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Abstract
We obtain a geometrical inequality involving the ADM mass, the angular 
momentum and the size of an ordinary, axially symmetric object. We use 
the monotonicity of the Geroch quasi-local energy on 2-surfaces along the 
inverse mean curvature flow. We also compute numerical examples to test the 
robustness of our hypotheses and results
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1. Introduction

During the last decade, geometrical inequalities for black holes have received much attention 
and different relations involving the total mass, the angular momentum, the horizon area, the 
electromagnetic charge, the cosmological constant and certain shape parameters have been 
found [1, 7–9, 12, 17, 30]. The question of whether the same kind of relations hold for ordi-
nary objects (i.e. not black holes) is not trivial. Black holes are very special solutions of 
Einstein equations that can be described by few parameters, at least in the stationary limit. 
The geometrical inequalities mentioned above show that this no-hair property of the stationary 
state sets restrictions on the values that physical quantities can have in the general, dynamical 
black hole state.

On the other hand, ordinary objects like neutron stars are not simple, and hence finding 
such simple relations is not a priori expected. One of the first works in this direction is due to 
Schoen and Yau [31] (see the discussion and references in [29]). They found a lower bound 
to the Ricci scalar (and hence, to the matter density) in asymptotically flat initial data only 
in terms of a certain radius characterizing the object. This in turn gave rise to a black hole 
formation criteria due to concentration of matter. There were other results similar in nature to 
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this one, namely, quasi-local inequalities between size and matter/currents density for objects, 
with alternative measures of size [27] [14]. More recently, the Schoen–Yau bound was used 
by Dain [10] and Khuri [23] under different conditions in axial symmetry, to find a quasi-
local relation between angular momentum and size, of the form J � R2. Furthermore, Khuri 
[24] also used it to prove an inequality for charged objects using a similar measure of size. 
Independently, Reiris [29] derived quasi-local inequalities relating the angular momentum and 
charge to precise measures of size and shape of ordinary objects. Using a similar approach, 
Khuri [22] also established inequalities relating size, local mass, angular momentum, and 
charge, that give rise to black hole existence criteria.

The appropriate measure of the size of an object is not easy to determine, nor is find-
ing its relation with relevant physical quantities, hence these inequalities are not expected to 
be sharp. Moreover, it is expected that these inequalities become saturated for very special 
cases, for example the inequality between charge and size, 2R > Q, is sharp in the spherically 
symmetric case with R the areal radius of the object [3], and the equality is achieved for a 
sequence of objects whose charge, mass, and radius tend to zero.

Our interest in this article is to relate the rotation of an ordinary object (i.e. its angular 
momentum) with the total energy (the ADM mass, see [4]) in axially symmetric systems. 
This approach is inspired by the slow rotation treatment of neutron stars. As discussed in [15], 
rotating neutron stars are axially symmetric and for slow rotation, the rotational perturbations 
of the stellar structure are quadratic in the angular velocity and therefore, quadratic in the 
angular momentum. In the Newtonian limit, one may write the total energy of the star as the 
sum of two terms, the first including the gravitational and internal energies, denoted as E0, and 
the second, the rotational energy

E ≈ E0 +
J2

2I
 (1)

where J is the angular momentum and I the stellar moment of inertia. In 1967 Hartle [16] 
devised a perturbative method to compute the first order correction to the neutron star’s energy 
in the context of general relativity, and found an expression similar to (1), where the term 
E0 represents the total energy for the non-rotating star, and the quadratic term in the angular 
momentum is the rotational contribution to first order. An extensive study of this equation and 
different relations between the kinetic and binding energies has been performed since the late 
1960s (see [33] for further details and references). It is not our aim to address these problems, 
but to seek geometrical relations between certain physical parameters for a rotating ordinary 
object, like the neutron star mentioned above.

Within Newtonian theory, there are no restrictions to the values that the quantities in (1) 
can attain (we are not considering mechanical processes related to the particular equations of 
state of matter). Nevertheless, in general relativity, the Hoop conjecture [32] sets bounds on 
the (quasi-local) mass that an object can have. This conjecture roughly says that if one is able 
to pass a hoop of radius R in every direction around a region Ω with (quasi-local) mass mΩ, 
then it will collapse to form a black hole if

mΩ >
R
2

. (2)

Otherwise, if (2) is not satisfied, one expects an ordinary object.
To incorporate this expected constraint into (1), we start with the Newtonian definition of 

moment of inertia of Ω with respect to the symmetry axis
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I :=
∫

Ω

µρ2dV (3)

where μ is the matter density and ρ is the (euclidean) distance from the axis. Moreover, we 
can roughly write

I ≈ mΩR2
C (4)

where mΩ is some measure of the (quasi local) mass contained in the object and RC = max ρ 
is the circumferential radius. For instance, for a spheroid rotating around the axis of (semi-)
length RC , the moment of inertia is 2/5mΩR2

C. Then, putting together (2) and (4) we may 
estimate the following bound to the total energy of a non-collapsing object

E � E0 +
J2

RR2
C

. (5)

Although naive and informal, this expression gives a lower bound on the total energy for a 
rotating system in terms of the angular momentum and two measures of size, that we call R 
and RC . It is interesting to note that these two quantities come from different contexts. The 
distance to the rotation axis at which matter is located, represented in our argument by the 
circumferential radius RC , seems to be (at least from Newtonian experience) the relevant 
quantity to describe the kinetic rotational energy. In other words, for rotation it is important to 
account for the spread out of matter with respect to the symmetry/rotation axis. On the other 
hand, the measure R coming from the Hoop conjecture should describe all directions in which 
matter is spread out. This quantity cares about how localized in every direction matter is.

In this article we present a relation similar to (5) for an ordinary, isolated, rotating and axi-
ally symmetric object in general relativity.

The main tools we use to accomplish this are the inverse mean curvature flow (IMCF) and 
the Geroch energy, which have proven to be useful in obtaining geometrical inequalities in 
general relativity like the Riemannian Penrose inequality [19]. More related to our system, 
Dain used the IMCF and the Hawking energy to obtain an inequality between size, ADM 
mass and electric charge for ordinary objects [11]. Our aim in this article is to explore what the 
IMCF can say about rotating ordinary objects. The main difficulty being the explicit inclusion 
of the angular momentum into the geometrical relations.

The article is organized as follows: in section  2 we review the inverse mean curvature 
flow and some important properties we will use in deriving our result. Also we introduce the 
Geroch energy and discuss the monotonicity properties. In section 3 we present our hypoth-
eses, the main theorem and discussions. In section 4 we show numerical solutions of the flow 
equations where we test both some of the hypotheses of our main result, and the geometrical 
inequality we have found for objects.

2. IMCF and Geroch energy

In this section we review the basic properties of the inverse mean curvature flow (IMCF) and 
the Geroch energy [20, 34].

