and the well-known Pais-Uhlenbeck oscillator lead to the same fourth-order differential equation
for the coordinates.
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Some time ago, Li and Miao [1] proposed a non-Hermitian
and non-PT -symmetric Hamiltonian with real spectrum for
some values of the model parameters. They argued that
their model is equivalent to the Pais-Uhlenbeck oscillator
and discussed the spontaneous breaking of the so-called
permutation symmetry. They suggested extending the well-
known η-pseudo-Hermiticity [2–5] to the case in which η is
the antilinear and antiunitary operator PT (the parity-time
operator).

The purpose of this comment is twofold. First, we show
that this model exhibits two antiunitary symmetries [6] that
explain the transition from real to complex spectra in a simple,
straightforward way in terms of broken antiunitary symmetry.
Second, we obtain slightly more general conditions for real
eigenvalues that encompass the Hermitian and non-Hermitian
regimes. As a by-product, we show that many properties of
Hamiltonians that are quadratic functions of the coordinates
and momenta can be derived by means of an algebraic method
[7,8] in a simple and straightforward way.

The oscillator proposed by Li and Miao [1] is
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where xi and pi , i = 1,2 are the coordinates and conjugate
momenta, respectively, and the model parameters ai , i = 1,2,3
are real. Since this Hamiltonian is neither Hermitian nor PT

symmetric, the authors based a good deal of their discussion on
its invariance with respect to the permutation transformations
(a1,a2,x1,x2,p1,p2) → (a2,a1,x2,x1,p2,p1).

However, the spectrum of the Hamiltonian (1) can be
more easily analyzed in terms of the two antiunitary symme-
tries given by the antilinear operators A1 = U1T and A2 =
U2T , where U1 : (x1,x2,p1,p2) → (−x1,x2, −p1,p2) and
U2 : (x1,x2,p1,p2) → (x1, −x2,p1, −p2) are unitary trans-
formations. Obviously, A−1

i = Ai and AiHAi = H for i =
1,2. This kind of antiunitary symmetry has recently been called
partial PT symmetry [10,11] and is an example of a larger class
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of antiunitary symmetries in quadratic Hamiltonians [12]. It is
well known that if A is an antiunitary symmetry of H and |ψ〉
and eigenvector with eigenvalue E then HA|ψ〉 = AH |ψ〉 =
AE|ψ〉 = E∗A|ψ〉. Therefore, when A is an exact symmetry
A|ψ〉 = a|ψ〉, then E = E∗. It is clear that the transition
from real to complex spectrum can be discussed as in any
PT -symmetric Hamiltonian.

In order to derive more general conditions for real eigen-
values, we allow b to be either real or imaginary. When
b∗ = −b, we have a non-Hermitian Hamiltonian with the two
antiunitary symmetries just mentioned. On the other hand,
when b∗ = b, the Hamiltonian is Hermitian. In order to obtain
the conditions for real eigenvalues, it is necessary neither
to solve the Schrödinger equation for H nor to resort to
lengthy transformations of the coordinates and momenta. We
simply make use of the algebraic method proposed recently
that yields the natural frequencies of any Hamiltonian, which
is a quadratic function of coordinates and momenta [7,8].
Although the approach was originally developed for Hermitian
Hamiltonians, most of the results in those articles apply to
non-Hermitian operators as well [9].

According to the algebraic method, the two natural frequen-
cies of the operator (1) are the eigenvalues of the regular or
adjoint matrix [7–9,13,14]
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The characteristic polynomial
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where I is a 4 × 4 identity matrix, shows that if λ is a root,
then −λ is also a root. Therefore, there are just two natural
frequencies that are the positive square roots of
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These two frequencies are real, provided that
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< b2 < 1. (5)
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In the Hermitian regime, there are real eigenvalues only if
0 < b2 < 1. When b2 � 1, the Hermitian operator does not
have eigenfunctions in the Hilbert space where it is defined
[9]. The transition from real to complex spectrum takes
place at the exceptional points b = ±1 [15–18] where the
Hermiticity breaks down [7–9]. When a1 = a2, there are real
eigenvalues only in the Hermitian region 0 < b2 < 1. For this
reason, Li and Miao [1] restricted their analysis to the case
a1 �= a2. Equations (3)–(5) are invariant under permutation
of a1 and a2 and show that it is the relative magnitude of
these parameters that determines the main features of the
spectrum.

At the other two exceptional points b2 =
−(a2
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2 = 0 and the two natural frequencies are

equal. The form of the characteristic polynomial (3) clearly
shows that the coordinates satisfy the differential equation
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(6)
that reduces to the one derived by Li and Miao [1] when
b = ia3/(2a1a2). The present equation is more general because
it also applies to the Hermitian regime 0 < b2 < 1. It may be
rewritten as

d4xj

dt4
+ (ξ+ + ξ−)

d2xj

dt2
+ ξ+ξ− = 0, j = 1,2, (7)

that is exactly the one associated to the Pais-Uhlenbeck
oscillator because ξ± = ω2

1,2. It can be proved that any
Hamiltonian that is a quadratic function of two coordinates and
their conjugate momenta leads to a fourth-order differential
equation like (7) [9]; therefore, it is not surprising that
the Hamiltonian operator (1) and the Pais-Uhlenbeck one
are associated with the same differential equation for the
coordinates.

The regular or adjoint matrix H is closely related to the
fundamental matrix F [19] in the following way: F = iHT /2,
where the subscript T stands for transpose. It has been proved
that “a PT-symmetric elliptic quadratic differential operator
with real spectrum is similar to a self-adjoint operator precisely
when the associated fundamental matrix has no Jordan blocks”
(p. 444007). This statement is consistent with the fact that
the eigenvalues of the Hamiltonian (1) are real when the
eigenvalues of the adjoint or regular matrix are real.

In summary, although the non-Hermitian Hamiltonian (1)
is not PT symmetric, we can analyze its spectrum exactly in the
same way in terms of exact or broken antiunitary symmetry
(the A1 and A2 shown above). It is not necessary to resort
to the permutation symmetry in order to explain any of its
properties because the Hamiltonian (1) is just a variant of
the PT-symmetric class of Hamiltonians. The transition from
real to complex spectrum takes place in the usual way at
some exceptional points where the antiunitary symmetry is
broken and the adjoint or regular matrix representation is not
diagonalizable.
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