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Abstract In this work, we present the development of a
method for the determination of doxorubicin in plasma sam-
ples in the presence of an unexpected component (riboflavin)
by using total synchronous fluorescence spectroscopic data
matrices. To the best of our knowledge, this is the first time
that the second-order advantage is obtained with this kind of
data. Two strategies including unfolding the data and: (a)
processing with multivariate curve resolution coupled to
alternating least-squares as first-order data or (b) processing
with unfolded partial least-squares and exploiting the second-
order advantage by the residual bilinearization procedure were
considered. The calibration set was built with human plasma
samples spiked with doxorubicin, while the validation set was
prepared with human plasma samples spiked with both doxo-
rubicin and riboflavin, a drug whose spectrum highly overlaps
with the one corresponding to doxorubicin. Both methodolo-
gies reached good indicators of accuracy: recoveries of ca.
100±8 % and REP of ca. 5 %; and precision: coefficient of
variations between 7 and 9 %.
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Introduction

In the last years, chemometrics has gained an important place
in analytical chemistry due to its ability to analyze complex
multi-component mixtures without resorting to separation
procedures. Multivariate calibration methods can be classified
similarly to analytical instrumentation, i.e., in zero, first, sec-
ond, and higher order. In the progression from zero to first- to
second-order calibration and beyond, the algorithms become
more powerful as the information that they can reliably extract
from the data increases [1].

Synchronous fluorescence spectra (SFS) are one kind of
first-order data, which are used to overcome complicated
multi-component samples with severely overlapping emission
and/or excitation spectra. Synchronous spectrometry consists
essentially in simultaneously scanning both monochromators,
whilemaintaining a constant wavelength interval (Δλ) between
them. The simplification of the spectral profile together with the
reduction of band width is its main characteristic [2]. Further-
more, there is a reduction in both Rayleigh and Raman scatter-
ing; thus, corrections or preprocessing methods are no longer
needed as may happen for excitation-emission spectra [3].

It is important to note that although SFS spectra are
narrower and sharper compared to conventional fluorescence
spectra, it is not always possible to avoid spectral overlap in
certain multi-component mixtures. However, combining SFS
spectra with a multivariate method makes the analysis simple
and fast without an extraction step [4].

First-order algorithms allow one to identify new samples
containing unexpected components, a property known as the
first-order advantage [5]. These calibration methods may
compensate for potential interferences, usually by their inclu-
sion in the calibration set. On the other hand, second- and
higher-order calibration methods can handle the presence of
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potential interferences not included in the calibration set,
which is the basis of the second-order advantage. This also
enables several analytes to be determined simultaneously [5].

Total synchronous fluorescence spectroscopy (TSFS) pro-
vides the total synchronous fluorescence characteristics of a
multi-fluorophoric sample at various possible wavelength
intervals (Δλ). Every TFSF datum consists in a two-way
array of dimension excitation wavelength×Δλ and can be
successfully handled by second-order multivariate calibration
algorithms.

In order to apply the proper multivariate algorithm, it is of
great importance to know whether the data are trilinear or not
because this property is assumed by the underlying models of
some of the available algorithms [6]. Second-order data are
trilinear when each compound in all experiments treated
together can be described by a triad of invariant pure profiles
[7], and the spectral shape of a component is not modified by
changes in the other two modes (dimensions) [8]. Models with
this structure are parallel factor analysis (PARAFAC) [9] and
several versions of alternating trilinear decomposition [10–14].
On the other hand, models allowing for deviations of multi-
linearity in one way or another are multivariate curve resolution
coupled toALS (MCR-ALS) [15], unfolded partial least-squares
(U-PLS) [16], multi-way PLS (N-PLS) [17], PARAFAC2
(a variant of PARAFAC that allows profile variations in one of
the data dimensions from sample to sample) [18], among
others. TSFS behaves in the latter mode, meaning that most
of the fluorophores show variation in their spectral shapes
along with their spectral intensities as long as Δλ changes.
Each fluorophore in TSFS does not have a single unique SF
spectrum due to the fact that the SF spectral shape of a
fluorophore varies with the change in offset [19]. Kumar and
Mishra were able to simultaneously quantitate five polycyclic
aromatic hydrocarbons using TSFS with multivariate methods
such as N-PLS, U-PLS, and MCR-ALS, but no second-order
advantage was achieved since all the components were added
in both calibration and test samples [20]. The same authors
have addressed the issue of lack of trilinearity converting the
TSFS data to an excitation–emission fluorescence matrix, so
that PARAFAC modeling could be applied [21].