Consider a smooth Riemannian 3-manifold M with metric ḡij, connection ∇̄i and Ricci 
curvature R̄ij. A solution of the IMCF is a smooth family of hypersurfaces St:  =  x(S, t) with 
x : S × [0, τ ] → M  satisfying the evolution equation

P Anglada et alClass. Quantum Grav. 34 (2017) 125011
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∂x
∂t

=
ν

H
 (6)

where t ∈ [0, τ ], H  >  0 is the mean curvature of the 2-surface St at x and ν is the outward unit 
normal to St.

Let gij be the induced metric on St, ∇i the covariant derivative, hij the second fundamental 
form and ds the area element of St. Then one can derive the evolution equations (see [20] more 
details)

∂

∂t
gij =

2
H

hij (7)

∂

∂t
(ds) = ds (8)

∂

∂t
H = −∆(H−1)− H−1(|h|2 + R̄ijν

iν j). (9)

It is important to note that when considering the IMCF in axially symmetric initial data, 
the IMCF equation (6) preserves axial symmetry. That is, if one starts the flow out of a point 
on the symmetry axis (or out of an axially symmetric initial surface) there is no mechanism 
that could make the normal to each subsequent surface to have a component along the axial 
Killing vector. Due to this observation, from now on, when we discuss the IMCF flow, we 
always consider it consisting of axially symmetric surfaces St.

On each surface St we introduce the Geroch energy

EG(St) :=
A1/2

t

(16π)3/2

(
16π −

∫

St

H2ds
)

 (10)

where At is the area of St. This functional has some interesting properties that will be used later 
in the proof of our result. Namely, for a complete, maximal, asymptotically flat initial data, 
with non-negative scalar curvature, and surfaces St that are topological spheres converging to 
round spheres at infinity, EG satisfies

EG(St) � 0,
dEG

dt
(St) � 0, lim

t→∞
EG(St) = mADM. (11)

We refer the reader to [19] for details, proofs and further references. However, since it will be 
relevant in proving our main theorem, we will sketch the proof of the monotonicity property.

We start with the time derivative of EG(St)

d
dt

EG =
A1/2

t

(16π)3/2

[
8π − 1

2

∫

St

H2ds +
∫

St

(
−H2 + 2H∆(H−1) + 2|h|2 + 2R̄ijν

iν j) ds
] 

(12)

where we have used (8) and (9). Then we use the Gauss equation

2R̄ijν
iν j = R̄ + H2 − |h|2 − 2κ (13)

where κ is the Gauss curvature, and obtain

d
dt

EG =
A1/2

t

(16π)3/2

[
8π +

∫

St

(
2H∆(H−1) + |h|2 + R̄ − 2κ− H2

2

)
ds
]

.

 

(14)

P Anglada et alClass. Quantum Grav. 34 (2017) 125011
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Rewriting the |h|2 term in terms of the principal curvatures λ1 and λ2 and the mean curva-
ture we find

d
dt

EG =
A1/2

t

(16π)3/2

[
8π +

∫

St

(
2H∆(H−1) +

1
2
(λ1 − λ2)

2 + R̄ − 2κ
)

ds
]

.

 

(15)

Next, we use the Gauss–Bonnet theorem and integrate by parts the Laplace operator

d
dt

EG =
A1/2

t

(16π)3/2

[
8π − 4πχ(St) +

∫

St

(
2
|∇H|2

H2 +
1
2
(λ1 − λ2)

2 + R̄
)

ds
]

 

(16)

where χ(St) is the surface’s Euler characteristic. If the surfaces St are topological spheres we 
have

d
dt

EG =
A1/2

t

(16π)3/2

∫

St

(
2
|∇H|2

H2 +
1
2
(λ1 − λ2)

2 + R̄
)

ds (17)

from where we see that if the 3-manifold has nonnegative scalar curvature, then the Geroch 
energy is non-decreasing, that is dEG/dt � 0.

3. Main result

Following [26], we consider a complete initial data (M, ḡ, K;µ, j), where K is the extrinsic 
curvature of the 3-manifold M, and μ, j are the matter density and the mater current density 
respectively. We take this initial data to be maximal, asymptotically flat and axially symmet-
ric, and we assume it satisfies the Dominant Energy Condition (DEC), µ � | j|. Since we are 
concerned with ordinary objects, as opposed to black holes, we also require the initial data 
to have no minimal surfaces. The definition of a rotating object we will use is the following:

Definition 3.1 (Object). Open set Ω in M which is axially symmetric, compact, connected 
and such that the matter current density j has compact support in Ω.

Assume that on (M, ḡ) there exists a smooth inverse mean curvature flow of compact 
surfaces St, having spherical topology and going to round spheres at infinity. Our aim is to 
relate the region Ω with the surfaces given by the IMCF to obtain a geometrical inequality 
involving physical parameters of Ω. In order to do this, we will take into account the fact 
that the asymptotic behavior of the surfaces St implies that after some time T, St will be con-
vex. And also, the fact that maximality of the initial data, together with the DEC imply, via 
the constraint equations, that R̄ � 0, and hence the Geroch energy is non-decreasing. This 
will be crucial in what follows. It is also important to note that the assumption about the 
smoothness of the flow could be relaxed. That is, some parts of our derivation do not require 
smoothness, and can be done using the weak level set version of the flow defined by Huisken 
and Ilmanen [19]. Nevertheless, for simplicity of presentation we consider only the smooth 
case in this article.

Besides the ADM mass, mADM, the physical and geometrical quantities we are interested 
in are the Komar angular momentum J(S) and the areal and circumferential radii of a surface 
S in M:

J(S) =
1

8π

∫

S
Kijη

iν jds, (18)

P Anglada et alClass. Quantum Grav. 34 (2017) 125011
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RA(S) :=

√
A
4π

, RC(S) :=
C

2π
 (19)

where ηi is the Killing vector field associated to the axial symmetry, A is the area of S and C 
is the length of the greatest axisymmetric circle of S.

We find the following result.

Theorem 3.2. Let (M, ḡ, K;µ, j) be a maximal, asymptotically flat, axially symmetric ini-
tial data, that contains an object Ω; the data satisfies the dominant energy condition and has 
no minimal surfaces. Assume there exists a smooth IMCF of surfaces St on M starting from a 
point on the symmetry axis inside Ω and such that St is convex for t � T ∈ R and ST encloses 
the object. Then

mADM � mT +
1
5

J2

RARC
2 (20)

where J, RA and RC  are the angular momentum, areal radius and circumferential radius of 
ST respectively, and

mT :=
1

16π

∫ RA

0
dξ

∫

Sξ
R̄ds (21)

and ξ stands for the areal radius coordinate.

Proof. The scheme of the proof is to start with the time derivative of the Geroch energy 
(17), bound away the |∇H|2 and (λ1 − λ2)

2 terms and use the constraint equations to write R̄ 
in terms of the angular momentum. Then integrate in the flow parameter t to infinity.

