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Abstract. The image inpainting problem consists of restoring an image from

a (possibly noisy) observation, in which data from one or more regions are

missing. Several inpainting models to perform this task have been developed,
and although some of them perform reasonably well in certain types of images,

quite a few issues are yet to be sorted out. For instance, if the image is expected

to be smooth, the inpainting can be made with very good results by means of
a Bayesian approach and a maximum a posteriori computation [2]. For non-

smooth images, however, such an approach is far from being satisfactory. Even
though the introduction of anisotropy by prior smooth gradient inpainting to

the latter methodology is known to produce satisfactory results for slim missing

regions [2], the quality of the restoration decays as the occluded regions widen.
On the other hand, Total Variation (TV) inpainting models based on high order

PDE diffusion equations can be used whenever edge restoration is a priority.
More recently, the introduction of spatially variant conductivity coefficients
on these models, such as in the case of Curvature-Driven Diffusion (CDD)

[4], has allowed inpainted images with well defined edges and enhanced object

connectivity. The CDD approach, nonetheless, is not quite suitable wherever
the image is smooth, as it tends to produce piecewise constant restorations.

In this work we present a two-step inpainting process. The first step consists
of using a CDD inpainting to build a pilot image from which to infer a-priori
structural information on the image gradient. The second step is inpainting the

image by minimizing a mixed spatially variant anisotropic functional, whose
weight and penalization directions are based upon the aforementioned pilot

image. Results are presented along with comparison measures in order to

illustrate the performance of this inpainting method.
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1. Introduction. Let us consider an image from which data from one or more
regions are missing. The inpainting problem can be described as that of using the
available information from the occluded image for filling up the missing areas in a
way that looks natural and intuitive to the human eye. Although it is clear then that
defining a “good” inpainting method involves a high degree of subjectivity, some
properties are to be expected. For instance, if an occluded region runs over a smooth
area, we would expect the inpainting to be smooth, while if it goes through an edge
we would expect the two parts set apart by the occlusion to result “appropriately”
connected. These desired properties are often hard to include in a mathematical
model, even more so, simultaneously. In this article we shall combine the Curvature
Driven Diffusion (CDD) model proposed in [4] with the ideas of including structural
prior information [2] into regularization methods to develop a two-step inpainting
process which adequately complies with the aforementioned criteria.

We shall begin by fixing some notation. Our (grayscale) image will be associated
to a function u : Ω ⊂ R2 → [0, 1], where u(x, y) represents the light intensity of the
point (x, y), corresponding u = 1 to white, and u = 0 to black. With D we shall
denote the occlusion and with v

.
= u|Ω\D the known part of u.

Before we proceed to build our two-step method, it is timely to describe three
traditional inpainting methods that are closely bonded to it.

1.1. Tikhonov-Phillips inpainting. If the image to be inpainted is expected to
be smooth, then there are traditional methods that turn out to be quite satisfactory.
With the Tikhonov-Phillips regularization method of order 1 (T1), the inpainted
image is defined as

(1) û
.
= arg min

u∈L2(Ω)

{‖T u− v‖2L2(Ω\D) + λ‖∇u‖2L2(Ω)},

where T : L2(Ω) → L2(Ω \ D) is the D-occlusion operator, defined by T u =
u |Ω\D, and λ > 0 is a regularization parameter. It is well known, however, that
if the original image has edges or borders set apart by an occlusion, then such an
inpainting method fails to extend them inside the occluded region (see Figure 1(b)).
Edge preservation, however, can be fairly enhanced by appropriately modifying
the penalizing term in (1). One way of doing so is to introduce an anisotropy-
inducing matrix field A [2], which attenuates penalization on the maximum gradient
direction. In this case, the inpainted image is defined as

(2) û
.
= arg min

u∈L2(Ω)

{‖T u− v‖2L2(Ω\D) + λ‖A∇u‖2L2(Ω)}.

