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Abstract. For a local maximal function defined on a certain family of cubes

lying “well inside” of Ω, a proper open subset of Rn, we characterize the couple
of weights (u, v) for which it is bounded from Lp(v) on Lq(u).

1. Introduction

Let Ω be a proper open and non empty subset of Rn. Let Q = Q(x, l) be a cube
with sides parallel to the axes. Here x and l denotes its center and half its side
length respectively. For 0 < β < 1 we consider the family of cubes well-inside of Ω
defined by

Fβ = {Q(x, l) : x ∈ Ω, l < β d(x,Ωc)} ,
where, as in all of this work, d denotes the d∞ metric. Related to this family we
have the following local maximal function on Ω:

(1.1) Mβf(x) = sup
x∈Q∈Fβ

1

|Q|

ˆ
Q

|f(y)| dy ,

for every f ∈ L1
loc(Ω) and every x ∈ Ω.

In 2014 E. Harboure and the two last authors ([3]) considered this operator in
the more general setting of a metric spaces X instead of Rn with the Lebesgue
measure replaced by a Borel measure µ defined only on Ω and doubling on the
balls of Fβ (i.e.: µ(B(x, 2r)) ≤ c µ(B(x, r)), whenever B(x, 2r) ∈ Fβ). The main
result of [3] was a characterization of the weights w such that Mβ is bounded from
Lp(Ω, wµ) to Lp(Ω, wµ), 1 < p <∞, that is there exists a constant C such thatˆ

Ω

|Mβf |pw dµ ≤ C
ˆ

Ω

|f |pw dµ ,

for every function f ∈ Lp(Ω, w dµ). The classes of weights related to this bound-
edness are a local version of the well known Ap-Muckenhoupt classes, associated to
the Hardy-Littlewood maximal operator ([5]), more precisely non negative functions
w ∈ L1

loc(Ω, w dµ) such that( 1

µ(B)

ˆ
B

w dµ
) ( 1

µ(B)

ˆ
B

w−
1
p−1 dµ

)p−1

≤ Cβ ,

for every ball B in Fβ .
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After seeing this result, it is natural to ask ourselves about the problem for a
couple of weights (v, w). In connection with it, we should recall that the situation
in the case Ω = Rn do not have an easy answer. In fact, E. Sawyer ([7]) proved
that the necessary and sufficient condition isˆ

Q

|M(v−
1
p−1χQ)|pw dx ≤ C

ˆ
Q

v−
1
p−1 dx ,

for every cube Q ⊂ Rn. The problem becomes a little worse if we want to consider
the boundedness from Lp to Lq with 1 < p ≤ q <∞. In this case, Sawyer again, but
this time as a particular case of his solution of the problem for fractional maximal
([8]), showed that the condition turns out to be

(1.2)

(ˆ
Q

|M(v−
1
p−1χQ)|qw dx

) 1
q

≤ C
(ˆ

Q

v−
1
p−1 dx

) 1
p

.

Our setting is even a bit more complicated since the family Fβ does not include
all the balls needed to consider Ω as a metric space itself. At this point, if we
restrict the problem to the case p = q, a simple application of a result due to B.
Jawerth (Theorem 3.1, p. 382 [4]) allows us to get

Theorem 1.3. Given 1 < p <∞, 0 < β < 1. Let (u, v) be a pair of weights. Then

assuming that σ = v1−p′ is a weight, the following statement are equivalent:

(1.4) Mβ : Lp(v)→ Lp(u) ,

if and only if there is a constant c such that

(1.5)

ˆ
F

Mβ(σχF )p u ≤ C
ˆ
F

σ <∞ ,

for all finite unions F of cubes in Fβ, F = ∪finiteQi, Qi ∈ Fβ; provided

(1.6) Mβ,σ : Lp(σ)→ Lp(σ) .

where

Mβ,σf(x) = sup
x∈Q∈Fβ

1

σ(Q)

ˆ
Q

|f(y)|σ(y) dy .

Leaving aside that we are not getting an answer to the whole problem, the
hypothesis on (u, v) have two drawbacks. In the first place, integrals over finite
unions of cubes must be calculated instead of only integrals over cubes like in (1.2).
In the second place the conditions involve the operator itself, which looks worse.
The first disadvantage can be overcome by assuming an extra hypothesis on the

weight v: a doubling condition related to v−
1
p−1 over balls of Fβ . We say that

a weight u satisfies a doubling condition on cubes of Fβ , denoted by u ∈ Dβ ,
whenever there exists a constant C = C(β) such that

u(2Q) ≤ Cβ u(Q) <∞ ,

for every cube in Fβ such that 2Q ∈ Fβ , where 2Q means the concentric cube with
side length two times the side length of Q, and u(Q) =

´
Q
u dx.

By assuming a Dβ condition on v−
1
p−1 , an application of results in [3] shows that

our context fulfill the hypothesis about the boundedness of Mβ,σ in Theorem 1.3.
But taking into account the additional geometric information we get about the sets
on which the maximal is defined (notice that the Theorem of Jawerth is related to
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general basis of open sets in Rn), a better result can be obtained. Indeed we can
prove the following Theorem.