With this in mind, we have the bound (for simplicity we omit the area element ds when 
possible)

d
dt

EG �
A1/2

t

(16π)3/2

∫

St

[
16πµ+ KijKij] (22)

where we have used the constraint R̄ = 16πµ+ KijKij − (trK)2 and maximality (i.e. trK = 0). 
In order to include the angular momentum into the inequality, we use the Cauchy–Schwarz 
inequality in the definition of Jt := J(St)

J2
t =

(
1

8π

∣∣∣∣
∫

St

Kijη
iν j

∣∣∣∣
)2

�
1

(8π)2

(∫

St

| Kijη
iν j |

)2

�
1

(8π)2

(∫

St

| Kij |
√
η

)2

�
1

(8π)2

∫

St

| Kij |2
∫

St

η

 

(23)

where η := ηiη
i is the square norm of ηi and in the fourth step we have used the Hölder in-

equality with p  =  q  =  2. Hence, we have a bound for the angular momentum of St in terms of 
the extrinsic curvature (and hence, of the scalar curvature):

∫

St

KijKij � (8π)2 J2
t∫

St
η

. (24)

Putting this into (22) we get

P Anglada et alClass. Quantum Grav. 34 (2017) 125011
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d
dt

EG �
A1/2

t

(16π)3/2

[∫

St

16πµ+ (8π)2 J2
t∫

St
η

]
. (25)

Now, let T be the smallest time such that for t � T  the surfaces given by the flow are convex 
and such that ST encloses the object we are interested in.

Assuming there are no minimal surfaces in the space, the flow goes to infinity. We in-
tegrate equation  (22) from the initial time to T and then to infinity. We first show that the 
integral of (22) from 0 to T is just the quasi-local mass mT. We start with the scalar con-
straint equation  R̄ = 16πµ+ KijKij and change the coordinate t to the areal radius coordinate 

ξ(t) =
√

At
4π . We have T → ξ(T) =

√
AT
4π = RA and dt → dξ =

√
At

16πdt, thus:

∫ T

0

A1/2
t

(16π)3/2

∫

St

R̄dsdt =
1

16π

∫ RA

0
dξ

∫

Sξ
R̄ds = mT (26)

Then for the range [T ,∞) we use equation  (25) instead of (22) to explicitely include the 
angular momentum. Due to the compact support of j, Jt is conserved outside ST. Therefore 
Jt = JT := J , and hence, disregarding the positive term involving μ and using the relation 
between the Geroch energy and the ADM mass at infinity, we obtain

mADM � lim
t→∞

EG(St) � mT +
√
πJ2

∫ ∞

T

A1/2
t∫
St
η

dt. (27)

Next we need to bound the surface integral of η. Here it is where convexity plays a role. 

We introduce orthogonal coordinates θ,ϕ for the surface St such that ηi =
(

∂
∂ϕ

)
i. One can 

always do this for axially symmetric 2-surfaces that are diffeomorphic to S2, see for example 
[12]. Then we write the evolution equation (7) in the form

∂

∂t
η =

∂

∂t
gϕϕ =

2
H

hϕϕ. (28)

Recall that in axial symmetry the principal and mean curvatures are given by

λ1 = gθθhθθ, λ2 = gϕϕhϕϕ (29)

H = gijhij = gθθhθθ + gϕϕhϕϕ = λ1 + λ2. (30)

Therefore we have

hϕϕ =
λ2

gϕϕ
= gϕϕλ2 = ηλ2. (31)

Putting this into (28) we find

∂

∂t
η = 2η

λ2

H
. (32)

Now, we use this equation  for t � T , where the surfaces are strictly convex, and therefore 
λ1,λ2 > 0 and λ2 � H. This gives us

P Anglada et alClass. Quantum Grav. 34 (2017) 125011
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∂

∂t
η � 2η (33)

and

∂

∂t
(ηdS) =

∂η

∂t
dS + ηdS � 2ηdS + ηdS = 3ηdS. (34)

Therefore we can write ηdS � ηTe3(t−T) dST and have
∫

St

η � e3(t−T)
∫

ST

ηT � e3(t−T)AT max
ST

η, t � T . (35)

Also, using At = e(t−T)AT  we bound

mADM � mT +
√
πJ2

∫ ∞

T

A1/2
T e(t−T)/2

e3(t−T)AT maxST η
dt

� mT +
2
√
π

5
J2

A1/2
T maxST η

 

(36)

where mT, given by (26) comes from integrating (22) in the interval t ∈ (0, T).
Finally we write this expression in terms of the areal and circumferential radii (19) and 

obtain (20). □

Remarks. The inequality (20) is global in nature as it involves the ADM mass. This is different 
from the quasi-local inequalities mentioned in the Introduction. We also note that the Geroch 
energy seems to be a very appropriate quasi-local mass for our purposes. On one hand, it conv-
erges to the ADM mass. And on the other hand, it is directly related to the mean curvature of 
the surface, and therefore, its time derivative along the flow is related to the scalar curvature of 
the initial data, which we were able to bound in terms of the angular momentum. The natural 
question is whether one can write a different quasi-local quantity E, having both properties, 
that is, E → mADM and E ∼ H2 and such that it produces a better, sharper inequality.

The inequality (20) is linear in the ADM mass and quadratic in the angular momentum as a 
result of the linear dependence of dEG/dt with the scalar curvature R̄. This is to be confronted 
with the linear relation suggested by the Bekenstein conjecture for the entropy of macroscopic 
objects [5] [18]. The positivity of the entropy function implies the bound E � |J|/R where E 
is the total energy and R is the radius of the smallest sphere that encloses the object (note the 
similar dependence for the case of black holes [13]). However, the quadratic relation seen in 
(20) is in accordance with the Newtonian limit (5). Indeed, the paralelism is clear if one takes 
the hoop radius as the areal radius RA. An important question is whether this discrepancy 
between the Bekenstein conjecture and our own result for the relation between mass and angu-
lar momentum is due to the hypotheses in our theorem. We do not have a clear answer for that, 
but we note, as pointed out by Unruh and Wald [35], that the Bekenstein bound is not essential 
for the validity of the generalized laws of thermodynamics 1, and might not be optimal.

Disregarding the non-negative mT term and re-writing inequality (20) in the form

RC
2 �

1
5

J2

mADMRA
 (37)

1 We thank an anonimous referee for making this observation to us.
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we see that if we fix the total mass and the area of the object, then the greater the angular 
momentum, the greater the circumferential radius. This result agrees with our expectation and 
experience that rotation produces flattening. We see that rotation sets restrictions onto how 
prolate an ordinary object can be. Also, this inequality gives information about localization in 
space. It implies that for given total energy mADM, a rotating region can not be too small. Note 
that there is an important difference between this kind of argument and the ones used in black 
hole formation criteria, where only quasi-local quantities are taken into account. We will come 
back to this issue below.