The matrix field A makes the penalizer take into account not only the norm of
the gradient, but also its direction. The properties of A and a way to build it will
be presented later, but it is timely to point out here that its construction requires a-
priori information of the expected image. Figure 1(c) depicts an order 1 Tikhonov-
Phillips anisotropic inpainting for which A was build upon an a-priori order 2
Tikhonov-Phillips inpainting of the gradient field, as suggested in [2]. Although we
can see that this method works significantly better than the isotropic one for “thin”
occluded regions, it becomes inappropriate as those regions widen (see Figure 1(c)).
We then describe an inpainting method known to possess better edge preserving
properties.
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(a) (b) (c)

Figure 1. (a) Occluded image; (b) T1 inpainting; (c) Anistoropic
T1 inpainting.

1.2. Total variation inpainting. One of the most commonly used edge preserving
methods is the so called total variation (TV) regularization [1], [10]. With this
method, the inpainted image is given by

(3) û
.
= arg min

u∈L2(Ω)

{‖T u− v‖2L2(Ω\D) + λ‖|∇u|‖L1(Ω)}.

By using the corresponding Euler-Lagrange equation, the minimizer in (3) can
be thought of as the steady-state solution of the following diffusion PDE (see [7])

(4)
∂u

∂t
= ∇ ·

[
∇u
|∇u|

]
+

2

λ
(T u− v).

(a) (b)

Figure 2. Occluded image (a); TV inpainting (b).

TV inpainting tends to produce piecewise constant solutions with sharp edges
inside the occlusion (this can be seen in Figure 2). Even though this inpainting
process seems to fairly comply with the edge preservation requirement, it presents
a peculiar property. In fact, if we look at the black vertical bar in Figure 2(a), we
notice that it is wider than the occluded region, but whenever the occluded region
is wider than the bar (Figure 3(a)), the TV solution is very different (see Figure
3(b)). Although there is no formal reason to sustain that the inpainted image in
Figure 3(b) is not a “good” solution, it is a fact that most humans will prefer the
image in Figure 2(b) over the one in Figure 3(b) as an inpainting of the image in
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Figure 3(a). This property of favoring the linking of similar objects on opposite
sides of an occlusion is referred to as object connectivity.

(a) (b)

Figure 3. (a) Occluded image; (b) TV inpainting.

Once again, this puts into evidence that any inpainting process can entail a high level
of subjectivity. That being said, a “good” inpainting method could be conceived as
one that would most frequently emulate what most humans would do. The rest of
the article is strongly aligned with this belief.

1.3. Curvature driven diffusion inpainting. An isophote of an image repre-
sented by u can be roughly thought of as any level line of u that separates regions
of different light intensities. It is highly desired for an inpainting method to be able
to connect isophotes inside the occluded areas, since this will result in that the edges
“broken” by the occlusion will be reconnected. In fact, in Figure 3(b) we observe
that the original isophotes (the edges of the black bar) do not result connected as
we would hope. Note also that the isophotes of the inpainted image have corners,
meaning that their curvature κ at those points is ±∞, in contrast with the zero
curvature in the isophotes of the “expected” inpainted image (Figure 2(b)). This
observation led Chan and Shen [4] to include the curvature into the diffusion model

(4). By letting D̂ = 1
|∇u| , equation (4) restricted to the occlusion reads

∂u

∂t
= ∇ ·

[
D̂∇u

]
.

The ideas in [4] consist essentially in appropriately modifying the diffusion coefficient

D̂ in order to take curvature into account. This can be done by redefining D̂ = g(|κ|)
|∇u| ,

where g : R+
0 → R+

0 is an increasing function such that g(0) = 0 and g(∞) =∞. In
this way, diffusion is strong where curvature is large, while it is weak where curvature
is small. This modification leads to the so called Curvature-Driven Diffusion (CDD)
equation

(5)
∂u

∂t
= ∇ ·

[
g(|κ|)
|∇u|

∇u
]
.

Now, since the curvature of the level lines is ±∞ at the corners of the TV
inpainted image in Figure 3(b), clearly such an image cannot be the steady-state of
equation (5). It turns out that in this case the method strongly favors connectivity
on the steady state, as it can be seen in Figure 4. Nonetheless, it occurs that this
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method tends to produce piecewise constant restorations, and therefore it results
unsuitable for inpainting over smooth regions (see Figure 4).