Theorem 1.7. Given 1 < p ≤ q < ∞, 0 < β < 1. Let (u, v) be a pair of weights

such that σ = v1−p′ ∈ Dβ, then

(1.8)

(ˆ
Ω

(Mβf)q u

)1/q

≤ C
(ˆ

Ω

|f |p v
)1/p

,

for every function f ∈ Lp(v) if and only if

(1.9)

(ˆ
Q

Mβ(σχQ)q u

)1/q

≤ C
(ˆ

Q

σ

)1/p

<∞ ,

for every cube Q ∈ Fβ.

Note that the hypothesis (1.9) looks like (1.2). However the appearance of the
operator, the second problem we have mentioned, makes it difficult to check the
condition. In the case Ω = Rn C. Pérez (Theorem 1.1, [6]) gave a solution by

adding an A∞-condition on v−
1
p−1 . We recall that a weight u belongs to the A∞

class of Muckenhoupt if there are positive constants c and δ such that

(1.10)
u(E)

u(Q)
≤ c

(
|E|
|Q|

)δ
,

for every measurable set E ⊂ Q and every cube Q. With this extra assumption,
the necessary and sufficient condition for the boundedness of the maximal is the
existence of a constant C such that

(1.11)
u(Q)

p
q
(
v−

1
p−1 (Q)

)p−1

|Q|p
≤ C ,

for every cube Q; which sometimes is referred to as Ap,q condition. It is important
to note that we cannot apply the solution given by C. Pérez because, as it was said
before, our setting is not even a metric space. However, it served as a source of
inspiration for our second result. In order to formulate it we introduce a couple of
definitions.

Definition 1.12. Given 0 < β < 1, we say that a weight u belongs to Aβ∞ if it
there are positive constants c and δ such that (1.10) holds for every Q ∈ Fβ.

Definition 1.13. Let 1 < p ≤ q < ∞ and 0 < β < 1. We say that the weights u
and v lies in the class Aβ

p,q if and only if

(1.14)
u(Q)

|Q|

p/q (
σ(Q)

|Q|

)p−1

≤ C ,

for every cube Q ∈ Fβ, where σ = v−
1
p−1 . In this cases we write (u, v) ∈ Aβ

p,q.

Now we are in position to enunciate our second theorem where the reference to
the operator in the hypothesis on the weights is completely avoided.
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Theorem 1.15. Let p, q, β and the weights u and v as in the Theorem above. In
addition if u ∈ Dβ and σ = v−1/(p−1) belongs to Aβ∞, then

(1.16) Mβ : Lp(v)→ Lq(u) ;

if and only if

(1.17) (u, v) ∈ Aβ
p,q .

We note that, under the hypothesis of Theorem 1.15, the classes Aβ
p,q coincides

for different values of β. So, as is the one-weight case, we can refer to those weights
as local weights (see Lemma 4.1 in section 4.)

As an important tool to prove the theorem above we consider the centered local
maximal function on Ω, namely M c

β given by

(1.18) M c
βf(x) = sup

Q=Q(x,l)

Q∈Fβ

1

|Q|

ˆ
Q

|f(y)| dy ,

for every f ∈ L1
loc(Ω) and every x ∈ Ω. For this operator we show that the following

theorem holds. We enunciate it here because it is important itself.

Theorem 1.19. Let 1 < p ≤ q < ∞, 0 < β < 1 and let u and v be two weights
such that σ = v−1/(p−1) belongs to Aβ∞. Then

(1.20) M c
β : Lp(v)→ Lq(u) ;

if and only if

(1.21) (u, v) ∈ Aβ
p,q .

Remark 1.22. Although the statements of our theorems are in terms of the maximal
operator we want to remark that minor modifications in the proofs lead us to
corresponding results for a fractional maximal function defined over Fβ .

The structure of the paper is as follows. Section 2 contains some useful geo-
metrical lemmas. The proofs of Theorem 1.7 is in section 3. Finally the proofs of
Theorems 1.15 and 1.19 are in section 4.

2. Technical Lemmas

In this section we present a covering theorem and several covering results neces-
sary for the proof of results below. We will write the following well-known theorem
adapted to the context in our work and without proof.

Theorem 2.1 (Besicovitch Covering Theorem). Let E ∈ Rn. For each x ∈ E, let
Qx be a cube centered at x. Assume that E is bounded or that supx∈E lQx < 1.
Then, there exists a countable set E0 ⊂ E and a constant C(n) ∈ N such that

(2.2) E ⊂
⋃
x∈E0

Qx ;

(2.3)
∑
x∈E0

χQx ≤ C(n) .
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Now, we need to explain the notion of “cloud” of a given cube. That is, given
0 < β < 1 and a cube Q ∈ Fβ , we shall denote the set

(2.4) Nβ(Q) =
⋃

R∩Q 6=∅
R∈Fβ

R ,

and we say that these are the “cloud” of Q. This idea was introduced in [3] and
the proof of the following lemmas can be found there in the context of the metric
spaces.

Lemma 2.5. Let Q = Q(x, l) ∈ Fβ such that 10Q 6∈ Fβ. We consider k0 ∈ Z such
that 2k0−1 ≤ d(x,Ωc) < 2k0 . Then there exists natural numbers h1, h2 independent
of Q such that

2k0−h1−1 ≤ d(y,Ωc) < 2k0+h2 , for every y ∈ Nβ(Q) .