No equations of state were assumed. Inequality (20) is a consequence of Einstein constraint 
equations and does not occur in pure Newtonian theory (recall that in the introduction we 
obtained a similar inequality (5) after assuming the Hoop condition (2)). Matter enters the 
inequality only via the mT term and the dominant energy condition needed to make the Geroch 
energy have the positivity and monotonicity properties.

When Maxwell fields are taken into account, the inequality can be extended using 
similar techniques, provided that there is no electromagnetic contribution to the angular 
momentum outside the body. For the treatment of the electromagnetic contributions we 
follow the work of Dain [11], where the case of time symmetric data with no rotation, 
J  =  0, was considered.

We write the energy density in the form

µ = µ(not EM) +
E2 + B2

8π
 (38)

where µ(not EM) stands for non-electromagnetic matter fields satisfying the dominant energy 
condition, and Ei, Bi are the electromagnetic fields. Then the integral in (22) has tree terms, 
the ones involving µ(not EM) and KijKij  are treated in exactly the same manner as before. The 
term involving the electromagnetic contribution to the energy density could be bound in terms 
of the electric charge by following [21]. We sketch the proof below.

A1/2
t

(16π)1/2

∫

St

µ =
A1/2

t

(16π)3/2

∫

St

2(E2 + B2) �
2A1/2

t

(16π)3/2

∫

St

(E jνj)
2

�
2A1/2

t

(16π)3/2

(∫
St

E jνj

)2

At
�

2
(∫

St
E jνj

)2

(16π)3/2A1/2
t

=

√
πQ2

t

2A1/2
t

.

 

(39)

In the third step we used the Hölder inequality, and in the fifth step we used the Gauss theorem 
and the definition of electric charge

Qt =
1

8π

∫

St

E jνj. (40)

Let T be the smallest value of the flow parameter such that for t � T  the surfaces given by 
the flow are convex and such that it encloses the object (we still need this convexity condi-
tion to control the rotation part of the evolution). Then since St lays outside the object, the 
electric charge is Qt = QT := Q, and thus for t  >  T the time derivative of the Geroch energy 
is bounded by

d
dt

EG �

√
πA1/2

t∫
St
η

J2 +

√
π

2A1/2
t

Q2. (41)

Integrating (22) from 0 to infinity, using (41) and (11), we obtain:
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mADM � mT +
1
2

Q2

RA
+

1
5

J2

RARC
2 . (42)

where again mT, given by (26), comes from integrating (22) in the interval t ∈ (0, T). Note that 
the electric part of this inequality does not depend on the circumferential radius, only the size 
(measured by the surface area) is relevant in that case.

The final remark we want to make is about where we start the IMCF. In our theorem and 
treatment so far, we started out from a point on the symmetry axis in M and cover all M 
with the surfaces St. In particular, we look at one of these surfaces, that we call ST, to obtain 
information about the object’s physical and geometrical properties. However that might not 
be the most convenient way of studying the object, as one might lose control over where ST 
is or how far away from the object it is. We know from Huisken and Ilmanen’s work [19] 
that for sufficienty large times, the surfaces are convex (as they approach round spheres at 
infinity), but clearly, one of such surfaces near infinity would not give a good description 
of the object’s size. Unfortunately, one does not a priori know where ST will be located. An 
alternative approach is to start the flow from a convex surface S0, chosen in such a way that its 
evolution preserves convexity and, more importantly, such that it coincides with the object’s 
surface or it is the smallest surface enclosing it. By following this procedure we arrive at the 
following inequality

mADM � EG(S0) +
1
5

J2

RARC
2 (43)

where now EG(S0) is the Geroch energy of the initial surface S0 and the quantities J, RA, RC  
refer to S0 as well. This approach is particularly useful for numerical calculations and it is the 
one we use in the next section.

There are important open questions we want to address next. The first one being the con-
vexity condition, we present some ideas and numerical results in the next section. Secondly 
is the appropriate notion of size one should use. In axial symmetry, the areal and circumfer-
ential radii are well defined and are related to relevant properties of the region under study, 
that is, localization and rotation. However, extending these ideas outside axial symmetry does 
not seem straightforward and a more general measure of size should be introduced. Another 
issue has to do with the boundary between ordinary objects (like the ones we study here) and 
black holes. More precisely, could we use this inequality to formulate a black hole formation 
criteria similar to the one proved by Khuri [23]? We see that there are differences between our 
work and that of Khuri, because we include a global quantity, the ADM mass. Therefore, our 
inequality does not lend itself directly to an argument of the kind ‘if the angular momentum 
is too localized, then a black hole will form’. In our main result, the localization of angular 
momentum, represented by the ratio (angular momentum)(size)−1 is compared to the total 
energy. Finally, we would like to understand better the relation between our approach to study 
inequalities for ordinary objects and the arguments involved in the derivation of the Penrose 
inequality [2].

4. Numerical tests

An important ingredient in our result is the convexity of surfaces St along the IMCF evolution. 
In this section we want to show that, in particular examples, this property of the flow holds 
even when the surfaces St are close to the object. Also, we want to evaluate the relative impor-
tance of the term involving the angular momentum in our inequalities. For these purposes 
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we want to compute the IMCF starting with an initial surface which is good to represent the 
physical and geometrical properties of the object, and therefore we study the inequality in the 
form (43) to choose an initial surface S0 that is as close as possible to ∂Ω.

We expect that within our approach, the convexity of the flow could be relaxed. This is 
suggested by the convergence properties of the last integral in (27). This point will be studied 
in detail [2].

Every numerical example in this section is computed in two stages. First, the elliptic prob-
lem for the conformal factor Ψ is solved, giving an initial data set. This initial data set is 
completely determined by a compact material object with maximum angular momentum J 
compatible with the dominant energy condition (see appendix A). Secondly, the IMCF equa-
tion is used to compute the evolution of a convex initial surface S0 that tightly encloses the 
object. The preservation of the surface’s convexity along the flow and our main inequality are 
then checked.

4.1. Computation of the conformal factor Ψ

We restrict our numerical examples to initial data sets which are maximal, asymptotically 
flat, and conformally flat. The exact set up and assumptions, and the derivation of the equa-
tions involved are described in the appendix A.

Let (ρ,ϕ, z) be cylindrical coordinates on the conformal, flat geometry, adapted to the axial 
symmetry of our problem, where we need to solve the equation for Ψ. Because of the axial 
symmetry, no function depends on ϕ. The conformal factor Ψ, and thus the initial data set 
defined on the initial slice M = R3, is the solution of the semi-linear elliptic problem (A.25), 
(A.29), deduced in the appendix A. In cylindrical coordinates, this problem is

∆Ψ = −2π a ρ

Ψ3 − |∂f |2ρ2

4Ψ7 ,

∂ρΨ(ρ = 0) = 0, lim
r→∞

Ψ(ρ, z) = 1, r =
√

ρ2 + z2,
 

(44)

where ∆ is the flat Laplacian and the function f (ρ, z) is, in turn, a solution of the linear elliptic 
problem

∂2
ρf + ∂2

z f +
3∂ρf
ρ

= −8πa,

∂ρf (ρ = 0) = 0, lim
r→∞

f (ρ, z) = 0, r =
√
ρ2 + z2.