(a) (b)

Figure 4. (a) Occluded image; (b) CDD inpainting.

Before we go any further, we should mention that the presence of noise is common
in this kind of problems. The CDD inpainting model (5) can take noise into account,
for instance, by using TV regularization outside the occluded region. Thus, the
resulting diffusion PDE takes the form

(6)
∂u

∂t
= ∇ ·

[
g(|κ|)χD + χΩ\D

|∇u|
∇u
]

+
2

λ
(u− v)χΩ\D.

Note that (6) reduces to equation (5) inside the occlusion, and to (4) outside of it.
The main objective of this article is to develop an inpainting model that complies

with the three aforementioned properties. Namely, it must preserve edges while
enhancing object connectivity, and allowing for smooth inpainting wherever it is
deemed appropriate.

2. Inpainting via combined CDD and T1-TV methods. Regularization
methods can be combined by using spatially-varying weighted averages of two or
more penalizers [8] to encompass the characteristic properties of each one. We shall
consider the case of mixed T1 and TV regularization, taking advantage of the fact
that the first one tends to produce smooth restorations, while the latter is bet-
ter suited for edge preservation. The inpainted image will then be defined as the
minimizer of

(7) J (u)
.
= ‖T u− v‖2L2(Ω\D) + λT1‖|

√
1− θ A∇u|‖2L2(Ω) + λTV ‖|θA∇u|‖L1(Ω),

where λT1 > 0 and λTV > 0 are regularization parameters, A = A(x, y) is an
anisotropy matrix field and θ = θ(x, y) ∈ [0, 1] is a spatially-varying function weight-
ing both penalizers at each point. Note that θ = 0 corresponds to pure anisotropic
T1 regularization, while θ = 1 leads to pure anisotropic TV regularization.

The matrix field A : Ω → R2×2 is used for introducing anisotropy to the regu-
larization model. One way of constructing A can be found in [2], where it is built
upon the gradient field of an a-priori estimation up(x, y) of u(x, y). The first step
for doing this is to define a continuous and decreasing function h : R+

0 → (0, 1], sat-
isfying h(0) = 1 and limt→∞ h(t) = 0, that will serve to determine the eigenvalues
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of A(x, y), constructed as follows:

(8) A(x, y) = I − (1− h(|∇up(x, y)|))
[
∇up(x, y)

|∇up(x, y)|

] [
∇up(x, y)

|∇up(x, y)|

]T

.

As a consequence, A has the following properties:

• A(x, y) is a symmetric positive definite matrix ∀(x, y) ∈ Ω.
• If ∇up(x, y) = 0, A(x, y) = I (the identity matrix).
• If ∇up(x, y) 6= 0, A(x, y) has eigenvalues σj(x, y) and eigenvectors vj(x, y),
j = 1, 2, such that

v1(x, y) ‖ ∇up(x, y), σ1(x, y) = h(|∇up(x, y)|),
v2(x, y) ⊥ ∇up(x, y), σ2(x, y) = 1.

With the required properties on h, the eigenvalues σ1(x, y) turn out to be small
at points (x, y) where the norm of the estimated gradient ∇up(x, y) is large, while
σ2(x, y) remains constant. This is desirable since it will later translate into a decay
on penalization in the expected gradient direction while keeping it unchanged in
its normal direction. The function h can be chosen, for instance, as h(t) = 1/(1 +
(t/τ)k), where τ, k > 0 are control parameters that could be roughly thought of as
a lower threshold for the values of |∇up| starting from which we infer the image has
an edge and the width of the transition region, respectively.

In [2], the gradient field estimation ∇up was built by inpainting the components
of the gradient using a second order Tikhonov-Phillips method. However, since
this method produces smooth restorations, edge preservation remains compromised
for wide occluded regions, as it can be seen in Figure 1(c). To overcome this
disadvantage, we shall build the matrix field A based upon the gradients of an
a-priori CDD inpainting of the image, which as previously noted, favors object
connectivity.