Proof. The proof is a consequence of the claim 1 and 2 contained in the proof of
the lemma 2.3 in [3]. �

Now, denoting by D the usual family of dyadic cubes belonging to Fβ we have
the following lemma.

Lemma 2.6. Let Ω be an open proper subset of Rn. Given 0 < β < 1, for each
t ∈ N such that 2−t ≤ β/5, there exists a coveringWt of Ω by dyadic cubes belonging
to Fβ and satisfying the following properties

i) If R = R(xR, lR) ∈ Wt, then 10R ∈ Fβ and

2−t−3 d(xR,Ω
c) ≤ lR ≤ 2−t−1 d(xR,Ω

c) .

ii) There is a number M , only depending on β and t, such that for any cube
Q0 = Q(x0, l0) ∈ Fβ with 10Q0 6∈ Fβ, the cardinal of the set

Wt(Q0) = {R ∈ Wt : R ∩Nβ(Q0) 6= ∅} ,

is at most M . We will call the union of this cubes as

Wt,Q0
=

⋃
R∈Wt(Q0)

R .

Proof. We will follow the ideas of Lemma 2.3 in [3]. So, we only show how we take
the covering Wt. For k ∈ Z, we consider the bands defined by

Ωk =
{
x ∈ Ω : 2k−1 ≤ d(x,Ωc) < 2k

}
.

If Ωk is non empty, let us consider the collection Gk of all usual dyadic cubes
Qj = Q(xj , lj) such that

lj = 2k−t−2 , Qj ∩ Ωk 6= ∅ ,

where t is given as in the hypothesis. It is clear that Ωk ⊂ Gk. Moreover, taking
y ∈ Qj and z ∈ Qj ∩ Ωk we get

d(y,Ωc) ≤ d(z,Ωc) + d(y, z) ≤ 2k + 2 lj = 2k + 2k−t−1 < 2k+1 ,

and

(2.7) d(y,Ωc) ≥ d(z,Ωc)− d(y, z) > 2k−1 − lj = 2k−1 − 2k−t−2 > 2k−2 ,
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so the inclusion

(2.8) Qj ⊂ Ωk−1 ∪ Ωk ∪ Ωk+1 ,

holds. However there are not cubes intersecting three bands simultaneously. In
fact, suppose that there exists z, w ∈ Qj such that z ∈ Ωk−1 and w ∈ Ωk+1. Then

2k−1 = 2k − 2k−1 ≤ d(w,Ωc)− d(z,Ωc) ≤ d(w, z) ≤ 2 lj = 2k−t−1 .

This implies that t is less than or equal to 0 which is a contradiction. In conclu-
sion, we can say that, for a fixed k there exists in Gk three classes of cubes

Qj ∩ Ωk−1 6= ∅ , ó Qj ⊂ Ωk , ó Qj ∩ Ωk+1 6= ∅ .

Next, for each k we define the new collection Ek as follows: if either Qj ⊂ Ωk
or Qj ∩ Ωk+1 6= ∅ we put the cube Qj in Ek. If Qj ∩ Ωk−1 6= ∅ we consider the 2n

dyadic sub-cubes and put them in Ek−1. So, we note that Ek contains some cubes
from Ek+1 that have been subdivided into 2n sub-cubes. Thus, the collections Ek
are pairwise disjoint and for each Qj(xj , lj) ∈ Ek we have that lj = 2k−t−2 and

2k−1 < d(xj ,Ω
c) ≤ 2k+1 .

Now, we are able to define a disjoint collection of dyadic cubes by

(2.9) Wt =
⋃
k

Ek .

This is the family of cubes that we will consider. Then, the properties of the
lemma follows by analogous arguments of [3]. �

Lemma 2.10. Let 0 < β < 1, Ω ⊂ Rn and µ be a measure doubling on Fβ. We
consider t ∈ Z such that 2−t ≤ β/20 and the covering Wt of the Lemma above.
Then, for any cube Q such that 10Q 6∈ Fβ there exists a constant K depending only
on β and the constant of the doubling property of µ such that

µ
(
Wt,Q

)
≤ K ν(Q) ,

where Wt,Q is as in Lemma above.

Proof. The proof follows the same lines as in Remark 3.2 in [3] in the general setting
of metric spaces. �

Remark 2.11. Since Nβ(Q) ⊂ Wt,Q for every cube in Fβ , by the Lemma above we
can deduce that

(2.12) µ
(
Nβ(Q)

)
≤ C µ(Q) .

We observe by the construction (2.9) that for each cube Qj(xj , lj) ∈ Ek ⊂ Wt

we get
1

2
2−t−2 ≤ lj

d(xj ,Ωc)
< 2 2−t−2 .

In general, we will say that a collection of cubes {Qi} is of Whitney’s type if
there exists constants 0 < c1 < c2 < 1 such that

c1 < lQi/d(xQi ,Ω
c) < c2 .
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Lemma 2.13. Let {Qi} be a pairwise disjoint collection of Whitney’s type cubes.
Then their clouds have bounded overlapping. More precisely, there exists a natural
number M > 0 such that

∑
i

χNβ(Qi)(x) ≤ M ,

for every x in Ω.