 
(45)

The positive function a(ρ, z) appearing in the source of both equations is a free function that 
determines the matter content and the angular momentum content of the initial data. In our 
examples we choose this function to have compact support.

The angular momentum content, equation  (B.2), in any region Ω of the initial slice is  
given by

J = −
∫

Ω

aρ2dv0. (46)

Here and in what follows, dv0 denotes the volume element on the flat, conformal geometry. 
Once Ψ is computed, by solving the problem (44), (45), the rest of the physically relevant 
quantities (see appendix B) can be computed. The area of an axisymmetric surface ∂Ω is 
given by equation (B.4), from which areal radius RA is obtained. The circumferential radius 
RC = C/2π, is computed by finding the greatest axisymmetric circle C of ∂Ω. The average 
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baryonic mass density of the object is ρb = Mb/V  with the baryonic mass and volume of the 
object given by

Mb =

∫

Ω

ρ a
Ψ2 dv0, and V =

∫

Ω

Ψ6dv0. (47)

Here Ω is the support of the function a.
The ADM mass of the initial data can be computed as a volume integral on the whole space 

(equation (B.1)).
To solve the problem (44), (45), we proceed as follows. First, in all our examples we 

choose, for simplicity, matter content (function a) to satisfy reflection symmetry on the plane 
z  =  0, i.e. a(ρ,−z) = a(ρ, z). This property effectively reduces the problem to half size; one 
needs to solve only for z � 0. Regularity of the solution at z  =  0 becomes homogeneous 
Neuman boundary condition at z  =  0. Second, we compactify the problem by introducing new 
coordinates so that the whole quarter ρ–z plane maps to a unit square. The new coordinates are

x =
ρ

ρ+ ρH
, y =

z
z + zH

, (48)

where the parameters ρH > 0 and zH  >  0 can be freely chosen. The symmetry axis, ρ = 0 
maps to x  =  0, ρ = ∞ maps to x  =  1 and ρ = ρH maps to x  =  1/2. Analogously, the plane 
z  =  0 maps to y  =  0, z = ∞ maps to y  =  1, and z  =  zH maps to y  =  1/2. Summarizing, the 
compact elliptic problem we need to solve, in the square 0 � x, y � 1, is

(1 − x)4

ρ2
H

fxx +
(1 − x)3(3 − 2x)

xρ2
H

fx +
(1 − y)4

z2
H

fyy − 2
(1 − y)3

z2
H

fy = −8πa,

 

(49)

with boundary conditions

fx(0, y) = fy(x, 0) = 0, f (1, y) = f (x, 1) = 0, (50)

and

(1 − x)4

ρ2
H

Ψxx +
(1 − x)3(1 − 2x)

xρ2
H

Ψx +
(1 − y)4

z2
H

Ψyy − 2
(1 − y)3

z2
H

Ψy

= −2πρH
x a

(1 − x)Ψ3 − ρ2
H

4
x2|∂f |

(1 − x)2Ψ7 ,

 

(51)

with boundary conditions

Ψx(0, y) = Ψy(x, 0) = 0, Ψ(1, y) = Ψ(x, 1) = 1. (52)

To compute the solution to these problems we use finite differences. We discretize x and y in 
uniform grids

xi = hi, yj = hj, i, j = −2,−1, 0, 1, 2, . . . , N − 1, N, (53)

where the mesh size is h  =  1/N, and we choose N  =  2k, being k a positive integer. The index 
values from 0 to N cover the unit square including the boundaries, while the ghost values  −2, 
−  1 are used to impose the homogeneous Neuman boundary conditions.

All functions of the problem become grid-functions. To discretize the equations we use 
standard difference operators which are fourth order accurate all over the domain, centered in 
the interior of the domain, and semilateral and lateral close to and on the outer border of the 
domain.
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Let us denote vi,j = v(xi, yj) the solution of any of the equations (49) or (51). The values 
vN,j, j = 0, 1, . . .N and vi,N , i = 0, i, . . . , N are fixed by the Dirichlet boundary condition at 
infinity. The homogeneous Neuman boundary conditions at x  =  0 and y  =  0 are imposed by 
setting the ghost points i  =  −2, −1 and j  =  −2, −1 in the way

v−2,j = v2,j, v−1,j = v1,j, j = 0, 1, . . . , N,
vi,−2 = vi,2, vi,−1 = vi,1, i = 0, 1, . . . , N.
 (54)

The algebraic linear system of equations obtained for fi,j could be solved by a direct method 
(like LU-decomposition plus Gaussian elimination). The algebraic, non-linear system of equa-
tions obtained for Ψi,j, however, has to be solved by an iterative method. For simplicity we 
decided to use iterative methods to solve both equations.

To accelerate convergence, we use a multigrid algorithm [6]. In all cases we use under 
relaxed Jacobi smothers on the finest and intermediate grids, and over relaxed Jacobi on the 
coarsest grid. The number of grid levels one can use in these problems, having in mind the 
span of the difference operators, is upper bounded by k  −  3. The grid functions are passed 
from a fine grid to the next coarser grid by simple restriction. The prolongation of a grid func-
tion from a coarse grid to a finer grid is carried out by cubic Hermite interpolation.

The initial iteration has to be chosen carefully in these iterative schemes, so that the overall 
method converges. In some cases it is enough to choose fi,j  =  0 and Ψi,j = 1, but sometimes, 
on fine grids, it is necessary to start with an interpolated coarser-grid solution.

In our code the multigrid algorithm is applied as a sequence of V-cycles [6]. After a number 
of V-cycles, the maximum norms of the residual and the increment of the solution δvi,j on the 
finest grid are checked. If the relative values of these two norms, with respect of the norm of 
the solution itself, are smaller than ε = 10−10, the iterations are stopped. In the equation for 
Ψi,j, the non linearity is treated with the full approximation storage (FAS) algorithm [6]. For 
every example presented in this paper, we compute the conformal factor Ψ on three grids with 
N  =  128, N  =  256 and N  =  512, and use the three solutions to check convergence of the dif-
ference scheme.

All the integrals used to compute physically relevant quantities are approximated by the 
Simpson’s rule.