The requirement of equal profiles in all dimensions and all
samples for a given component is not fulfilled neither in the
case of MS/MS data because a given component displays
various different profiles in one of the data dimensions. N-
PLSwith the aid of data preprocessing was found to give good
results when this type of non-bilinear data was analyzed.
However, all the components were also provided in training
and test samples [22].

Doxorubicin (DOX) is an anthracycline antibiotic pro-
duced by Streptomyces peucetius varieta caesius and is pres-
ently used in the treatment of a wide variety of cancers [23,
24]. Numerous HPLC methods have been applied for the
determination of DOX and its metabolites in pharmaceutical

dosage forms and biological fluids [25–29], as well as HPLC
coupled to mass spectrometry [30, 31]. Zagotto et al. de-
scribed several developments in separation and quantitation
of doxorubicin and other anticancer agents in biological
fluids, including capillary electrophoresis, UV–visible spec-
troscopy, and HPLC techniques [32]. Recently, a rapid anal-
ysis of doxorubicin and danorubicin was developed by Lu and
co-workers using microchip capillary electrophoresis [33].

Direct determination of DOX in human plasma was ac-
complished based on excitation-emission matrix fluorescence
measurements and multiway chemometric PARAFAC and N-
PLS [34]. However, the calibration set was built with plasma
samples spiked with DOX, and no determinations were done
on test samples with unknown constituents.

The objective of this work is to prove whether TSFS
combined with multivariate methods such as MCR-ALS and
U-PLS coupled to residual bilinearization (RBL) can be used
for the quantification of DOX in plasma samples in the pres-
ence of overlapping fluorescence due to riboflavin (RF), with-
out any pre-treatment step and calibrating only with DOX. RF
is a water-soluble vitamin critical for metabolism and energy
production. It presents native fluorescence emission, and it is
found in biological fluids, such as plasma. The emission
spectrum of RF overlaps with that of DOX, then it was
selected as the uncalibrated interference.

One of the most interesting characteristics of this work is
the second-order advantage gained for first time in non-
bilinear data. This goal has been achieved in two different
ways: (a) from first-order responses (the two-way data were
unfolded assuming that the unfolded-TSFS data set have a
bilinear structure [19]) modeled withMCR-ALS, and (b) from
second-order responses modeled by U-PLS/RBL, which has
already been proved to achieve the so-called second-order
advantage from instrumental data deviating from the
trilinearity [16, 35, 36]. Concerning the application of MCR-
ALS, it has been demonstrated that the achievement of the
second-order advantage, considering and processing first-
order multivariate data, is possible, especially when the cor-
relation constraint is used [37–40].

Materials and methods

Chemicals and reagents

Analytical reagent-grade chemicals and ultrapure water,
obtained from a Milli-Q water purification system from
Millipore (Bedford, MA, USA), were used. Doxorubicin hy-
drochloride (94.0 %) and riboflavin (96.9 %) were obtained
from Richmond Laboratories (Buenos Aires, Argentina). Tri-
chloroacetic acid (TCA) was obtained from Anedra (San
Fernando, Argentina) and HPLC grade methanol from
Aberkon (Buenos Aires, Argentina).
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Stock solution of DOX (455.0mg L−1) and RF (60.0mg L−1)
were prepared by dissolving the appropriate amount of drug in
Milli-Q water and methanol, respectively. Solutions were stored
in the dark at 4 °C. Working standards were freshly prepared by
diluting stock solutions to desired concentrations with Milli-Q
water. Heparinized human plasma samples from untreated
healthy volunteers were obtained from Iturraspe Hospital of
Santa Fe, Argentina, and stored at −20 °C until the experiments
were performed.