Proof. Let {Qi} be a such collection, xi and li their centers and length sides re-
spectively. Take again the bands Ωk as in Lemma 2.6. We consider x ∈ Ωk and
assume that

x ∈
⋂
i∈F
Nβ(Qi) ,

for some family of index F . Let us prove that there is a constant M such that the
cardinal of this family is controlled by M for every point x ∈ Ω. By lemma 2.5, if
the center xi ∈ Ωki , we can say that

Nβ(Qi) ⊂
ki+h2⋃
j=ki−h1

Ωj .

Thus, the range of j is independent of Qi and equal to h = h2 + h1. Now, since
ki − h1 ≤ k ≤ ki + h2 for every i ∈ F it is easy to see that

(2.14)
⋃
i∈F
Nβ(Qi) ⊂

k+h⋃
j=k−h

Ωj ,

that is, the range of values that may be the union of the clouds is 2h.

Now, suppose that there exists y, z ∈ Nβ(Qi)∪Nβ(Qs) with i, s ∈ F and li ≤ ls.
Let Py, Pz, Pi and Ps be cubes such that

y ∈ Py , Py ∩Qi 6= ∅ , z ∈ Pz , Pz ∩Qs 6= ∅ ,

Qi ∩ Pi 6= ∅ , Qs ∩ Ps 6= ∅ and x ∈ Pi ∩ Ps .

Now, we take as in the figure the points

yi ∈ Py ∩Qi , zs ∈ Pz ∩Qs , xi ∈ Qi ∩ Pi and xs ∈ Qs ∩ Ps .



8 M. RAMSEYER, O. SALINAS AND B. VIVIANI

Ωc

Ωk+1

Ωk

Ωk−1

x

Pz

Qs

PsPi

Qi

Py

y
z

zs

yi

xi
xs

Then, since all the cubes belongs to Fβ and considering (2.14) we have the
following estimation

d(y, z) ≤ d(y, yi) + d(yi, xi) + d(xi, x) + d(x, xs) + d(xs, zs) + d(zs, z)

≤ 6β 2k+h .

On the other hand

li > c1d(xi,Ω
c) > c1 2k−h−1 .

Thus, there exists at most

6β 2k+h

li
≤ 6β

c1
2k+h−k+h+1 = Cβ ,

disjoint cubes of the family {Qi}. This fact and (2.14) say that the family F is
finite and then there exists a fixed natural number M , depending only on β such
that ∑

i

χNβ(Qi)(x) ≤ M ,

as we wanted to prove. �

Lemma 2.15. Let f be a non-negative, locally integrable function and µ be a dou-
bling measure on Rn. Suppose that for some h > 0 and some cube Q = Q(xQ, lQ) ∈
Fβ

1

|Q|

ˆ
Q

f > h .

(i) If 10Q ∈ Fβ then there exists a dyadic cube P = P (xP , lP ) such that
Q ⊂ 5P ∈ Fβ and a positive constant c1, independent of Q, such that

(2.16)
1

|P |

ˆ
P

f > c1 h .
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(ii) If 10Q 6∈ Fβ then there exists a dyadic cube R = R(xR, lR) such that
Q ⊂ Wt,R and a positive constant c2, independent of Q, such that

(2.17)
1

|R|

ˆ
R

f > c2 h ,

where Wt is as in the Lemma 2.6.

Proof. Let Q = Q(xQ, lQ) be a such cube of the hypothesis. For (i) we consider
k ∈ Z such that 2k−1 < lQ ≤ 2k. Considering dyadic cubes with side length equal to
2k−1, there exists a finite collection of dyadic cubes P1, . . . , PN , with 1 ≤ N ≤ 3n,
which intersect the interior of Q. Calling P any of these and taking z ∈ Q ∩ P , we
have

d(xQ, xP ) ≤ d(xQ, z) + d(z, xP ) ≤ 1

2
lQ +

1

2
lP ≤ 2k−1 + 2k−2 =

3

2
lP .

Now, if w ∈ Q we get

d(w, xP ) ≤ d(w, xQ) + d(xQ, xP ) ≤ 1

2
lQ +

3

2
lP ≤

5

2
lP ,

which implies that Q ⊂ 5P . Moreover, for each z ∈ 5P

d(z, xQ) ≤ d(z, xP ) + d(xQ, xP ) ≤ 5

2
lP +

3

2
lP = 4 lP .

Thus, we can deduce that Q ⊂ 5P ⊂ 8Q. Now, a simpler estimation show that
5P ∈ Fβ whenever 10Q do it. In fact

lP < lQ ≤
β

10
d(xQ,Ω

c) ≤ β

10

(
d(xQ, xP ) + d(xP ,Ω

c)
)

=
β

5
lP +

β

10
d(xP ,Ω

c) ,

then, recalling that 0 < β < 1 we get

1

2
lP < (1− β

5
) lP <

β

10
d(xP ,Ω

c) ,

this implies that 5lP < β d(xP ,Ω
c) as required. Furthermore, for at least one of

these dyadic cubes, which we denote by P ,ˆ
P

f >
h |Q|
3n

,

since otherwise we get a contradiction. In fact

ˆ
Q

f ≤
N∑
t=1

ˆ
P

f ≤ N h |Q|
3n

≤ h |Q| .