4.2. Numerical setup for the IMCF equation

We want to solve numerically the ordinary problem given by (C.7)–(C.8), starting with an ini-
tial surface at t  =  0 that is convex and that just encloses the object under study. This problem, 
though differentially ordinary, is tricky to be solved numerically. This is so because its exact 
solutions diverge exponentially with time. The problem is therefore unstable; one has to be 
careful when choosing a numerical scheme to approximate its solution, since any perturbation 
(deviation from the exact solution) will also grow exponentially with time. What we need is 
a conditionally stable scheme, which basically means that the numerically computed approx-
imation does not diverge faster than the exact solution [25].

We discretize the variable θ on a uniform grid and approximate the derivatives with respect 
to θ by standard, centered, fourth order accurate finite difference operators. The regularity of 
v(θ, t) at θ = 0 and the regularity plus reflection symmetry in the z  =  0 plane imply Neuman 
boundary conditions at θ = 0 and θ = π/2. These boundary conditions are well handled 
(imposed) by using two ghost points on each side of the interval [0,π/2].

To integrate in time, one can choose a fourth order accurate method too. However, this is 
not worth the price. The reason is that the eigenvalues of the linearized equation are positive 
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and large and then, to have a conditionally stable scheme, the time step has to be very small 
as compared with the mesh size and a low order method can do the job. The explicit Euler 
method turned out to be appropriate for our problem because the overall method (fourth order 
in space and first order in time) becomes conditionally stable for the discretizations we use 
when the time step is comparable to the fourth power of the mesh size. If the time step is not 
small enough, regardless of the time integration method, the method becomes unstable and the 
solution breaks with peaks that diverge in a few time steps. In our calculations we use a mesh 
size δθ = π/200 and time steps as small 2 × 10−6.

4.3. Object models and results

In our setup an initial data is completely defined by the function a(ρ, z). The finite difference 
approximations described in the previous section have truncation errors that involve, in the 
leading term, fifth and sixth order derivatives of the solution. Therefore, to not ruin the acc-
uracy of the computed approximation and the convergence rate of the iterative methods, the 
function a defining the object has to be at least C4-smooth on the computational domain. So, 
we study objects given by compactly supported functions a(ρ, z) which are defined in terms of 
the cutoff polynomial q(s) given by

q(s) = 1 − s4
(

1 − 5(s − 1) + 15(s − 1)2 − 35(s − 1)3 + 70(s − 1)4
)

. (55)

All the magnitudes given in this section are in geometrical units in the cgs system.

4.3.1. Spheroidal objects. For these examples we choose the function a to have support on an 
axially symmetric ellipsoid, which can be either oblate or prolate (being a sphere a particular 
case),

a(ρ, z) =
{

a0 q(s), 0 � s < 1,
0, 1 � s, (56)

where

s =

√( ρ

R

)2
+
( z

Z

)2

and R, Z are positive constant. The functions a(ρ, z) so defined are C4-smooth on the whole 
domain. The support region Ω is given by s  <  1, while the surface of the object, ∂Ω, is given 
by s  =  1.

In table 1 we present various spheroidal objects of different densities and sizes. The param-
eters a0, R and Z are displayed together with the resulting angular momentum J. The object 
called NS is chosen to be slightly oblate, and has parameters so that the baryonic mass den-
sity and object size are comparable to those of a neutron star (see table 2 and, for example, 
[28]). The following three objects, P, O and VO, have the same value of a0 and similar size 
parameters, which result in comparable baryonic densities. P is a prolate spheroid; O an oblate 
spheroid and VO a very oblate spheroid. The object called S is a larger and lighter, slightly 
prolate, spheroid with parameters chosen so that the resulting size and baryonic mass density 
are comparable to those of the sun.

In table 2 we show, for each object in table 1, the average baryonic density of the object, 
the physical size of the object represented by the radii RA and RC  of the object’s surface and 
the ADM mass mADM of the initial data. The last column in the table indicates whether the 
object’s surface turns out to be convex or not.
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In table 3 we show, for each object in table 1, the parameters for the smallest spheroidal 
surface that encloses the object and is convex. In the cases where the object’s surface ∂Ω is 
convex, we take it as the initial surface S0. In cases where the object’s surface is not convex, 
we take a surface, also defined as an ellipsoid, with larger R or Z so that the surface is convex. 
We computed the evolution of these surfaces and found that in all cases the convexity is pre-
served by the IMCF evolution. As examples of these evolutions we show in figure 1 plots of 
the surfaces for various times for the NS and VO cases.

Figure 2 shows the plot of the principal curvatures (see equations  (C.9) and (C.10) in 
appendix C) of the object’s surface for the cases NS and VO. In the first case the positivity 
of both curvatures show the surface of the body is convex. In the second case the principal 
curvatures become negative, showing the body surface is not convex.

It is important to check, in all the examples, that the surfaces St not only remains convex 
along the evolution, but also that they approach spheres as time increases. This is clearly 
seen in plots of the principal curvatures λθ, λϕ. In the figures 3 and 4 we plot the quotients 
λθ(θ)/(1/r(θ)) and λϕ(θ)/(1/r(θ)), as functions of θ, for various times, for the two more 
extreme cases in table 2: P and VO objects. Both figures show how the principal curvatures of 
St approach the principal curvatures of a sphere as t grows.

4.3.2. Concave object. As a final example we compute the initial data corresponding 
to an object which is concave even as seen on the conformal flat geometry. We study an 
object whose function a(ρ, z) is given by equation (56) but in this case the parameter s is 
defined as

s =

√
ρ2 + z2

B
(

D + ρ2

ρ2+z2

) . (57)

As initial surface S0 to evolve the IMCF we use a spheroidal surface as before. The object 
parameters we use in this example are: B = 5.0 × 105, D  =  0.3, a0 = 6.0 × 10−18. Thus 
J = 4.1743 × 1010, and we obtain mADM = 1.0982 × 105. The parameters we use for the con-
vex spheroidal surface S0 enclosing the body are: R = 6.60 × 105, Z = 3.8 × 105 and we 
obtain RA = 6.7350 × 105 and RC = 7.7969 × 105. We verify that the IMCF evolution of  

Table 1. Parameters defining various spheroidal objects.

Obj. a0 R Z J

NS 6.00 × 10−18 7.50 × 105 7.30 × 105 1.4614 × 1011

P 6.00 × 10−18 0.80 × 106 1.00 × 106 2.5916 × 1011

O 6.00 × 10−18 1.00 × 106 0.80 × 106 5.0617 × 1011

VO 6.00 × 10−18 1.00 × 106 0.30 × 106 1.8981 × 1011

S 2.90 × 10−38 6.70 × 1010 6.5 × 1010 4.0056 × 1015

Table 2. Physical quantities for the objects defined in Table 1.

Obj. ρb RC RA mADM convex?