In the same fashion, the weighting function θ, which also requires of a-priori
information about the local regularity of u, can be built from a “pilot image” up,
obtained by means of a CDD-inpainting process. We take θ(x, y) = w(|∇up(x, y)|),
where w is an appropriately chosen increasing function, with 0 ≤ w(t) ≤ 1 ∀t ∈ R+

0 .
Due to the way in which the pilot image is built, if used direclty as obtained by

the CDD-inpainting process, the staircasing effect on up will have a negative impact
on the effect of the weighting and anisotropy functions, which in turn might lead
to sharp artificial edges appearing in the final inpainted image. To overcome this,
the pilot image is smoothed out with a small-variance Gaussian kernel.

Our full inpainting process can then be stated as follows:

Step 1: CDD inpainting.: Perform a CDD inpainting on the occluded image
to obtain a first estimation. That is, compute ũp as the steady state of the
equation

∂u

∂t
= ∇ ·

[
g(|κ|)χD + χΩ\D

|∇u|
∇u
]

+
2

λ
(u− v)χΩ\D.

Step 2: Pilot image smoothing.: Smooth out ũp by means of a low-pass fil-
ter by computing

up
.
= G ∗ ũp,

where G is a low-variance Gaussian kernel, and “∗” denotes convolution.
This step will result in the good definition of the gradient field ∇up, while
attenuating the staircasing effect that may appear in the final restoration.
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Step 3: Construction of the anisotropy matrix field.: Use up to construc-
t A as

A = I −
(

1− 1

1 + (|∇up|/τ)k

)[
∇up
|∇up|

] [
∇up
|∇up|

]T

.

Step 4: Construction of the weighting function.: Use up to build θ as

θ(x, y) =
|∇up(x, y)|

max(w,z)∈Ω |∇up(w, z)|
.

Step 5: Final inpainting.: Use the previously computed A and θ to build the
mixed weighted T1-TV anisotropic functional and compute the restored image
as

(9) û = arg min
u∈L2(Ω)

{‖Tu− v‖2L2 + λT1‖|
√

1− θ A∇u|‖2L2 + λTV ‖|θA∇u|‖L1}.

Having stated our new inpainting method, we shall proceed to briefly describe
an appropriate numerical implementation.

3. Numerical implementation. We start the implementation of our inpainting
method by performing a discretization over the image domain. We assume that
the grayscale image domain is Ω = [0, 1] × [0, 1] and we discretize it to obtain an
M -by-M pixel grid and an M -by-M matrix U , consisting its entries of the values of
the function u at the centerpoints of the pixels. Next, we stack the columns of the

matrix U to get a vector u ∈ RM2

so that uM(l−1)+m = Um,l ∀l,m = 1, 2, . . . ,M .
For better understanding we will often identify uM(l−1)+m with u(x, y).

3.1. The CDD method. Let us define ξ = (ξ1, ξ2)T .
= g(|κ|)
|∇u| ∇u, whose divergence

we need to approximate. We do it by computing

(10) ∇·ξ(x, y) ≈ ξ1(x+ h/2, y)− ξ1(x− h/2, y)

h
+
ξ2(x, y + h/2)− ξ2(x, y − h/2)

h
,

where h = 1/M is the pixel-width.
Now, in order to compute (10) at the midpoints between adjacent pixels, we need

to estimate both the gradient of u and the curvature κ at those points. Firstly, for
the points of the form ∇u(x+ h/2, y), we compute the components of ∇u as

ux(x+
h

2
, y) ≈ u(x+ h, y)− u(x, y)

h
,

uy(x+
h

2
, y) ≈

1
2 (u(x+ h, y + h) + u(x, y + h))− 1

2 (u(x+ h, y − h) + u(x, y − h))

2h
.

At the points of the form (x, y + h/2) the construction is analogous.
As for the isophote curvature κ, we compute it explicitly as a function of the

gradient of u:

κ = ∇ ·
[
∇u
|∇u|

]
=

∂

∂x

ux
|∇u|

+
∂

∂y

uy
|∇u|

.

