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SUMMARY

This paper introduces a finite element model for the inverse design of pieces with large displacements
in the elastic range. The problem consists in determining the initial shape of the piece, such that it attains
the designed shape under the effect of service loads. The model is particularly focused on the design
of parts with a markedly anisotropic behavior, like laminated turbine blades. Although the formulation
expresses equilibrium on the distorted configuration, it uses a standard constitutive equations library that
is expressed as usual for measures attached to the undistorted configuration. In this way, the modifications
to a standard finite elements code are limited to the routines for the computation of the finite element
internal forces and tangent matrix. Two examples are given, the first one for validation purposes, while
the second is an application which has industrial interest for the design of turbine blades. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A central aspect when designing a piece to have an imposed shape after severe deformation is to
compute its undistorted shape. In this analysis, the final (desired) configuration is supposed to be
that of the piece subjected to service loads once the steady state has been attained, neglecting any
transient effect.
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The classical (direct) problem in non-linear elasticity consists in determining the distorted shape
knowing the loads applied to the piece in a given reference configuration. The subject of this study
is the inverse problem that consists in determining the undistorted configuration knowing the final
configuration and service loads. Strictly speaking, it is an inverse ‘design’ problem [1], in contrast
to classical inverse ‘measurement’ problems (often called simply ‘inverse problems’), that consist
in determining the material data knowing both the distorted and undistorted configurations as well
as the service loads.

Some pieces (like turbine blades) that are designed to be cyclically used, must recover the
original shape after each service cycle, constraining the material to lie within the elastic range all
along the deformation process. Moreover, sometimes they are made of laminates with a markedly
anisotropic behavior. We will use therefore an anisotropic hyperelastic material law limited to
the small strains domain (however, large deformations can develop). In the isotropic case, some
simplifications could be introduced that allow extending the formulation to finite hyperelasticity.

Previous numerical models for the inverse design analysis of hyperelastic bodies subjected to
large deformations have been proposed by Govindjee and Mihalic [2, 3] and Yamada [4]. Both
models use the finite element method in order to discretize the inverse deformation. They differ in
the fact that Govindjee and Mihalic’s model is Eulerian, and the equilibrium equation is formulated
in terms of variables attached to the (known) distorted configuration, while Yamada’s model is
arbitrary Lagrangean–Eulerian, i.e. the problem is expressed on a reference configuration that
is different from the undistorted and distorted ones. In Reference [3] not only the equilibrium
equations but also the constitutive equations are written in terms of Eulerian variables, which
complicates the description of orthotropic materials whose preferred directions are usually defined
in the unknown undistorted configuration.

We made an effort in order to use the available material library from our non-linear finite
element code [5], in which constitutive equations are written in terms of Lagrangean variables
(Piola–Kirchhoff stresses in terms of Green–Lagrange strains). In this form, the modifications
made into the code to implement the model for inverse analysis are restricted to the routines for
computing the residual vector and tangent matrix for the inverse finite element method, preserving
the material library, which clearly simplified the development. Another important contribution
is the treatment of body forces, not included in previous works. In fact, in the problems addressed
by the previous inverse design models [2–4], the body forces were not relevant. However, this is
not the case when modelling turbine blades, where centrifugal body forces are significant. External
forces (including body and surface forces) usually depend on deformation, with the consequent
contribution to the finite element tangent matrix.

Two examples of application of the model are given. First, we consider the simple case of
bending of a laminated beam, for which the determination of its distorted shape is an easy task for
any available code for large deformation analysis. Once the distorted shape is known, we evaluate
the ability of the present model to recover the initial shape. The second case is an industrial
application for the determination of the initial shape that a laminated turbine blade should have in
order to attain the desired designed shape under pressure and centrifugal loads.