Preparation of calibration and validation samples

The calibration set was built by adding pure standard of DOX
to plasma obtained from healthy patients due to the presence
of interactions between the analyte and the sample back-
ground (see below). The set was prepared in two steps: first,
five water standards of DOX with the following concentra-
tions: 8.0, 24.1, 40.0, 56.9, and 72.8 μg mL−1 were prepared
in duplicate. Then, 20.0 μL of the latter solutions was placed
into an Eppendorf vial together with 600.0 μL of plasma.
After adding 20 μL of TCA 20 % (w/v) for protein precipita-
tion, each standard sample was vortex mixed for 30 s and
ultracentrifuged at 14,000 rpm for 10 min. Then, 500.0 μL of
the supernatant was transferred to a quartz cell. The final
concentration values of the calibration set were: 0.25, 0.75,
1.25, 1.78, and 2.28 μg mL–1. The protein precipitation step
was performed to eliminate a possible matrix effect and to

enhance the sensitivity of the method, since plasma proteins
provide a significant quenching.

Furthermore, a validation set of nine samples was prepared.
First, following a full central composite design of two factors
with one center point, with different concentrations of DOX
(from 16.0 to 64.0μgmL−1) and RF (from 2.4 to 9.6μgmL−1)
were prepared in water. Then, the same procedure described
for calibration samples preparation was applied. The final
concentrations of DOX and RF in the validation set are given
in Table 1. These concentrations are within the therapeutic
values of the studied drug in human plasma [25].

Instrumentation and software

All spectrofluorimetric measurements were performed using a
Perkin-Elmer LS-55 luminescence spectrometer equipped
with a xenon discharge lamp, Monk-Gillieson type mono-
chromators, and a gated photomultiplier connected to a PC
microcomputer via a RS232C connection. Slits for the exci-
tation and emission monochromators were kept at 10 nm, and
the detector voltage was 650 V. TSF spectra were acquired
with excitation between 489.5 and 614.5 nm at a resolution of
0.5 nm, with offsets ranged from 30 to 160 nm (in steps of
10 nm) between excitation and emission monochromators.
Hence, the size of each data matrix was 251×14. In order to
analyze DOX, RF, and plasma fluorescence characteristics,
excitation–emission spectra were also collected at emission

Table 1 Predictions and statistical analysis of DOX in test samples

Sample Nominal Predicted DOX

DOX (μg mL−1) RF (μg mL−1) MCR-ALSa (μg mL−1) Rec. (%) U-PLS/RBLa (μg mL−1) Rec. (%)

1 0.50 0.19 0.42 (1) 84.0 0.43 (1) 86.0

2 1.78 0.27 1.72 (1) 97.6 1.73 (1) 97.2

3 1.25 0.30 1.28 (1) 102.4 1.28 (1) 102.4

4 1.99 0.19 1.95 (1) 98.0 1.91 (1) 96.0

5 1.25 0.19 1.33 (1) 106.4 1.32 (1) 105.6

6 0.72 0.27 0.76 (1) 105.6 0.73 (1) 101.4

7 1.25 0.075 1.38 (1) 110.4 1.36 (1) 108.8

8 0.72 0.11 0.67 (1) 93.1 0.69 (1) 95.8

9 1.78 0.11 1.77 (1) 99.4 1.80 (1) 101.1

Rec. (%)a,b 100 (8) 99 (7)

RMSE (μg mL−1)c 0.07 0.06

REP (%)d 5 5

a Between parenthesis the standard deviation
bMean recovery (percentage)

c Root mean square error, RMSE ¼ 1
I ∑
1

I

cact−cpred
� �2" #1=2

, where I=9

dRelative error of prediction, REP ¼ 100� RMSE=c , where c is the mean calibration concentration
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wavelengths from 500 to 660 nm (every 0.5 nm) with excita-
tion wavelengths from 400 to 480 nm (every 5 nm).

For data processing, all implemented routines were per-
formed using the software MATLAB 7.1 [41]. A useful inter-
face for data input and parameters setting written by Olivieri
et al. [42] was employed for U-PLS/RBL implementation.
MCR-ALS correlation constrained was implemented using a
MATLAB code which is available on internet (http://www.
mcrals.info/).