At points of the form (x+ h/2, y), we approximate it with

κ(x+ h/2, y) =
1

h

[
ux(x+ h, y)

|∇u(x+ h, y)|
− ux(x, y)

|∇u(x, y)|

]
(11)

+
1

2h

[
uy(x+ h/2, y + h)

|∇u(x+ h/2, y + h)|
− uy(x+ h/2, y − h)

|∇u(x+ h/2, y − h)|

]
.
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The computation of κ at points of the form (x, y + h/2) is analogous. To avoid

division by zero in the last equation (when ∇u = 0), we replace |s| by
√
s2 + ε2,

with ε > 0 chosen sufficiently small.
We are then ready to state the algorithm for the CDD inpainting process. It is

timely to point out here that due to numerical stability issues, instead of using Eu-
ler’s method to solve the IVP (as stated in [4]), we use an Adams-Moulton Adams-
Bashford predictor-corrector method, which showed better performance. Our mod-
ified iterative algorithm reads as follows:

Step 1: Initializing.: Define an arbitrary initial estimation u(0), coinciding
with the data outside the occlusion, and let n = 0.

Step 2: Updating.: For m : 1 . . .M , define

(12) f(κ(n)
m , u(n)

m )
.
= ∇ ·

[
g(|κ(n)

m |)χD + χΩ\D

|∇u(n)
m |

∇u(n)
m

]
+

2

λ
(u(n)
m − vm)χΩ\D,

and compute u
(n+1)
m as follows:

ν(n+1)
m = u(n)

m +
∆t

12

[
23f(κ(n)

m , u(n)
m )− 16f(κ(n−1)

m , u(n−1)
m ) + 5f(κ(n−2)

m , u(n−2)
m )

]
u(n+1)
m = u(n)

m +
∆t

12

[
5f(κ(n+1)

m , ν(n+1)
m ) + 8f(κ(n)

m , u(n)
m )− f(κ(n−1)

m , u(n−1)
m )

]
where for each m, κ(n) and ∇u(n) are computed from u(n) as previously de-
scribed. A second order Runge-Kutta method is used for the first two steps.

Step 3: Stopping.: If an appropriate stopping criterion (defined upon the de-
cay of the sum of the curvature at each pixel) is reached, the process stops and
the inpainted image is defined as u(n+1). Otherwise, n is increased (n = n+1)
and the algorithm continues from Step 2.

Next, we show how the mixed weighted anisotropic T1-TV regularization can be
numerically implemented.

3.2. Mixed anisotropic T1-TV implementation. To find the minimizer of the
T1-TV inpainting functional given in (7), we consider the discretized version

J(u) =
1

M2
‖Tu− v‖2 +

λT1

M2

∑
m∈M

(1− θm)

∥∥∥∥Am( M(um − um+1)
M(um − um−M )

)∥∥∥∥2

2

+
λTV
M2

∑
m∈M

θm

∥∥∥∥Am( M(um − um+1)
M(um − um−M )

)∥∥∥∥
2

,(13)

where T ∈ RM2×M2

is the diagonal matrix associated to the occlusion operator
T , θm and Am are the evaluations of the weighting function and of the anisotropy
matrix field at the centerpoint of the mth pixel, and M denotes the set of indices
corresponding to the interior pixels, on which the gradient is estimated, that is
M

.
= {m ∈ N : M < m < M(M + 1), Mk 6= m 6= Mk + 1 ∀k = 1 . . .M}.
Although there are several efficient ways to estimate the minimizer of (13), we

have chosen a half-quadratic approach, which is described below, for it has proven
to cope very well with the great dimensions that this problem can present (details
can be found in [5]).