2. KINEMATIC DESCRIPTION

Let B0 be the undistorted reference configuration of a continuum body and B the objective (final)
configuration. The position x∈B of any particle P with position X∈B0 is determined by the
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Figure 1. Distorted configuration B, domain of inverse analysis, and undistorted configuration
B0 sought as solution.

deformation x=/(X) (Figure 1). The deformation gradient relative to the reference configuration is

F=Grad/ (1)

where Grad denotes gradient with respect to X∈B0.
In the problem we are interested in, we know the final configuration and we want to determine

the inverse deformation X=w(x) giving the position X∈B0 of every particle whose final position
is x∈B. The inverse deformation gradient is defined as

f=gradw=F−1 (2)

where grad denotes gradient with respect to x∈B.

3. MATERIAL DESCRIPTION

The constitutive law for a general hyperelastic material can be written as follows [6]:

S= �w

�E
=S(E) (3)

where w is the strain-energy density function, S is the second Piola–Kirchhoff stress tensor, and
E is the Green–Lagrange strain tensor defined as

E= 1
2 (F

TF−1) (4)

1 denoting the second-order identity tensor.

3.1. Anisotropy in inverse analysis

The constitutive equation (3) is formulated in terms of S and E, which are Lagrangean tensors,
i.e. tensors related to the reference configuration. Consequently, the material properties must be
attached to this configuration which is unknown. This hinders the definition of preferred material
directions, and hence the modelling of anisotropic materials.

In the case of laminated bodies for which strains remain small, it is possible to approximate the
preferred directions of anisotropy in the distorted configuration by writing the constitutive equation
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(3) in Eulerian form by a simple rotation of the material axes. We rotate the Green–Lagrange strain
tensor and the second Piola–Kirchhoff stress tensor to the spatial axes as follows

E∗ =RERT= 1
2 (FF

T−1)= 1
2 (V

2−1) (5)

S∗ =RSRT (6)

where V is the symmetric positive-definite left-stretch tensor and R is the rotation tensor, both
being computed from the polar decomposition of the deformation gradient:

F=VR (7)

Now, the chain rule together with Equation (5) yields

Si j = �w

�Ei j
= �w

�E∗
kl

�E∗
kl

�Ei j
= Rki Rl j

�w

�E∗
kl

or S=RT �w

�E∗R (8)

from which we deduce the desired constitutive law in the Eulerian form as

S∗ = �w

�E∗ =S∗(E∗) (9)

In such a way, we are able to define the material properties with respect to a system of axes linked
to the known distorted configuration.

4. FINITE ELEMENT FORMULATION

The inverse design problem consists in finding the function w that satisfies the equilibrium
equations, taken here in the weak form as∫

B
tr[rTgrad(g)]dv−

∫
B
b·gdv−

∫
�Bt

t ·gds=0 (10)

for every admissible variation g, where r is the Cauchy stress tensor, b is the given body force
per unit distorted volume and t is the traction prescribed on the portion �Bt of the boundary �B
of the distorted domain B (hence, t is a force per unit distorted area).

Using the finite element method, the position of particles in the undistorted configuration is
approximated inside a typical finite element �e with nodes 1,2, . . . ,N as follows:

X≈
N∑
I=1

NI (x)XI (11)

where NI (x) is the shape function associated with the node I , and XI is the unknown position of
this node in the undistorted configuration.

Introducing this approximation, and taking variations with respect to the positions in the undis-
torted configuration (standard Galerkin formulation), we obtain the discrete equation

R=Fint−Fext=0 (12)
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where Fint and Fext are, respectively, the internal and external force vectors, given by

Fint =
∫
B
BTr̄dv (13)

Fext =
∫
B
NTbdv+

∫
�Bt

NTtds (14)

where B is the gradients matrix, and r̄ the vector containing the independent components of the
symmetric Cauchy stress tensor r.‡

In turbine blades modelling, the external forces mainly consist of the centrifugal and pressure
forces. The former are represented by the first term of the r.h.s. of Equation (14) with b defined as

b=�acentr (15)

being � the density in the distorted configuration, and acentr the centrifugal acceleration, defined as

acentr(x)=x×[x×(x−o)] (16)

where x is the angular velocity vector and o the position of an arbitrary point on the rotation
axis. On the other hand, the pressure force is represented by the second term of the r.h.s. of
Equation (14) by defining

t=−pn (17)

where p is the pressure and n the outer normal to the portion �Bt of the surface of the body in
the distorted configuration.