Theory

MCR-ALS

The multivariate calibration algorithm MCR-ALS has been
extensively described in the literature [8, 15, 43] so, only a
brief description of it is given here. The bilinear decomposi-
tion of the augmented matrix D is performed according to the
expression:

D ¼ CST þ E ð1Þ

in which the rows of D contain the unfolded synchronous
spectra measured for different samples at several excitation
wavelengths, the columns of C contain the relative concen-
trations of the intervening species, the columns of S their
related unfolded spectra, and E is a matrix of residuals not
fitted by the model.

Decomposition of D is achieved by iterative least-squares
minimization of the Frobenius norm of E, under suitable
constraining conditions during the ALS procedure. MCR-
ALS requires initialization with system parameters as close
as possible to the final results. In the present work, we
employed the SIMPLISMA (simple to use interactive self-
modeling mixture analysis) methodology [44] in all cases.

During the iterative recalculations of C and ST, a series of
constraints are applied to give physical meaning to the
obtained solutions. In this paper, non-negativity of spectra
and concentration profiles and correspondence among species
in the experiments were used as restrictions. A correlation
constraint was also applied during the MCR-ALS analysis,
in which the analyte concentrations in the calibration samples
at each ALS iteration were forced to be correlated to previ-
ously known reference concentration values of the analyte in
these samples. More details about the implementation of this
constraint in previous works can be found elsewhere [37, 45].

U-PLS/RBL

The essentials of U-PLS/RBL have already been discussed
[46]. In the U-PLS method, the original second-order data are

unfolded into vectors before PLS is applied. In this algorithm,
concentration information is employed in the calibration step,
without including data for the unknown sample. The number
of latent factors (A) can be selected by techniques such as
leave-one-out cross-validation [47].

When unexpected components take place in the test sam-
ples, the RBL procedure is then applied to the unfolded test
sample data and the outcome scores are free from interferents
signal, providing the so-called second-order advantage to the
methodology.

Analytical figures of merit

The most important process for comparison of analytical
methods is the determination of figures of merit. The estima-
tion of these parameters in multi-way calibration has been
subject of several papers in recent literature [48–51]. Sensi-
tivity (SEN), defined as the change in net response for a given
change in analyte concentration, can be considered as one of
the most relevant figures of merit in the field of analytical
chemistry owing to the fact that it is a decisive factor in
estimating others, such as limit of detection (LOD), limit of
quantitation (LOQ), uncertainty in prediction concentration
(SD).

According to Olivieri and coworkers [50], the following
expression estimates the SEN when MCR-ALS is applied:

SENMCR ¼ mn J STS
� �−1

nn

h i−1=2
ð2Þ

in which n is the index for the analyte of interest in a multicom-
ponent mixture, mn is the slope of the MCR pseudounivariate
calibration graph for this analyte, ST is a matrix containing the
profiles for all sample components in the nonaugmented MCR
direction, and J is the number of channels in the test sample data
matrix in the augmented MCR direction.

In the case of U-PLS/RBL, Allegrini and Olivieri [51]
developed a new expression which allows estimating SEN
for the multivariate calibrationmethods based on least-squares
regression combined with RBL:

SENJAC ¼ vT PT I−ZintZint
þð ÞP� �−1

v
n o−1=2

ð3Þ

in which the subscript “JAC” stands for the Jacobian ap-
proach, P is the matrix of calibration loadings, v is the vector
of PLS regression coefficients in latent variable space, I is a
unit matrix, and Zint contains information regarding the inter-
fering agents.

In the present report, the above presented expressions
were used to estimate SEN. LOD, LOQ, and other figures
of merit were also analyzed according to the equations in
Ref. [50] and [51].
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Results and discussion

General considerations

The inspection of the contour plots of the excitation–emission
spectra (Fig. 1) recorded from pure DOX in water and RF in
water shows that their excitation maxima are at 480 and
445 nm, respectively, and their emission maxima are at
555 m and 520 nm, respectively. Furthermore, this figure
displays the spectrum of deproteinized human plasma, show-
ing that there is a substantial overlap among the spectra of all
of them. Therefore, the quantitation of DOX in plasma in the
presence of RF through a univariate calibration method is
difficult. Multivariate methods involving the analysis of more
than one variable at a time can be used for the analysis of such
samples without any separation.