First, we approximate J by a differentiable functional and make use of a duality
relation to iteratively approach its minimizer. We begin by replacing the last term in
(13) by a differentiable approximation in order to find the minimizer by considering
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the first order necessary condition. We do so by replacing, for w ∈ R2, the value of

‖w‖2 by φ(‖w‖2), where φ : R→ R is given by φ(t)
.
=
√
t2 + η2−η, for η sufficiently

small. With this choice of φ, it can be shown ([9]) that there exists a function ψ
satisfying the following duality relation

φ(t) = inf
s>0

(st2 + ψ(s)),(14)

ψ(s) = sup
t∈R

(φ(t)− st2),

and therefore∥∥∥∥Am( M(um − um+1)
M(um − um−M )

)∥∥∥∥
2

≈ inf
sm∈R+

{
sm
(
t2m,1 + t2m,2

)
+ ψ(sm)

}
,(15)

where

(16) tm,1 =
am1,1(um − um−M ) + am1,2(um − um+1)

1/M
,

and

(17) tm,2 =
am2,1(um − um−M ) + am2,2(um − um+1)

1/M
.

Define now the M2-by-M2 diagonal matrices Ai,j , for i, j = 1, 2, such that
Ai,jm,m = ami,j if m ∈ M and Ai,jm,m = 0 otherwise. In a similar fashion, let

Θ
.
= diag(θm)M2×M2 and S

.
= diag(sm)M2×M2 . Let Lx and Ly be the M2-by-M2

first order finite difference approximating matrices for the components of the gradi-
ent, and let R1 and R2 be the M2-by-M2 matrices defined as R1

.
= A1,1Lx+A1,2Ly

and R2
.
= A2,1Lx + A2,2Ly. Finally, let I be the M2-by-M2 identity matrix, and

define the functional

Kθ,φ(u, s)
.
=

1

M2
‖Tu− v‖2 +

λT1

M2
uT(RT

1 (I −Θ)R1 +RT
2 (I −Θ)R2)u+

+
λTV
M2

uT(RT
1 ΘSR1 +RT

2 ΘSR2)u+
λTV
M2

∑
θmψ(sm).(18)

It can be shown ([5]) that

(19) inf
s∈RM2

Kθ,φ(u, s) = Jφ(u) ≈ J(u),

where Jφ is the functional obtained from J by using approximation (15). Hence,
our problem turns out to be equivalent to minimizing K with respect to both u and
s simultaneously. Note that the first order necessary condition on K with respect
to u can be written as
(20)(
TTT + λT1(RT

1 (I − Θ)R1 +RT
2 (I − Θ)R2) + λTVR

T
1 ΘSR1 + λTVR

T
2 ΘSR2

)
u = TTv.

In order to minimize Kθ,φ(u, s) with respect to s, we define

bm
.
= arg min

sm∈R+

{
sm
(
t2m,1 + t2m,2

)
+ ψ(sm)

}
,

where tm,1 and tm,2 are defined as in (16) and (17), respectively, and resort to (14)
to deduce that bm must satisfy

(21) bm =
φ′
(√

t2m,1 + t2m,2

)
2
√
t2m,1 + t2m,2

.
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Although details on de derivation of equation (21) can be found in [6], we give here
a brief sketch of the proof. Let f : R2 → R be defined as f(s, t)

.
= st2 +ψ(s). Then,

if b
.
= arg mins∈R+ f(s, t), the first order necessary condition over f with respect to

s yields 0 = t2 + ∂ψ(b)
∂b . Notice that φ(t) = f(b, t), and hence

∂φ(t)

∂t
=
∂f(b, t)

∂t
= 2bt+

∂b

∂t
t2 +

∂ψ(b)

∂b

∂b

∂t
= 2bt+

∂b

∂t

(
t2 +

∂ψ(b)

∂b

)
= 2bt.

Finally, we state our cyclic iterative algorithm for the T1-TV image inpainting
as follows:

Step 1: Initializing.: Set j = 0, and initialize uj = u0 (e.g. u0|Ω\D = v and

u0|D = 0) and bj = b0 (e.g. b0 = 0).
Step 2: Counting.: Make j = j + 1.
Step 3: Updating b.: Update bj using equation (21):

bjm =

φ′
(√

(tjm,1)2 + (tjm,2)2

)
2
√

(tjm,1)2 + (tjm,2)
, m ∈M,

where

tjm,1 =
am1,1(ujm − u

j
m−M ) + am1,2(ujm − u

j
m+1)

1/M
,

and

tjm,2 =
am2,1(ujm − u

j
m−M ) + am2,2(ujm − u

j
m+1)

1/M
.