4.1. Computation of strains and stresses in finite elements

Using Equation (11), the inverse deformation gradient is approximated in terms of derivatives of
the interpolation functions as

f= �X
�x

≈ �NI

�x
XI (18)

Once f is known, we can compute the (direct) deformation gradient F= f−1, and then the Green–
Lagrange strain E using Equation (4) as well as its rotated counterpart E∗ given by Equation (5).

Entering E∗ in the constitutive law (9), we determine the rotated second Piola–Kirchhoff stress
S∗. Then, we are able to compute the Cauchy stress by means of the relationship

r= jFSFT= jVS∗VT

or, given in Cartesian components as

�kl = jVkmS
∗
mnVln (19)

‡From now on, T̄ denotes the vector (matrix) containing the components of the second-order (respectively, fourth-
order) tensor T. A single rule for the mapping of tensors into vectors or matrices cannot be defined, since the
mapping depends on the tensor symmetries involved in certain tensor products. For the sake of conciseness, the
definition of the algorithmic versions of all tensors appearing in the text is given in the Appendix.
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where j =det f is the Jacobian of the inverse deformation X=w(x). In order to replace tensor
products by matrix products as usual in the finite element practice, we introduce the tensor

I Vklmn = 1
2 (VkmVln+VknVlm)= I Vklnm = I Vlkmn (20)

which allows us to rewrite (19) as follows:

�kl = j I VklmnS
∗
mn (21)

A tensor product like this can be taken to the following matrix expression:

r̄= j ĪV S̄∗ (22)

4.2. Solution of the non-linear equilibrium equation

The non-linear equation (12) is solved iteratively using the Newton–Raphson method (see [7] for
details on the implementation of this method in the finite element context). At each iteration k we
have to solve the following linear equation for the increment �q:

R(qk+1)=R(qk)+K(qk)�q (23)

where K denotes the tangent matrix, given by

K= �R
�q

= �Fint

�q
+ �Fext

�q
=Kint+Kext (24)

and where q is the vector of unknown nodal parameters, which in this case are the positions XI
of nodes at the initial configuration.

Concerning external forces, we note that there is no contribution to the tangent matrix from the
pressure forces in inverse analysis. In fact, contrary to what happens in direct analysis, the normal
n to the external surface in the distorted configuration is known and fixed. On the other hand,
there would be no contribution from the centrifugal force vector if � were known in the distorted
configuration. However, the value of the density we usually know is that related to the undistorted
configuration, say �0. Then, � is computed from the local mass balance equation

�= j�0 (25)

Nevertheless, since we remain within the domain of small strains, the density �≈�0 and the
contribution of the centrifugal forces to the tangent matrix can be neglected.

Therefore, the tangent matrix reduces to the expression

K≈Kint=
∫
B
BT �r̄

�q
dv (26)

The computation of �r̄/�q in an exact analytical way is described in the next section.

4.3. Computation of the stress derivatives

In a typical finite element, after computing the internal forces vector as described above, we know
the inverse deformation gradient f, the deformation gradient F, the left-stretch tensor V, and the
fourth-order tensor IV (which is a function of V squared), the rotated Green–Lagrange strain E∗,
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the rotated Piola–Kirchhoff stress S∗, and the Cauchy stress r. In order to compute the tangent
stiffness matrix for inverse analysis, we need to compute the derivatives of the Cauchy stress with
respect to nodal parameters of the inverse motion. For this purpose, we will compute first the
corresponding variations:

�r̄= j−1r̄� j︸ ︷︷ ︸
D̄

(1)

+ j ĪV�S̄∗︸ ︷︷ ︸
D̄

(2)

+ j�ĪV S̄∗︸ ︷︷ ︸
D̄

(3)

(27)

For clarity of presentation, the computation of each term D̄(i) will be treated separately.