Now, since 5P ⊂ 8Q, the Lebesgue measure say that inequality (2.16) follows
with c1 = 5n/24n.

In order to prove (ii), by the Lemma 2.6ii) the cardinal of Wt,Q is finite and
independent of Q, and its cubes are comparable size with Q, the same argument
can be applied to take one of them, namely R such that (2.17) holds. �
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3. Proof of the Results

Proof of the Theorem 1.7. Assume that (1.8) holds. In particular, it is for f = σχQ,
Q ∈ Fβ . Then(ˆ

Q

Mβ(σχQ)q u

)1/q

≤
(ˆ

Ω

(σχQ)p v

)1/p

=

(ˆ
Q

σ

)1/p

<∞.

To show that (1.9) implies (1.8), fix a non negative function f ∈ Lp(Ω, v). By
a standard argument, we may assume without loss of generality that f is bounded
and has compact support. Now, for each k ∈ Z, we consider the sets

Ak =
{
x ∈ Ω : 2k < Mβf(x) ≤ 2k+1

}
.

Considering a collection {Qkx}x∈Ak of cubes such that

1

|Qkx|

ˆ
Qkx

|f | > 2k ,

we define

Q1 =
{
Qkx : 10Qkx ∈ Fβ

}
and Q2 =

{
Qkx : 10Qkx 6∈ Fβ

}
.

For the cubes in Q1 by (i) of Lemma 2.15 there exists a dyadic cube P kx such that
Qkx ⊂ 5P kx , 5P kx ∈ Fβ and

1

|P kx |

ˆ
Pkx

f > c 2k .

On the other hand, for the cubes in Q2 we take t such that 2−t ≤ β/20 and consider
the covering Wt of the Lemma 2.6. Now, we can apply (ii) of Lemma 2.15 to have
a dyadic cube Rkx such that its cloud contain the original cube Qkx and

1

|Rkx|

ˆ
Rkx

f > c 2k .

Since the P kx ’s and Rkx’s are dyadic and bounded in size (since f has compact
support) we can obtain a maximal disjoint sub-collection

{
P kj
}

such that for each

x, either Qkx ⊂ 5P kj or Qkx ⊂ Wt,Pkj
for some j.

We define P̃ kj = 5P kj , if P kj was chosen from a cube in Q1 and P̃ kj = Wt,Pkj
if

P kj was chosen from a cube in Q2. It is clear that Ak ⊂ ∪jP̃ kj . Now we define the
following sets:

Ek1 = P̃ k1 ∩Ak , Ek2 =
(
P̃ k2 \P̃ k1

)
∩Ak , . . . , Ekj =

(
P̃ kj \

j−1
∪
i=1

P̃ ki
)
∩Ak , . . .

Thus Ak = ∪jEkj and since the Ak’s are disjoint, the sets Ekj ’s are pairwise
disjoint for all j and k.

In order to prove (1.8) we proceed as followsˆ
Ω

(Mβf)q u =
∑
k

ˆ
Ak

(Mβf)q u

=
∑
j,k

ˆ
Ekj

(Mβf)q u

≤ C
∑
j,k

u(Ekj ) 2kq
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≤ C
∑
j,k

u(Ekj )

(
1

|P kj |

ˆ
Pkj

f

)q
.

Now, multiplying and dividing by
(´

P̃kj
σ
)q

we have

ˆ
Ω

(Mβf)q u ≤ C
∑
j,k

u(Ekj )

(
1

|P kj |

ˆ
P̃kj

σ

)q (´
Pkj

(f/σ)σ´
P̃kj
σ

)q

= C

ˆ
X

T (f/σ)q dω ,

where X = N× Z, the discrete measure ω on X is given by

ω(j, k) = u(Ekj )

(
1

|P kj |

ˆ
P̃kj

σ

)q
,

and for a non-negative, measurable function g, the operator T is defined by

(3.1) Tg(j, k) =

´
Pkj
g σ´

P̃kj
σ
.

By interpolation’s theory it is sufficient to show that T is weak-type (1, q/p) for
getting (1.8). For this, fix g bounded and with compact support. Then for λ > 0
we consider

Bλ = {(j, k) ∈ X : Tg(j, k) > λ} .
By the definition of P̃ kj we have

B1
λ =

{
(j, k) ∈ X : Tg(j, k) > λ , P̃ kj = 5P kj

}
;

B2
λ =

{
(j, k) ∈ X : Tg(j, k) > λ , P̃ kj =Wt,Pkj

}
.

Then, we can estimate

ω(Bλ) =
∑

(j,k)∈Bλ

u(Ekj )

(
1

|P kj |

ˆ
P̃kj

σ

)q
=

∑
(j,k)∈B1

λ

+
∑

(j,k)∈B2
λ

= I + II .

Remembering that 5P kj ∈ Fβ and since Ekj ⊂ 5P kj , it is not difficult to see that

I ≤
∑

(j,k)∈B1
λ

ˆ
Ekj

Mβ(σχ5Pkj
)q u .

Let now {Pi} be the maximal disjoint sub-collection of {P kj : (j, k) ∈ B1
λ}.