Figure 2a compares the synchronous fluorescence spectra
at Δλ=80 nm of an aqueous solution of pure DOX and the
spectral difference between a plasma sample with and without
DOX. This offset value was chosen because it corresponds to
the difference between emission and excitation maxima (the
exact difference is 75 nm, but the experimental measurements
were carried out between 30 and 160 nm, each 10 nm). It can
be seen that the interaction with the plasma background sig-
nificantly decreases the fluorescence intensity of the analyte.
In order to evaluate if this behavior remained the same in
different plasma samples, the slopes of univariate calibration
curves (plotting fluorescence intensity at λex=480 nm and
λem=555 nm vs. DOX concentration) built with DOX stan-
dards prepared in three different plasma samples were stati-
cally compared. Since p value for the slopes was 0.913
(p>0.1), there is no statistically significant difference between
them at 90 % confidence level. For this reason, the calibration
samples were prepared by adding pure DOX standard to
plasma.

Figure 2b shows several spectra of pure DOX at different
Δλ. As can be seen, the shape of the SF spectra of the
fluorophore changes with the change in offset, so TSFS are
considered to be non-bilinear data. Therefore, two strategies
were implemented to deal with this kind of data: unfolding and
modeling with MCR-ALS achieving the second-order advan-
tage with first order data as was done in a reduced number of
papers [37–40], and modeling with PLS exploiting the second-
order advantage implementing the RBL procedure [16].

MCR-ALS

Previously to data analysis, each matrix (size, 251×14) was
unfolded into a vector of size 1×3,514. For quantitation, data
matrices corresponding to test samples have to be simulta-
neously analyzed with those of the standards. Then, all the
matrices were disposed in a column-wise augmented matrix
(size, 19×3,514).

The estimation of the number of pure components in the
system was assessed by the application of singular value
decomposition to the augmented data matrix, suggesting that
there were three significant factors. The initial estimations for

Fig. 1 Excitation–emission contour plot for pure DOX in water (a), RF
in water (b), and deproteinized human plasma (c)
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MCR-ALS were obtained by the selection of the purest vari-
ables based on SIMPLISMA [44].

The implementation of adequate constraints during optimi-
zation makes the output less subjected to ambiguities. In the
present work, the constraints listed in “MCR-ALS” section

were applied. Special attention should be paid to the correla-
tion constraint, which forces the standard concentration to be
correlated to previously known values during the ALS opti-
mization. A local linear model between the ALS estimated
values and the nominal concentrations is built by least-squares
linear regression. Concentration values are then updated
according to the predicted values using the estimated param-
eters of the local model. In the present work, a matrix with the
same size of C (19×3) was provided as initial input, contain-
ing in the first ten lines the nominal concentration for DOX in
calibration samples, as well as the information that plasma, but
no interferent was present in these samples. The next nine
lines indicated the presence of the three compounds in test
samples as unrestricted values (NaN).

Convergence was achieved in 38 consecutive iterative cy-
cles when the selectedMCR convergence criterionwas reached
(relative change in fit for successive iterations=0.1 %). The
value of lack of fit was 2.43 % and the explained variance,
99.94 %. Figure 3 shows the recovered spectra in the matrix ST

after the ALS optimization. Although the overlapping is sig-
nificant, the spectra corresponding to DOX and the interfer-
ences were properly retrieved by MCR-ALS. In the inset of
Fig. 3, the spectra obtained for the three components and the
normalized spectrum of pure DOX are shown, all of them at
Δλ=80 nm, which is the optimum offset value for the analyte.
As can be seen, the pure and the recovered DOX spectra
satisfactorily match (with a r2 ca. 1), indicating that the
extracted profile corresponds to the analyte of interest.