4.3.1. Computation of D̄
(1)
. The differentiation rule for the determinant of a second-order tensor

yields

� j = j tr(FT�f)= j (F̄T)T�f̄ (28)

Given f by Equation (18), it is straightforward to compute its determinant j , its inverse F and its
derivative

�f= �NI

�x
�XxI or �f̄= N̄,x�q (29)

Then, the first term in the r.h.s. of Equation (27) can be expressed as

D̄(1) = r̄(F̄T)TN̄,x�q (30)

4.3.2. Computation of D̄
(2)
. First, we need to determine

�S∗ = �S∗

�E∗ �E∗ =D∗�E∗ (31)

The components D∗
mnkl of the fourth-order tensor D

∗ of tangent moduli, together with the rotated
second Piola–Kirchhoff stress tensor S∗, are computed in the constitutive equation software module
as a function of the rotated Green–Lagrange strain E∗. The tensor D∗ verifies the following
symmetries:

D∗
mnkl =D∗

nmkl =D∗
mnlk (32)

On the other hand, the variation of E∗ results

�E∗
i j = 1

2�(Fik Fjk)=�i jkl�Fkl or �Ē∗ =H̄�F̄ (33)

with the components of the fourth-order tensor H given by

�i jkl = 1
2 (�ik Fjl +� jk Fil) (34)

where �i j denotes the Kronecker delta.
Using the rule of differentiation of the inverse of a second-order tensor, we obtain

�Fkm =−�kmpq� f pq or �F̄=−K̄�f̄ (35)
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with

�kmpq =FkpFqm (36)

Then, the second term in the r.h.s. of Equation (27) can be expressed as

D̄(2) =− j ĪV D̄∗H̄K̄N̄,x�q (37)

4.3.3. Computation of D̄(3). First, let us rewrite the third term of the r.h.s. of Equation (27) as
follows:

�(3)
kl = j�I VklmnS

∗
mn = j�klpq�Vpq or D̄(3) = j !̄�V̄ (38)

where

�klpq =(
IkmpqVln+ IlmpqVkn

)
S∗
mn =�lkpq =�klqp (39)

Here, Ii jkl =(�ik� jl +�il� jl)/2 is the fourth-order identity tensor.
Now, the only missing term to be computed is �V. To this end, we begin by computing �V2:

�(VikVk j )=�VikVk j +Vik�Vkj =�i jkm�Vkm or �V̄2=Ū�V̄ (40)

where

�i jkm = Ii jkl Vlm+ Ii jmlVlk =�i jmk =� j ikm (41)

On the other hand, since V2=2E∗−1, its variation can also be computed as

�V̄2=2�Ē∗ =−2H̄K̄N̄,x�q (42)

By making Equation (40) the same as Equation (42), we obtain

�V̄=−2Ū−1H̄K̄N̄,x�q (43)

Finally, after replacing the last equation into Equation (38), the third term of the r.h.s. of Equa-
tion (27) can be expressed as

D̄(3) =−2 j!̄Ū−1H̄K̄N̄,x�q (44)

4.3.4. Final form of �r̄/�q. The form given to the terms D̄(i) of the variation of r̄ allows the
immediate determination of the derivative of r̄ with respect to the nodal unknowns q:

�r̄
�q

= r̄(F̄T)TN̄,x − j ĪV D̄∗H̄K̄N̄,x −2 j!̄Ū−1H̄K̄N̄,x (45)

Therefore, the tangent stiffness matrix results

K=
∫
B
BT[r̄(F̄T)T− j ĪV D̄∗H̄K̄−2 j!̄Ū−1H̄K̄]N̄,x dv (46)

Note that K is non-symmetric, as it was already the case in References [2, 3].
Although not detailed here, the formulation can be easily extended to account also for thermal

loads.
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Remark
In this work, the use of a constitutive law of the type S∗ =S∗(E∗) makes the linearization of stress
with respect to material coordinates somehow different to what can be found in preceding works
on inverse analysis, where different constitutive laws were used.

