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Summary
In this paper, we consider the predictive control problem of designing receding hori-

zon controllers for networked linear systems subject to random packet loss in the

controller to actuator link. The packet dropouts are temporarily correlated in the

sense that they obey a Markovian transition model. Our design task is to solve the

optimal controller that minimizes a given receding horizon cost function, using the

available packet loss history. Due to the correlated nature of the packet loss, stan-

dard linear quadratic regulator methods do not apply. We first present the optimal

control law by considering the correlations. This controller turns out to depend on

the packet loss history and would typically require a large lookup table for imple-

mentation when the Markovian order is high. To address this issue, we present and

compare several suboptimal design approaches to reduce the number of control laws.
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1 INTRODUCTION

In this work, we consider predictive control to design controllers for dynamic systems where the communication between the

controller and the actuators is affected by correlated packet dropouts. Traditionally, the packet dropouts are modeled as an

independent and identically distributed (i.i.d) random process.1-7 This model is also extended to include transmission delays.8-11

For many network setups, the network effects can however not be captured by an i.i.d model, since the packet dropouts in the

networks often are correlated.12 A simple method to address correlated packet dropouts is by using a 2-state Markov model, also

called the Gilbert-Elliot or pq model, which captures packet losses that occur in bursts.13,14 Here, the probability for the current

packet transmission to be successful depends on the transmission outcome of the previously transmitted packet. This model is

frequently used for controller synthesis and analysis.11,15-18

While the 2-state Markov chain can capture network effects that the i.i.d models could not, more accurate network models

can be obtained by considering a longer history of packet dropouts.12,19-21 This results in higher-order Markov models that can

capture faster changing network effects more accurately. Konrad et al12 proposed a network model, where the network is divided

in 2 states: 1 “good” state, where no dropouts occur and a “bad” state, where packet dropouts occur. The proposed model models

the length of the good and bad state using an exponential distribution. In the example in the work of Konrad et al,12 the bad state

of the network is modeled using a fourth-order Markov chain. Note that the good and bad states in the work of Konrad et al12

differ from the Gilbert-Elliot models with a good and bad state, as is used in, for example, the work of Peters et al.15

Thus, to summarize, a higher-order network model tends to be a more realistic representation of the real networks. We there-

fore take the view that a controller design that takes the high-order network model into account will result in better performance
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on real networks. We will therefore present a controller design that can directly utilize these higher-order models. In fact, our

controller design method will provide the optimal controller design for any network that can be modeled accurately by the use

of conditional probabilities. The optimal predictive controller is designed to minimize a linear quadratic (LQ) cost function that

penalizes future states. Here, the future system states are predicted using the model of the system and the network, the current

state, and the history of packet arrivals. This results in a control law that is a function of the state and the packet arrival his-

tory. A key issue is that, at the time when a control input is computed, the controller does not know whether this input will

actually reach the actuator. Such a design problem can fit into the Markov jump linear system framework by assuming that the

packet transmission at the current time will be successful.17,22-25 The difference in our approach is that we take advantage of

the structure of the Markov transition matrix, which results in simpler expressions. Designing the control law in this manner

leads to controllers that depend on the system state and on the history of packet dropouts. This results in a controller for every

possible observation of packet dropouts, which results in high complexity control laws (meaning: many controllers). The com-

plexity increases exponentially for longer packet dropout histories. It also requires significant amounts of memory to be stored

in a lookup table in, for example, microcontrollers. At this point, one might ask whether it is necessary to take the entire packet

arrival history into account when designing the control law. To tackle this question, we investigate suboptimal reduced com-

plexity control laws that feature fewer controllers and illustrate the loss of performance compared with a full complexity control

law through simulation studies. While there exists an extensive literature on performance and complexity trade-offs in terms

of minimizing a cost function for estimation over networks with correlated packet dropouts,26,27 the controller design has rarely

been considered in this setting. One main difference between the estimator and the controller design is that the network is part

of a closed-loop system. This makes the controller design more difficult.