Step 4: Updating u.: Update uj by solving the linear system(
TTT + λT1(RT

1 (I − Θ)R1 +RT
2 (I − Θ)R2) + λTV (RT

1 ΘBjR1 +RT
2 ΘBjR2)

)
uj = TTv

where Bj is the M2-by-M2 diagonal matrix with elements bjm for m ∈M and
0 otherwise. It is worth noticing that this linear system is well posed ([8])
since the matrices appearing as a consequence of the penalization terms have
strictly positive eigenvalues, and hence solving it entails no difficulties.

Step 5: Convergence.: if a previously defined convergence criterion is satis-
fied, the algorithm ends and our inpainted image û is defined as uj (in our
case, this criterion was defined upon the norm ‖uj − uj−1‖). Otherwise, the
algorithm repeats from step 2.

In the next section we present some examples of the performance of the previously
described inpainting method.

4. Inpainting application results. We begin by comparing the performance of
our new approach with the isotropic order-one Tikhonov-Phillips and Curvature-
Driven Diffusion methods on the previously used test image, occluded over both
smooth and piecewise constant regions. A 1% Gaussian white noise was added to
the grayscale image. Figure 5 depicts the occluded noisy image together with the
results obtained with three different inpainting methods. As it can be clearly seen,
the mixed anisotropic T1-TV inpainting outperforms the isotropic T1 method in
terms of edge preservation, while it also works better than CDD inpainting on the
smooth region of the image. Although this is a somewhat subjective analysis, these
conclusions are supported by the corresponding peak signal-to-noise ratios (PSNR)
shown in Table 1. The PSNR is defined as follows:
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(a) (b)

(c) (d)

Figure 5. (a) Occluded image; (b) Isotropic T1 inpainting; (c)
CDD inpainting; (d) Mixed anisotropic T1-TV inpainting.

PSNR(û) = 10 log10

(
1

MSE(û, u0)

)
,

where û, u0 ∈ RM2

are the vectors associated to the inpainted image and to the
original image (unknown in real problems), respectively, and

MSE(û, u0) =
1

M2
‖û− u0‖22 =

1

M2

M2∑
m=1

(ûm − u0,m)2.

Isotropic T1 CDD Anisotropic T1-TV
PSNR 20.140 35.497 36.329

Table 1. PSNR values for the test image (Figure 5).

Up next, we show the performance of our new method on a more realistic example. A
300× 300 pixel grayscale image was occluded and contaminated with 2% Gaussian
white noise. Figure 6 shows the resulting occluded noisy image, along with the
isotropic T1, CDD and anisotropic T1-TV inpainted images. Once again we observe
an improvement on the quality of the inpainting with the two-step method, which
is reflected on the PSNR values shown on Table 2.
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(a) (b)

(c) (d)

Figure 6. (a) Occluded noisy image; (b) Isotropic T1 inpainting;
(c) CDD inpainting; (d) Anisotropic T1-TV inpainting.

Isotropic T1 CDD Anisotropic T1-TV
PSNR 29.127 29.952 30.868

Table 2. PSNR values for grayscale image (Figure 6).

Next we show an example of the performance of our method on a color image. In
this case, the inpainting process was performed separately over the red, green and
blue layers of a 300 × 300 pixel image. Here again, a 2% Gaussian white noise
was added to the occluded image. Figure 7 shows the occluded noisy image, along
with the CDD, isotropic T1 and the anisotropic T1-TV inpainted images. A close
look at Figure 7(c) shows that CDD inpainting tends to produce artificial edges,
which are not produced by the combined T1-TV method. Note also that although
no artificial borders are generated with the latter method, significantly better edge
preservation properties are achieved with respect to the pure T1 method. Table 3
shows the obtained PSNR values for the three inpainting methods.

Now we compare the performance of our two-step method with that of the CKS
inpainting model ([3]), which is based upon Euler’s elastica and curvature. This
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(a) (b)

(c) (d)

Figure 7. (a) Occluded noisy image; (b) Isotropic T1 inpainting;
(c) CDD inpainting; (d) Anisotropic T1-TV inpainting.