NS 4.3247 × 10−14 1.0461 × 106 1.0227 × 106 2.7103 × 105 Yes
P 3.1137 × 10−14 1.2309 × 106 1.2859 × 106 3.9647 × 105 Yes
O 2.3503 × 10−14 1.6462 × 106 1.5379 × 106 5.6641 × 105 Yes
VO 5.7604 × 10−14 1.3199 × 106 1.0826 × 106 2.8427 × 105 No
S 1.1212 × 10−28 6.7000 × 1010 6.5796 × 1010 1.3695 × 105 Yes
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Table 3. Parameters for the initial surface S0 that preserves convexity when evolved 
with the IMCF. The geometrical size parameters RC  and RA that measure the size of 
the object are given together with the quotient on the right hand side in the inequality 
(20). This last quantity should be compared with the mADM given in the table 2.

Obj. R Z RC RA J2/(5RARC
2)

NS 7.50 × 105 7.30 × 105 1.0461 × 106 1.0227 × 106 3.8168 × 103

P 0.80 × 106 1.00 × 106 1.2309 × 106 1.2859 × 106 6.8942 × 103

O 1.00 × 106 0.80 × 106 1.6462 × 106 1.5379 × 106 1.2295 × 104

VO 1.00 × 106 0.30 × 106 1.3199 × 106 1.1497 × 106 3.5984 × 103

S 6.70 × 1010 6.50 × 1010 6.7000 × 1010 6.5796 × 1010 1.0865 × 10−2

Figure 1. IMCF evolution of the surfaces St corresponding to the objects NS (left plot) 
and VO (right plot) of table 3. The plots show, from the origin outwards, the surface of 
the object (thick curve), and the surfaces at times t  =  0, 1.0, 2.0, 3.0, 4.0, 5.0 in a piece 
of the ρ–z plane on the flat geometry. In the NS case, the initial surface is coincident 
with the object’s initial surface. In the VO case the initial surface is larger than the 
object’s surface, so chosen so that it is convex.

S0 preserves convexity and approaches spheres as in the previous cases. A plot of the object 
surface, initial surface and short time evolution is shown in figure 5.

4.4. Discussion of numerical results

Our purpose with the numerical examples computed in this section is twofold: first, to check 
the convexity condition of the surfaces St along the IMCF evolution, and second to study the 
relevance of the J2/(5RARC

2) term on the right hand side in the inequality (43) in various 
cases. We want to gain insight about when the angular momentum term on the right hand side 
of the inequality becomes an important contribution as compared with the ADM mass.

The convexity condition of the surfaces along the IMCF evolution is clearly verified in all 
examples we computed. When the object’s surface is convex, one can evolve the flow starting 
with S0 = ∂Ω (the surface of the object) and the convexity is preserved by the evolution. When 
the object’s surface is not convex it is enough to choose, it seems, a spheroidal initial surface 
S0 that just encloses the object and the evolution preserves the convexity again.

The shape of the objects we consider are simple and our numerical examples far from 
exhaustive, however we do not find any sign that the IMCF evolution will violate the convexity, 
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at least under the smoothness conditions we impose in our numerical examples. This point 
certainly deserves a deeper study that we intend to carry out in future works.

To gain insight on the relative importance of the term proportional to J2 on the right hand 
side of (43) we define the ratio

Γ :=

(
J2

5RARC
2

)

mADM
. (58)

Figure 2. Principal curvatures of the object’s surface for the cases NS (left plot) and 
VO (right plot) of table 1. λϕ is represented in dashed lines and λθ in solid lines.

Figure 3. Plots of rλϕ (dashed lines) and rλθ (solid lines) as functions of θ along the 
IMCF evolution of the surface of table 3 for the object P.
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Figure 4. Plots of rλϕ (dashed lines) and rλθ (solid lines) as functions of θ along the 
IMCF evolution of the surface of table 3 for the object VO.

Figure 5. Concave object’s surface and short time IMCF evolution of the convex 
spheroidal surface S0 enclosing it.
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The values of Γ for the high density objects in table 1 are

ΓNS � 1.4 × 10−2, ΓP � 1.7 × 10−2, ΓO � 2.2 × 10−2, ΓVO � 1.3 × 10−2,

while for the lower density object S we have

ΓS � 7.9 × 10−8.

For the high density concave object of Section 4.3.2 we get Γ � 7.6 × 10−3.
Though we have not computed many examples, our results suggest that the contribution of 

the J2-term is higher for higher density objects. By comparing the values of Γ for the objects 
P and O, with interchanged values for the parameters R and Z, we see that, as expected, the 
value of Γ is higher for the oblate spheroid than for the prolate spheroid.
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Appendix A. Conformal method

In this section we derive the constraint equations in the conformally flat case, which is one of 
the set of equations (together with the flow equations, given in appendix C) we use we use in 
our numerical computations of section 4.

The conformal method is a well known technique that can be used to simplify the constraints

D̄βKαβ − D̄α(trK) = −8πjα, (A.1)

R̄ − KαβKαβ + (trK)2 = 16πµ, (A.2)

where D̄ and R̄ are the Levi-Civita connection and the curvature scalar associated with ḡ.
We restrict to the maximal case (tr K  =  0) and take g̃αβ, and K̃αβ to be symmetric tensor 

fields such that

ḡαβ = Ψ4g̃αβ Kαβ = Ψ−2K̃αβ (A.3)

where Ψ is the positive conformal factor.
In terms of these new fields the constraint equations read

D̃βK̃αβ = −8πj̃α, (A.4)

Lg̃Ψ = −2πµ̃
Ψ3 − K̃αβK̃αβ

8Ψ7 , (A.5)

where D̃ is the covariant derivative with respect to g̃, and we have defined

Lg̃Ψ = ∆g̃Ψ− 1
8
ΨR̃, (A.6)
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µ̃ = Ψ8µ, j̃α = Ψ10jα (A.7)

where R̃ is the scalar curvature associated to g̃.
The momentum constraint (A.4) can be solved in the following form. Let Aα be a 1-form 

to be specified and set

K̃αβ = (LA)αβ + σαβ , (A.8)

where

(LA)αβ = D̃αAβ + D̃βAα − g̃αβ
2
3

D̃γAγ , (A.9)

and σαβ is an arbitrary trace-free tensor field. Then the momentum constraint has the form

Lg̃Aα = −8πj̃α − D̃βσαβ , (A.10)

where Lg̃ is the elliptic operator

Lg̃Aα = D̃β(LA)αβ . (A.11)

It is important to note that the set of elliptic equations (A.11) and (A.5) can be solved on a 
bounded domain prescribing Dirichlet conditions for Ψ and the analog to Neumann condition 
for Aα, namely

να(LA)αβ = φβ (A.12)

where να is the outer unit normal to the boundary and φβ is a function on the boundary.

A.1. Conformally flat initial data

Consider a conformally flat initial data, that is

g̃αβ = δαβ (A.13)

where δαβ  is the flat 3-metric. In this case the constraint equations simplify to

∂βK̃αβ = −8πj̃α, (A.14)

∆Ψ = −2πµ̃
Ψ3 − K̃αβK̃αβ

8Ψ7 . (A.15)

where ∂α are partial derivatives, ∆ is the flat Laplace operator in 3 dimensions and indices are 
moved with respect to δ.