For instance, in the work of Govindjee and Mihalic [2] they used a neo-Hookean isotropic
material model defined by

�kl = j�(c−1
kl −�kl)−� j ln j�kl (47)

where c= fTf, and � and � are material parameters that reduce to the Lamé constants in the case
of small strains. Then, they obtain

D�
klmn = ��kl

�cmn
= 1

2 j{�(c−1
kl c

−1
mn−c−1

kmc
−1
ln −c−1

kn c
−1
lm )−[�+�(1− ln j)]�klc−1

mn} (48)

The variation of r is completely determined after computing

�cmn =2�mnkl� fkl or �c̄=2h̄�f̄ (49)

with

�mnkl = 1
2 (�ml fkn+�nl fkm) (50)

Therefore, using a constitutive equation of the type r=r(c) similar to Equation (47), the
derivative of r with respect to the material coordinates takes the algorithmic form

�r̄
�q

=2D̄�h̄N̄,x (51)

which is much simpler than that of Equation (45) used in this work. Unfortunately, we cannot
define a law r=r(c) in the case of anisotropic behavior [8].

Note finally that linearization of stresses with respect to material coordinates has been used in
other contexts by several authors, for instance, in the work of Thoutireddy and Ortiz [9, 10] on
shape optimization and mesh adaptivity. They use constitutive laws of the form

P= �w

�F
(52)

where P is the first Piola–Kirchhoff stress tensor, from which they derive the moduli DP
i jkl =

�Pi j/�Fkl . Then, the variation of r= jPFT takes the form

��kl = 1

j
�kl� j+ j DP

kmpq�Fpq Flm+ j Pkm�Flm (53)

This linearization is also somehow simpler than the linearization defined by Equation (45). Let us
remark that law (52) may be used for anisotropic materials and is not restricted to isotropy, hence
it could have been used in the present formulation for inverse design problems, after applying
a similar technique of rotation of axes to be able to define material properties in a system of
axes linked to the distorted (known) configuration. Nevertheless, in our case a law of the type
S∗ =S∗(E∗) was necessary with the objective of reutilization of the available material software
module.
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5. APPLICATION

5.1. Validation test

Let us consider the simple problem of bending a beam under plane strain conditions. First, we solve
the direct problem, i.e. given the undistorted configuration B0 as well as the kinematic boundary
conditions and the applied forces, we determine the distorted configuration B. The problem is
schematized in Figure 2. The domain is discretized using trilinear hexahedral finite elements. Even
if it is essentially a 2D problem, 3D elements are used for generality. In order to represent a plane
strain state, a one-element-wide mesh is used, and the faces normal to the k-axis are constrained
to move in their planes.

The bar is made of horizontal laminates with fibers disposed in the i-direction. The material has
an orthotropic behavior, characterized by Young’s moduli E1,E2,E3, the Poisson ratii �12,�23,�13,
and shear ratii G12,G23,G13 with respect to the orthotropy orthogonal axes {u(1),u(2),u(3)}. Table I
lists the values we assumed for these properties. Further, we adopt the hyperelastic constitutive
law as

S̄= D̄Ē (54)

P=100 NL=48 cm

h=16 cm

Orthotropic
basis in

i

j

k

(solution of direct analysis)

(domain of direct analysis)

Figure 2. Direct problem.

Table I. Material data for the beam bending problem.

E1=500 N/cm2 �12=0.3 G12=192.31 N/cm2

E2=1000 N/cm2 �23=0.2 G23=312.50 N/cm2

E3=750 N/cm2 �13=0.25 G13=288.46 N/cm2
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i

j

k

(domain of inverse analysis)

(solution of inverse analysis)

P

Orthotropic
basis in

Figure 3. Inverse problem.

where

D̄=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−�23�32
�E2E3

�12+�32�13
�E1E3

�13+�12�23
�E1E2

0 0 0

1−�13�31
�E3E3

�23+�21�13
�E1E2

0 0 0

1−�12�21
�E1E2

0 0 0

G12 0 0

symmetric G23 0

G13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

with

�21 = E2

E1
�12, �31= E3

E1
�13, �32= E3

E2
�23

� = 1−�12�21−�23�32−�13�31−2�12�32�13
E1E2E3

(56)

Here, the orthotropy axes {u(1),u(2),u(3)} coincide with the Lagrangean principal axes, which are
also coincident with the Cartesian coordinate basis {i, j,k}.