Isotropic T1 CDD Anisotropic T1-TV
PSNR 20.568 21.360 22.112

Table 3. PSNR values for color image (Figure 7).

model allows for smooth inpainting, and so it provides a way to avoid the arti-
facts which appear using CDD. Nonetheless, this smoothing might entail loosing
sharpness of inpainted edges and borders. To illustrate this, inpainting results for
the same images used before are displayed on Figure 8, obtained with a 200× 200
image, previously contaminated with a 2% Gaussian additive noise. It can be ob-
served that our two-step method has better performance, as the spatial adaptivity
provides a better compromise between edge preservation and smooth inpainting.
Table 4 shows the PSNR values for the displayed restorations.

Finally, we present an example of object removal via masking-inpainting. If
one wishes to remove an object from a certain image in an “unnoticeable” way,
an artificial occlusion can be made over the object, and then proceed with the
inpainting. Figure 9 shows an example of the results of such a procedure over a
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Gray CKS Gray A T1-TV Color CKS Color A T1-TV
PSNR 29.770 32.421 21.464 24.284

Table 4. PSNR values for color image (Figure 7).

Figure 8. Left: CKS inpaintings; right: Anisotropic T1-TV inpaintings.

300 × 300 color image. The compromise between edge preservation and smooth
inpainting of the mixed anisotropic T1-TV model can be once again appreciated
here. Note that computing the PSNR values does not make sense in this case.

Computational cost: Although certainly there is room for improvement in the
implemented algorithms, after several trials we can assure that the computational
cost for the mixed inpainting approach does not increase severely with respect to the
pure CDD method. Our programs were run on a PC with an Intel Core i7-3930K
processor, CPU@3.20 GHz x 12. For instance, for the 300 × 300 grayscale image
displayed on Figure 6, the CPU-time for the CDD process was 2482.4 seconds, while
the CPU-time for the T1-TV model (having previously computed the pilot image
up and the parameters) was 56.8 seconds. The CPU-time for the full algorithm,
including building the pilot image, parameter estimations and auxiliar computations
was 3572.4 seconds. We mention however that optimizing the algorithm was not
a main goal of our work. Experimentation suggests, for instance, that a variable
time-step on the diffusion process and refining parameter estimation on the T1-TV
inpainting might lead to a significantly faster performance.

5. Conclusions. In this article we developed a two-step method for image inpaint-
ing. The first step consists of implementing a Curvature-Driven Diffusion process,
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(a) (b)

(c) (d)

(e)

Figure 9. (a) Original image; (b) Occluded (masked) image; (c)
T1 inpainting; (d) CDD inpainting; (e) T1-TV inpainting.

which serves to obtain a good approximation of the gradient of the image inside the
occlusion. Such an approximation is then used to construct an appropriate weight-
ing function and an anisotropy-inducing matrix field. The second step consists of
using these functions to build a mixed Tikhonov-Total Variation spatially varying
anisotropic functional, whose global minimizer defines the final inpainting.

The use of a CDD inpainting process in the construction of the weighting function
and the anisotropy matrix field results in the fact that the well known object-
connectivity property of this method is incorporated into the mixed T1-TV model.
This, along with the spatial adaptivity and anisotropy features of the mixed T1-TV
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method results in an inpainting model having both good object-connectivity and
edge preservation properties as well as high-quality inpainting performance over
smooth regions.

The performance of the method was shown through several examples, in which
it produced better results than the CDD, T1 and CKS inpainting models. Fur-
thermore, a thorough analysis of the color examples shows that while the CDD
inpainting seems to sometimes produce little artifacts near edges inside the occlu-
sions, such artifacts do not appear when using our two-step method.

Finally, it is appropriate to mention that there is room for further improvements.
For instance, other means of constructing the weighting function θ and the matrix
field A can be explored. Also, if there is adequate available a-priori information
about the “expected” image, that information could be embebed into the model
through the functions θ and A.
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