The solution of equation  (A.14) is constructed as in the previous section. We choose 
σαβ = 0, hence

K̃αβ = ∂αAβ + ∂βAα − 2
3
δαβ∂γAγ , (A.16)

and equation (A.14) translates into

∆Aα +
1
3
∂α∂βAβ = −8πj̃α. (A.17)

Imposing the following condition on the sources

∂α j̃α = 0. (A.18)
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we obtain

∂αAα = 0, (A.19)

and hence the final set of equation equivalent to (A.14) are

∆Aα = −8πj̃α. (A.20)

The solution of this equation is given by the Green function

Aα(x) = 2
∫

j̃α(x′)
|x − x′|

d3x′. (A.21)

where | | is the flat norm.
We prescribe µ̃ to be exactly the border case in the dominant energy condition, namely

µ̃ =

√
j̃α j̃α. (A.22)

and therefore the only free data is j̃α. We choose this vector to be

j̃α = aη̃α, (A.23)

where a is a smooth function of the coordinates and η̃α is the flat Killing vector. In spherical 

coordinates (r, θ,ϕ), the Killing vector is η̃α = ∂
∂ϕ

 and a = a(r, θ). Then using (A.23) we find 
that the solution to (A.20) is given by

Aα = f (r, θ)η̃α, (A.24)

where f satisfies

∂2
r f + 4

∂rf
r

+
∂2
θf
r2 +

3 cos θ∂θf
r2 sin θ

= −8πa. (A.25)

with the boundary condition

lim
r→∞

f = 0. (A.26)

It is straightforward to calculate K̃αβ from the expression (A.24), using the Killing equa-
tion and the fact that

η̃α∂αf = 0, (A.27)

and we obtain the remarkable simple formulae

K̃αβ = 2η̃(α∂β)f K̃αβK̃αβ = 2|∂f |2r2 sin2 θ. (A.28)

Summarizing, the systems we consider for the numerical computations are prescribed by 
giving an arbitrary, axially symmetric, function a of compact support. This function describes 
the location of the matter sources. Given a, the equations (A.25) with the boundary condition 
(A.26) and

∆Ψ = −2πar sin θ
Ψ3 − |∂f |2r2 sin2 θ

4Ψ7 , lim
r→∞

Ψ = 1. (A.29)

Using the sub and super solution method, it can be proven that given a smooth a there exists 
a unique solution for the non-linear elliptic equation (A.29).
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Appendix B. Surfaces on conformally flat data

All relevant physical parameters of the initial data and of surfaces on M can be computed in 
terms of a and Ψ. Let Ω be any domain that contains the matter fields, and let dv0, ds0 be the 
flat volume and surface element respectively.

The ADM mass is given by

mADM =

∫

R3

(
|∂Ψ|2

2πΨ2 +
ar sin θ
Ψ4 +

2|∂f |2r2 sin2 θ

16πΨ8

)
dv0 (B.1)

The angular momentum is

J = −
∫

Ω

ar2 sin2 θdv0. (B.2)

The baryonic mass (as a measure of the quasi-local mass) is given by:

Mb =

∫

Ω

µdv =

∫

Ω

ar sin θ
Ψ2 dv0. (B.3)

Concerning the measures of the size of Ω we calculate the surface area A(∂Ω)

A(∂Ω) =
∫

∂Ω

Ψ4ds0 (B.4)

and the length of the greatest axisymmetric circle C(∂Ω)

C = 2πmax
∂Ω

(
√
η) = 2πmax

∂Ω

(
r sin θΨ2) . (B.5)

Appendix C. The IMCF on conformally flat initial data

In this section we derive the evolution equation for the flow surfaces, used in our numerical 
examples of section 4.

We study the IMCF in M = R3 with metric ḡαβ = ψ4δαβ. It is convenient to introduce 
a level-set formulation of (6), where the evolving surfaces are given as level-sets of a scalar 
function u via

St = {xα : u(xα, t) = 0}

and (6) is replaced by the degenerate elliptic equation:

D̄α

(
ḡαβ∂βu
|∂u|ḡ

)
= |∂u|ḡ (C.1)

Note that in our model we can write the mean curvature H of St in terms of Ψ:

H = D̄α

(
ḡαβ∂βu
|∂u|ḡ

)
=

1
Ψ2|∂u|

(
∆u + 4

∂Ψ · ∂u
Ψ

− ∂|∂u| · ∂u
|∂u|

)
 (C.2)

where all the derivatives and dot products are computed with respect to the flat metric.
At this point it is convenient to define an operator P  acting on u:

Pu = ∆u + 4
∂Ψ · ∂u

Ψ
− ∂|∂u| · ∂u

|∂u| (C.3)
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thus, equation (C.1) can be written as

|∂u| = Pu
Ψ2H

. (C.4)

Now, instead of solving this elliptic equation, we will solve an evolution equation for u 
obtained by taking a total time derivative of u on the surface St:

0 =
du
dt

=
∂u
∂xα

∂xα

∂t
+

∂u
∂t

= ∂αu
να

H
+

∂u
∂t

= ∂αu
∂αu

Ψ2|∂u|
1
H

+
∂u
∂t

=
|∂u|
Ψ2H

+
∂u
∂t

=
|∂u|2

Pu
+

∂u
∂t

where in the second step we have used the IMCF equation, and in the last one we use that H 
is given by (C.4), thus we have:

∂u
∂t

= −|∂u|2

Pu
. (C.5)

We take the surface St to be given by

u = u(r, θ, t) = r − v(θ, t) = 0 (C.6)

and putting this into (C.5), we arrive at the following evolution equation for v

∂v
∂t

=
1 +

(
∂θv

v

)2

P̃v
 (C.7)

where we define the operator P̃  acting on v as

P̃v =

(
2
v
− ∂θ(sin θ∂θv)

v2 sin θ
+

4
Ψ

(
∂rΨ|r=v −

∂θv∂θΨ
v2

)
+

(
∂θv
v2

)2 (
v + ∂2

θv
)

1 +
(
∂θv

v

)2

)
.

 

(C.8)

Finally, the principal curvatures of St are

λϕ =
2r2∂rΨsin θ +Ψr sin θ − 2∂θΨsin θu′ −Ψcos θu′

Ψ3r sin θ
√

r2 + u′2 (C.9)

λθ =
r
[
(r2 + u′2)(r2∂rΨ+ r − u′′Ψ) + u′′u′2Ψ

]

Ψ3(r2 + u′2)5/2 (C.10)

and St is convex if λϕ,λθ � 0. Note that in the limit of Ψ → 1 and u = const. we obtain the 
principal curvatures of the round sphere.

λsphere
θ = λsphere

ϕ =
1
r

 (C.11)
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