The domain of the inverse design analysis is the distorted configuration B computed as solution
of the direct analysis and shown in Figure 2. The inverse problem is schematized in Figure 3.
The objective of the computation is to verify if we are able to recover the original undistorted
configuration as solution.
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Figure 4. Displacement modulus from the inverse analysis.

1 2 3 4 5 6 7 8

105

100

10-5

1010

10-15

Iteration

R
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id
ue

 n
or

m

Figure 5. Evolution of the residue norm during the inverse analysis.

The orthotropy axes coincide now with the Eulerian principal axes v(i) =Ru(i), where R is the
rotational part of the deformation gradient F and varies throughout the domain. Although in this
case these axes can be exactly determined from the previous direct analysis, in practice they will
be given for the distorted geometry taking into account the laminated nature of the body and the
desired fiber orientations when under loading.

Figure 4 shows a plot of the inverse solution, displaying a map of the magnitude of the
displacements u=x−w(x).

We define an error measure of the inverse model computation, as a distance between the
nodes of the mesh used for the direct analysis and the positions obtained as solution of the
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x

rotation axis z

y

x
z

y

y

z

x

Figure 6. Inverse analysis of the turbine blade. Distorted shape from different points of view.

Undeformed configuration
(solution of inverse analysis)

Deformed configuration
(domain of inverse analysis)

Figure 7. Inverse analysis of the turbine blade. Distorted versus undistorted shapes and
displacement modulus.

inverse analysis. After solving the equilibrium equation (12) with a very small residue norm
‖R‖<1.6×10−11 (the L2-norm of the residue vector R), we obtained a maximum error of 26.6�m
at the nodes where the concentrated forces were applied. The relative error with respect to the
displacements magnitude is less than 0.01%, which demonstrates the excellent accuracy of the
inverse model.

Figure 5 shows the evolution of ‖R‖ as a function of iterations. We note that after the fifth
iteration, when the trial solution entered into the convergence radius of the solution, an optimal
(quadratic) convergence rate is observed.
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5.2. Industrial application

The inverse model is applied now to a real case: the design of a laminated turbine blade, subjected to
pressure and centrifugal forces. The blade has a complex shape determined by the fluid mechanics
design for the loaded configuration. The objective of the computation is to determine the initial
unloaded shape so that the blade shape in operation matches that imposed by the fluid mechanics
design.

The material behavior is described using an hyperelastic constitutive law. The blade in distorted
configuration is discretized using trilinear hexahedral finite elements. Figure 6 displays three views
of the distorted blade geometry.

In Figure 7, the undistorted shape obtained from the inverse analysis is superposed to the
distorted mesh. Let us note that geometrical and deformation scales are coincident in Figure 7, so
that the deformations involved in the problem are large well entering into the geometric non-linear
regime.

In order to solve the non-linear equation (12), it was necessary to increase gradually the loading
in some steps (the final step corresponding to the whole pressure and centrifugal loading applied
to the blade), the solution of each step taken as initial guess for the following step. The inverse
analysis has converged with an average of 3.5 iterations per step.

6. CONCLUSIONS

The present work introduced a finite element model for the inverse design analysis of 3D geomet-
rically non-linear statics problems with hyperelastic materials.

Anisotropic materials were handled without modifying the constitutive equation software module
developed for classical (direct) large deformation elastic analysis. An exact computation of the
tangent matrix made possible to obtain an optimum convergence rate.

An example showed the excellent accuracy of the model, measured by its ability to recover
the original mesh of the corresponding direct analysis. Also, an example of application to the
computation of the initial shape of a turbine blade subjected to pressure and centrifugal loads has
been shown.