Then, since the Ekj are pairwise disjoint and the hypothesis (1.9) we have

I ≤
∑
i

∑
Pkj ⊂Pi

ˆ
Ekj

Mβ(σχ5Pkj
)q u

≤
∑
i

ˆ
5Pi

Mβ(σχ5Pi)
q u

≤ C
∑
i

(ˆ
5Pi

σ

)q/p
.
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Finally, by the definition of B1
λ, the cubes Pi’s are disjoint and q/p ≥ 1

I ≤ C
∑
i

(
1

λ

ˆ
Pi

g σ

)q/p
≤ C

(
1

λ

ˆ
Ω

g σ

)q/p
.(3.2)

The estimation above follows similar lines of the proof of Theorem 1.1 in [1].

Now, we need to estimate II. For this, let (j, k) ∈ B2
λ and we write

Wt,Pkj
=

tkj⋃
m=1

P kj,m ,

where P kj,m ∈ Wt(P
k
j ) are disjoint. By Lemma 2.6 ii) we know that tkj ≤M where

M is independent of the cubes. Then, considering tkj disjoint sets defined by

Ekj,m =
(
P kj,m\

j−1
∪
i=1

P̃ ki
)
∩Ak .

So, we get

Ekj =

tkj⋃
m=1

Ekj,m ,

where the sets Ekj,m are disjoint in j, m and k. Then

II =
∑

(j,k)∈B2
λ

u(Ekj )

(
1

|P kj |

ˆ
W
t,Pk

j

σ

)q

=
∑

(j,k)∈B2
λ

tkj∑
m=1

ˆ
Ekj,m

(
1

|P kj |

tkj∑
l=1

ˆ
Pkj,l

σ

)q
u .

Now, we consider for each P kj,l a finite chain joining P kj,l with P kj,m, that is, a

finite subset of Wt(P
k
j ), say R1, . . . , Rn which are all different, with R1 = P kj,l and

Rn = P kj,m and for Ri and Ri+1 neither Ri ⊂ Ri+1 or Ri+1 ⊂ Ri.
Moreover, part i) and ii) of the Lemma 2.6 say that P kj,m ∈ Fβ and n ≤ M .

Thus, since σ is doubling on Fβ we can deduce that σ(P kj,l) ≤ C σ(P kj,m). Then,
by the Lemma 2.10 again we have

II ≤ C
∑

(j,k)∈B2
λ

tkj∑
m=1

ˆ
Ekj,m

(
1

|Wt,Pkj
|

tkj∑
l=1

ˆ
Pkj,m

σ

)q
u

≤ C
∑

(j,k)∈B2
λ

tkj∑
m=1

ˆ
Ekj,m

(
1

|P kj,m|

ˆ
Pkj,m

σ

)q
u

≤ C
∑

(j,k)∈B2
λ

tkj∑
m=1

ˆ
Ekj,m

Mβ

(
σχPkj,m

)q
u ,



TWO-WEIGHT NORM INEQUALITIES FOR THE LOCAL MAXIMAL FUNCTION 13

where the last inequality holds because Ekj,m ⊂ P kj,m. Let {Pi} be a maximal

disjoint sub-collection of {P kj,m} with 1 ≤ m ≤ tkj and (j, k) ∈ B2
λ. Then, since the

Ekj,m’s are pairwise disjoint, we have that

II ≤ C
∑
i

∑
(j,k)∈B2

λ

Pkj,m⊂Pi

ˆ
Ekj,m

Mβ

(
σχPkj,m

)q
u

≤ C
∑
i

ˆ
Pi

Mβ

(
σχPi

)q
u .

Now, by inequality (1.9) and the fact that q ≥ p we get

II ≤ C
∑
i

(ˆ
Pi

σ

)q/p

≤ C

(∑
i

ˆ
Pi

σ

)q/p
.

Finally, since the operator T is defined on the cubes P kj we need to take again

a maximal disjoint sub-collection of the family {P kj } with (j, k) ∈ B2
λ. Let {Ps} be

such sub-collection. Thus, since the Pi’s are disjoint and Pi ∈ Wt,Pkj
⊂ Wt,Ps for

some (j, k) ∈ B2
λ and some s, by the definition of the operator T we can estimate

II ≤ C

∑
s

∑
i: Pi⊂Wt,Ps

ˆ
Pi

σ

q/p

≤ C

(∑
s

ˆ
Wt,Ps

σ

)q/p

≤ C

(
1

λ

∑
s

ˆ
Ps

g σ

)q/p

≤ C

(
1

λ

ˆ
Ω

g σ

)q/p
,

as we wanted to prove. Then the proof of the Theorem is complete. �

4. More manageable conditions on cubes

Now we concentrate in the classes Aβ
p,q. Since Fα ⊂ Fβ , whenever α ≤ β we

observe that Aβ
p,q ⊂ Aα

p,q. Moreover, if Ap,q consist in all weights for what (1.11)

holds for every cube Q ∈ Rn, it is clear that Ap,q ⊂ Aβ
p,q. This inclusion is proper.

In fact taking u(x) = ||x||α and v(x) = ||x||γ , with γ = (α+n)pq−n, it is not difficult

to see that (u, v) ∈ Ap,q whenever −n < α < n(q − 1). However, if Ω = Rn − {0}
and 0 < β < 1, we can check that (u, v) ∈ Aβ

p,q for every power α ∈ R.
However, in the next Lemma, we show that, under certain conditions on the

weights the classes Aβ
p,q really are independent of β.
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Lemma 4.1. Let 0 < α < β < 1. Let u and v be weights such that u, σ ∈ Dα.
Then

Aβ
p,q ≡ Aα

p,q .