Quantitationwas performed by regressing the scores values
obtained in the matrix C for each calibration sample against
the known concentration values. Figure 4 shows the pseudo-
univariate graph, as well as the scores of the test samples,
illustrating how analyte scores vary in calibration (circles) and
test (crosses) samples, whereas plasma scores (triangles down)
remain almost constant, as expected. In the case of RF, there is

Fig. 2 a Synchronous fluorescence spectra of pure DOX 1.25 μg mL−1

(solid line), plasma containing DOX 1.25 μg mL−1 (dashed line), spectral
difference between a plasma containing DOX 1.25 μg mL−1, and a blank
plasma (dashed dotted line) and blank plasma sample (dotted line), all at
Δλ=80 nm. b Synchronous fluorescence spectra of pure DOX
1.25 μg mL−1 at several Δλ (from 30 to 160 nm, each 10 nm). In red,
spectra at Δλ=80 nm

Fig. 3 Recovered spectra in the
matrix ST after MCR-ALS
analysis of the augmented data
matrix which contains the
validation and calibration
samples. The solid line
corresponds to DOX, the dashed
line to the interferent RF, and the
dotted line to plasma background.
In the inset, the spectra for these
three components (DOX: solid
line, RF: dashed line, plasma:
dotted line) and the normalized
spectrum of pure DOX (dashed-
dotted line) are shown at
Δλ=80 nm
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no contribution in calibration samples (diamonds; this fact is
expected owing to this was imposed with a constraint), but its
presence is noticeable in the validation samples (squares).

Table 1 displays the results obtained for the analysis of the
validation mixtures, showing an excellent agreement between
nominal and predicted values: the RMSE is 0.07 μg mL−1,
implying a REP value of 5 %. Moreover, the precision of the
method was evaluated by the analysis of five replicates of test
sample number 5 (see Table 1), by the same analyst, under the
same conditions, on three different days. The obtained coeffi-
cient of variations (CV%) were all below 15 % (see Table 2).
ANOVA test was applied to analyze if the variances among the
3 days were comparable. It could be concluded that there is not
statistically significant difference among them (p=0.524). The-
se parameters, together with the mean recovery (100±8 %),
indicate that the proposed method is a feasible methodology
for achieving the second-order advantage in cases of unfolded
non-trilinear TSFS data.

U-PLS/RBL

The first phase in data processing is the estimation of the
number of responsive components. In the case of U-PLS/
RBL, the number of latent variables A is assessed by leave-
one-out cross-validation, according to the Haaland and Thomas
criterion [47]. In the presently studied case, Fig. 5 shows how
the predicted error sum of squares ([PRESS=∑(cact−cpred)2])
varies as the number of latent variables is increased when the
calibration set is employed, showing that A=2 is the optimum
value, corresponding to the presence of DOX and plasma in the
calibration samples.

The RBL method is usually implemented to filter the test
sample data from the contribution of unexpected components

(Nunx). In order to assess this number, the analysis of the
residuals su obtained with the RBL procedure was done.
Figure 5 clearly indicates that the size of residuals stabilizes
at Nunx=1, owing to the presence of RF in the test samples.

Using two principal components for modeling the calibra-
tion data and a single unexpected component for RBL, the U-
PLS/RBL methodology was applied to the test samples. The
prediction and statistical results for the determination of DOX

Fig. 4 Score values of DOX (circles), RF (diamonds), and plasma
(triangles down) in calibration samples and DOX (crosses), RF (squares),
and plasma in validation (triangles up) and calibration (triangles down)
samples obtained after MCR-ALS optimization

Table 2 Figures of merit for the determination of DOX by modeling
TSFS data with MCR-ALS and U-PLS/RBL

MCR-ALS U-PLS/RBL

SEN (AFU mL μg–1) 23 44

γ (mL μg−1)a 192 370

γ−1 (μg mL−1) 0.005 0.003

LOD (μg mL−1)b 0.02 0.01

LOQ (μg mL−1)c 0.06 0.03

CV (%)d Day 1 8 7

Day 2 9 7

Day 3 8 8

ANOVAe F=0.69 (p=0.524) F=0.51 (p=0.611)