APPENDIX: ALGORITHMIC FORM OF TENSORS

A symmetric stress tensor, e.g. r, is mapped in a vector according to the rule

r̄= v̄�(r)=[�11 �22 �33 �12 �23 �31]T

Accordingly, S̄= v̄�(S), S̄∗ = v̄�(S∗), �̄(i) = v̄�(�(i)).
For a symmetric strain tensor, say E, the following rule holds:

Ē= v̄ε(E)=[E11 E22 E33 2E12 2E23 2E31]T

and so as Ē∗ = v̄ε(E∗), c̄= v̄ε(c) and V̄2= v̄ε(V2). This convention is adopted also for the left-
stretch tensor V, which transforms to V̄= v̄ε(V).
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For non-symmetric second-order tensors like f, having nine independent components, we apply
the transformation:

f̄= v̄ f (f)=[ f11 f21 f31 f12 f22 f32 f13 f23 f33]T

hence, F̄T=v f (FT), E∗, and c. This is also the case for the symmetric strain-like tensor c.
Fourth-order tensors T having the symmetries Ti jkl =Tjikl =Ti jlk are mapped into matrices

whose general expression is

T̄=M̄s(T,�,	)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1111 T1122 T1133 �T1112 �T1123 �T1131

T2211 T2222 T2233 �T2212 �T2223 �T2231

T3311 T3322 T3333 �T3312 �T3323 �T3331

	T1211 	T1222 	T1233 �	T1212 �	T1223 �	T1231

	T2311 	T2322 	T2333 �	T2312 �	T2323 �	T2331

	T3111 	T3122 	T3133 �	T3112 �	T3123 �	T3131

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

where the coefficients � and 	 depend on the nature of the second-order tensors involved in the
tensor product we aim to replace by a simpler matrix product. For tensors like D, D∗, D�, and
! that are multiplied by a symmetric strain tensor to obtain a symmetric stress tensor, we have
�=	=1. On the other hand, the tensor IV relating two symmetric stress tensors in Equation (38)
is mapped into the matrix ĪV =M̄s(IV ,2,1). It is the same case for U relating �V2 and �V in
Equation (40), which maps into Ū=M̄s(U,2,1).

Special mappings are needed for fourth-order tensors without such symmetries. For tensor H
relating the symmetric strain tensor �E∗ and the non-symmetric tensor �F in Equation (33), we
have

H̄=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1111 �1121 �1131 �1112 �1122 �1132 �1113 �1123 �1133

�2211 �2221 �2231 �2212 �2222 �2232 �2213 �2223 �2233

�3311 �3321 �3331 �3312 �3322 �3332 �3313 �3323 �3333

2�1211 2�1221 2�1231 2�1212 2�1222 2�1232 2�1213 2�1223 2�1233

2�2311 2�2321 2�2331 2�2312 2�2322 2�2332 2�2313 2�2323 2�2333

2�3111 2�3121 2�3131 2�3112 2�3122 2�3132 2�3113 2�3123 2�3133

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

The same transformation applies to h in Equation (49).
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The tensor K relating non-symmetric tensors �F and �f in Equation (35) maps into the matrix

K̄=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1111 �1121 �1131 �1112 �1122 �1132 �1113 �1123 �1133

�2111 �2121 �2131 �2112 �2122 �2132 �2113 �2123 �2133

�3111 �3121 �3131 �3112 �3122 �3132 �3113 �3123 �3133

�1211 �1221 �1231 �1212 �1222 �1232 �1213 �1223 �1233

�2211 �2221 �2231 �2212 �2222 �2232 �2213 �2223 �2233

�3211 �3221 �3231 �3212 �3222 �3232 �3213 �3223 �3233

�1311 �1321 �1331 �1312 �1322 �1332 �1313 �1323 �1333

�2311 �2321 �2331 �2312 �2322 �2332 �2313 �2323 �2333

�3311 �3321 �3331 �3312 �3322 �3332 �3313 �3323 �3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

Finally, N̄,x is the matrix reordering the derivatives of the shape functions in the following way:

N̄,x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�N1

�x
0 0

�N2

�x
0 0 · · ·

0
�N1

�x
0 0

�N2

�x
0 · · ·

0 0
�N1

�x
0 0

�N2

�x
· · ·

�N1

�y
0 0

�N2

�y
0 0 · · ·

0
�N1

�y
0 0

�N2

�y
0 · · ·

0 0
�N1

�y
0 0

�N2

�y
· · ·

�N1

�z
0 0

�N2

�z
0 0 · · ·

0
�N1

�z
0 0

�N2

�z
0 · · ·

0 0
�N1

�z
0 0

�N2

�z
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)
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