Proof. Let 0 < α < β < 1. By the previous observation, the Lemma is proved if
we show the inclusion Aα

p,q ⊂ Aβ
p,q. For this, given a cube Q ∈ Fβ\Fα we consider

the cube Q̃ = α
βQ. Taking k ∈ Z such that 2k−1 < β

α ≤ 2k, since Q̃ ∈ Fα, by the

doubling condition on u and σ we get

u(Q)p/q σ(Q)p−1 ≤ u(2kQ̃)p/q σ(2kQ̃)p−1 ≤ C u(Q̃)p/q σ(Q̃)p−1 ≤ C |Q| ,
which proves the lemma. �

Lemma 4.2. Let σ ∈ Aβ∞. Then σ satisfies a Reverse Hölder inequality, i.e.

(4.3)

(
1

|Q|

ˆ
Q

σ1+ε

)1/(1+ε)

≤ C 1

|Q|

ˆ
Q

σ ,

for every cube Q ∈ Fβ.

Proof. We only need to observe that for every cube Q = Q(x, l) ∈ Fβ and any

cube Q̃ = Q̃(x′, l′) ⊂ Q such that l = 2 l′ it follow that Q̃ ∈ Fβ . In fact, since
d(x, x′) ≤ l′ and β < 1

l = 2 l′ ≤ βd(x,Ωc) ≤ βd(x, x′) + βd(x′,Ωc) ≤ β l′ + βd(x′,Ωc) ,

implies

l′ ≤ β

2− β
d(x′,Ωc) ≤ β d(x′,Ωc) .

Then, the proof follows a similar way as in [2]. �

Lemma 4.4. Let 0 < β < 1 and we consider (u, v) ∈ Aβ
p,q. If σ = v−1/(p−1) ∈ Aβ∞

then there exists p̃ < p and q̃ < q such that (u, v) ∈ Aβ
p̃,q̃.

Proof. Since σ ∈ Aβ∞, by the Lemma 4.2 it follows that σ satisfies a Reverse Hölder
inequality as in (4.3). Thus, from the hypothesis on the weights we get

(4.5)
u(Q)

|Q|

p/q (
1

|Q|

ˆ
Q

σ1+ε

)(p−1)/(1+ε)

≤ C .

Now, taking δ > 0 such that (p − 1)/(1 + ε) = p − δ − 1 the Lemma is proved

defining p̃ = p− δ and q̃ = p−δ
p q < q. In fact,

σ1+ε = v−(1+ε)/(p−1) = v−1/(p̃−1) ,

and noting that p/q = p̃/q̃ defining σ̃ = v−1/(p̃−1) by (4.5) we have (u, v) ∈ Aβ
p̃,q̃. �

In the next Lemma we show the relation between the local and the centered local
maximal function.

Lemma 4.6. Let 0 < α < 1/4. There exists 0 < γ < 1 such that

(4.7) Mαf(x) ≤ 2nM c
γf(x) ,

for every locally integrable function f and every x in Ω.
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Proof. Let f be a locally integrable function. For 0 < α < 1/4 and x ∈ Ω we

consider cubes Q, Q̃ such that x ∈ Q ∈ Fα and Q̃ is centered at x with lQ̃ = 2 lQ.

If we show that Q̃ ∈ Fγ , for some 0 < γ < 1 then the Lemma will be proved. In
fact,

1

|Q|

ˆ
Q

|f | ≤ 2n

|Q̃|

ˆ
Q̃

|f | ≤ 2nM c
γf(x) ,

then, taking the supremum over all cubes in Fα containing x we get (4.7). So, we
observe that

lQ̃ ≤ 2α d(xQ,Ω
c) ≤ 2α d(xQ, x) + 2α d(x,Ωc) ≤ α lQ̃ + 2α d(x,Ωc) ,

thus

lQ̃ ≤
2α

1− α
d(x,Ωc) .

Then, it is clear that Q̃ ∈ Fγ with γ = 2α
1−α < 1 since the choose of α. �

Proof of the Theorem 1.19. That (1.20) implies (1.21) is trivial using the test func-
tion σχQ for each cube Q ∈ Fβ and the definition of M c

β .

On the other hand, since it is clear that ‖M c
β‖∞ ≤ ‖f‖∞, if we prove that M c

β is

of weak type (p̃, q̃) for some number p̃ < p and q̃ < q, by applying the Marcinkiewicz
interpolation theorem we will get the result.

In order to do this, let Uλ = {x ∈ Ω : M c
βf(x) > λ} and let

{Qx}x∈Uλ =

{
Qx : Qx ∈ Fβ , centered at x and

1

|Qx|

ˆ
Qx

|f | > λ

}
,

a covering for Uλ. Then, by the Theorem 2.1 we can select a countable subfamily
of cubes {Qj} which still cover Uλ and such that

∑
j χQj (x) ≤ C(n).