AFU arbitrary fluorescence units
a Analytical sensitivity
b LOD, limit of detection calculated according to Ref [50] for MCR-ALS
and Ref [51] for U-PLS/RBL, considering 95 % of probability
c LOQ, limit of quantification calculated as LOD×(10/3.3)
d CV, coefficient of variation calculated from validation sample number 5
from Table 1 (n=5) during three consecutive days
e Critical F(3–1);(15–3);0.05 value equal to 3.89

Fig. 5 Logarithm of the leave-one-out cross-validation PRESS
[log(PRESS)] as a function of the number of U-PLS latent variables A,
constructed using calibration data (circles), and logarithm of the U-PLS
prediction residuals [log(su)] as a function of the number of unexpected
components (Nunx) (triangles)
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in these samples using U-PLS/RBL are shown in Table 1,
being satisfactory as indicated by the values of mean recovery
(99±7 %), RMSE (0.06 μg mL−1), and REP (5 %). In order to
assess the precision, the CV%was analyzed. For this purpose,
triplicate determinations were carried out on test sample num-
ber 5 (see Table 1) on three different days. The CV% values
obtained are shown in Table 2. The ANOVA test showed that
the variances were comparable for the 3 days (p>0.05). As
well as MCR-ALS, the lack of trilinearity in TSFS data could
be conveniently processed and modelled by using U-PLS/
RBL, with the achievement of the second-order advantage.

Analytical figures of merit

With the aim of comparing the performance of various
methods, figures ofmerit such as limit of detection, sensitivity,
and analytical sensitivity among others are employed regularly.
Table 2 shows the analytical figures of merit obtained when
applying theMCR-ALS algorithm according to Ref. [50]. This
table also displays the figures of merit corresponding to the
U-PLS/RBL application, computed as described in Ref. [51]
(see “Analytical figures of merit” section). As can be seen,
the sensitivity for U-PLS/RBL is almost twice this value for
MCR-ALS. This fact can be due that the second-order struc-
ture is maintained when modeling with the former algorithm.
In addition, the way in which this analytical figure of merit is
computed is totally different. The same is appreciated for the
analytical sensitivity, γ, which may be more useful for method
comparison, since fluorescence intensity units are arbitrary. It
allows one to compare analytical methods regardless of the
specific technique, equipment, and scale employed, and its
inverse establishes the minimum concentration difference
(γ−1) which is statistically discernible by the method. In the
present case, γ−1 is 0.005 and 0.003μgmL−1 forMCR-ALS and
U-PLS/RBL, respectively.

Other important figures of merit are the limit of detection
(LOD) and the limit of quantification (LOQ). The detecting
capabilities calculated as indicated in Ref. [50] and [51] are
also presented in Table 2. There is an improvement in the
resulting LOD and LOQ for U-PLS/RBL in comparison with
the values obtained for MCR-ALS. This is expected since
these terms are affected by the sensitivity parameter.

It is important to remark that the RBL procedure obtains an
approximation of the real TSFS corresponding to the interfer-
ence because it is considered to be bilinear data. Nevertheless,
this approximation is enough to reach an acceptable error
(REP% ca. 5 %) which is similar to that obtained by modeling
the data with a first-order algorithm, a fact that was performed
by unfolding the data instead of using them with the second-
order structure. Although better figures of merit are achieved
when U-PLS/RBL is applied, both algorithms constitute a
good alternative for the resolution of plasma samples in the
determination of DOX when non-trilinear data are analyzed.

Conclusions

In this work, we demonstrate the possibility of modeling non-
bilinear data obtained by TSFS attaining the second-order
advantage for the quantitation of DOX in plasma samples in
presence of an unexpected component (RF). Two strategies
were considered, which include unfolding the data and: (a)
processing with MCR-ALS as first-order data, or (b) process-
ing with PLS and exploiting the second-order advantage by
the RBL procedure. Both methodologies reach to REP of ca.
5 %, a value that could be considered as acceptable for
biological samples. Nevertheless, more efforts should be put
in order to develop an algorithm able to model the data
maintaining its second-order structure. Research is being car-
ried out in our laboratory in this context.
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