Then, considering p̃ and q̃ provided by the Lemma 4.4 and taking into account
the property of the cubes in the covering we can write

u(Uλ) ≤ u
(
∪
j
Qj
)

≤
∑
j

u(Qj)

|Qj |q̃
|Qj |q̃

≤ C

λq̃

∑
j

u(Qj)

|Qj |q̃

(ˆ
Qj

|f |

)q̃

=
C

λq̃

∑
j

u(Qj)

|Qj |q̃

(ˆ
Qj

|f | v1/p̃ v−1/p̃

)q̃
.

Hölder inequality with p̃ > 1 and Lemma 4.4 allows us to get

u(Uλ) ≤ C

λq̃

∑
j

u(Qj)

|Qj |q̃

(ˆ
Qj

|f |p̃ v

)q̃/p̃(ˆ
Qj

v−1/(p̃−1)

)(p̃−1) q̃/p̃

=
C

λq̃

∑
j

{
u(Qj)

|Qj |

p̃/q̃ (
σ̃(Qj)

|Qj |

)p̃−1
}q̃/p̃(ˆ

Qj

|f |p̃ v

)q̃/p̃
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≤ C

λq̃

(∑
j

ˆ
Qj

|f |p̃ v
)q̃/p̃

≤ C

λq̃

(ˆ
Ω

|f |p̃ v
)q̃/p̃

,

and the proof of the Theorem is complete. �

Now, we introduce the following maximal function. For each 0 < β < 1 we get

(4.8) M(β/4,β]f(x) = sup
x∈Q∈Fβ\Fβ/4

1

|Q|

ˆ
Q

|f(y)| dy .

Proposition 4.9. Let 0 < β < 1 and let 1 < p ≤ q <∞. Given two weights u and
v such that (u, v) ∈ Aβ

p,q and σ ∈ Dβ, we have

(4.10) M(β/4,β] : Lp(v)→ Lq(u) .

Proof. For each x ∈ Ω we choose a cube Qx such that x ∈ Qx ∈ Fβ\Fβ/4 and

M(β/4,β]f(x) ≤ 2

|Qx|

ˆ
Qx

|f | .

Now, let t be such that 2−t ≤ β/20 and we consider the covering Wt of Ω
provided by the Lemma 2.6. For simplicity we write

Wt =
⋃
j

Qj =
⋃
j

Qj(xj , lj) ,

where the cubes Qj are disjoint. Since x ∈ Qj for some j, denoting xQ the center
of Qx, we get

d(xQ,Ω
c) ≤ d(xj ,Ω

c) + d(xQ, x) + d(xj , x)

≤ d(xj ,Ω
c) + β d(xQ,Ω

c) + β d(xj ,Ω
c) .

This implies that their centers holds

d(xj ,Ω
c) ≤ 1 + β

1− β
d(xQ,Ω

c) .

Since 10Qj ∈ Fβ by part i) of the Lemma 2.6, the inequality above and the fact
Qx 6∈ Fβ/4 we have that

lj <
β

10
d(xj ,Ω

c) ≤ β

10

1 + β

1− β
d(xQ,Ω

c) ≤ β

10

1 + β

1− β
4

β
lQ =

2

5

1 + β

1− β
lQ = cβ lQ .

Thus, |Qj | ≤ C |Qx|. Now, it is clear that x ∈ Nβ(Qj) since x ∈ Qx∩Qj . Then,
by Hölder inequality we can proceed as followsˆ

Ω

(
M(β/4,β]f

)q
u ≤ C

∑
j

ˆ
Qj

1

|Qx|q

(ˆ
Qx

|f(y)| dy
)q

u

≤ C
∑
j

u(Qj)

|Qj |q

(ˆ
Nβ(Qj)

|f |
)q

≤ C
∑
j

u(Qj)

|Qj |q
σ
(
Nβ(Qj)

)q(p−1)/p
(ˆ
Nβ(Qj)

|f |p v
)q/p

.
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Since σ ∈ Dβ , by Remark 2.11 we get σ
(
Nβ(Qj)

)
≤ C σ(Qj). In addition, we

use the fact that (u, v) ∈ Aβ
p,q, p ≤ q and by the Lemma 2.13 we can conclude that

ˆ
Ω

(
M(β/4,β]f

)q
u ≤ C

∑
j

(
u(Qj)

p/q

|Qj |p
σ(Qj)

p−1

)q/p(ˆ
Nβ(Qj)

|f |p v
)q/p

≤ C

(∑
j

ˆ
Nβ(Qj)

|f |p v
)q/p

≤ C

(ˆ
Ω

|f |p v
)q/p

,

which gives (4.10). �

Now, we are going to apply the results mentioned above to prove the analogous
result for the local maximal.

Proof of the Theorem 1.15. Clearly (1.16) implies (1.14). Conversely let 0 < β < 1.
By Lemma 4.6 with α = β/4 there exists 0 < γ < 1 such that the inequality

Mβf(x) ≤ Mβ/4f(x) +M(β/4,β]f(x)

≤ M c
γf(x) +M(β/4,β]f(x) ,(4.11)

for every x ∈ Ω. Then, by Theorem 1.19 and Proposition 4.9 we have

ˆ
Ω

Mβf
q u ≤ C

(ˆ
Ω

M c
γf

q u+

ˆ
Ω

M(β/4,β]f
q u

)
≤ C

(ˆ
Ω

fp v

)q/p
,

and the proof of the Theorem is complete. �
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