In this work, we will present a novel optimal controller design that can be applied to any network, where the random packet

dropouts can be modeled using conditional distributions. As described above, conditional distributions can capture network

effects that more simple 2-state Markov models cannot.12 This controller is derived by minimizing a stochastic LQ cost function.

The packet dropout data are fully utilized in the optimal control design. For high-order packet dropout models, the optimal

controller requires a large lookup table to store the control gains, which may be impractical for implementations. This optimal

controller is therefore only suitable when the order of the packet dropout model is relatively low. Our second contribution is to

present 3 suboptimal methods that trade off the performance of the controller against the controller complexity. The difference

between these 3 methods lies in where in the design process the suboptimality is introduced. The performance of the different

methods is analyzed using simulation studies where we implement the controllers as model predictive control.

In this work, we perform controller design for systems that feature network uncertainties in the link between the controller

and the actuator. This results in control laws that are robust for network conditions, which result in packet dropouts. When the

controller design problem further involves system and/or modeling uncertainties, the presented approach can be combined with

methods such as an online system identification method or a robust design. An online system identification method, such as

the method presented in the work of Shi and Fang,28 allows for online updating the system model that is used in the controller

design. Methods for robust design aim at optimizing the performance for the worst-case system and the network models, see,

for example, the works of Wang et al29 and Quevedo and Nešić.30,31

This paper is structured as follows. We will present the system and network in Section 2. The optimal controller design is

performed in Section 3. In Section 4, we present methods on how to reduce the controller complexity and introduce 3 controller

design methods. Simulation studies are included in Section 5, where the performance of the different controllers is compared.

Section 6 draws conclusions.

Notation. We denote the probability and expectation of the random variable X knowing Y by Pr{X|Y} and E{X|Y}, respec-

tively. Denote IN the N×N identity matrix, 0n×m a n×m matrix of zeros, and diag{X} the matrix with X on its (block-)diagonal.

The indicator function 1x(y) = 1 if x = y when y is a variable, or x ∈ y when y is a set. Let card (X) denote the number

of elements in the set or sequence X. Denote ||x||2Q ≜ xTQx. The function ⌈x⌉ rounds x up to its nearest larger integer. We

denote a sequence by (1, 2, · · · ) and a set by {1, 2, · · · }.

2 PROBLEM FORMULATION

We consider a linear time-invariant system, where the controller is connected to the actuators through a network that is affected

by correlated packet losses. The system is illustrated in Figure 1 and is of the form

xk+1 = Axk + Bûk + ωk

ûk = ρkuk, (1)
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PlantController Lossy network Actuator

FIGURE 1 The system where the controller and the actuators are connected through a link that is affected by packet dropouts

where A ∈ Rn×n, B ∈ Rn×m, and ωk ∼  (0,Σω) is zero-mean white Gaussian noise with covariance Σω. The binary vari-

able ρk ∈ {0, 1} indicates whether the packet at time k is received successfully at the actuator. Successful transmissions are

acknowledged. In this work, we assume that the controller always receives the acknowledgements successfully.

Remark 1. In this work, we only consider packet dropouts in the actuator to controller link and assume that the feed-

back link (plant to controller) is deterministic, ie, no packet dropouts occur. However, we utilize acknowledgements. This

means that the controller knows whether a packet is successfully received at the actuators or not. Therefore, the separation

principle holds,32 and in the optimal controller design that we present, the state can be replaced by its optimal estimate.

Estimation for systems affected by packet losses in the feedback channel is considered in works, such as Smith and Seiler,27

Schenato et al,32 and Peters et al.33

The packet arrivals for the model in Equation 1 are random and correlated. This means that the probability for the packet at

time k to arrive depends on the history of previously transmitted packets. In this work, we consider the case where the relevant

length of the previous history is of a given length. More formally, we can state this as

Pr{ρk = 1|ρk−1, · · · , ρk−∞} = Pr{ρk = 1|ρk−1, · · · , ρk−d},

where 0 ≤ d < ∞ is the length of the relevant history. In the present setting, the controller always receives acknowledgements on

the successful packet transmissions and, therefore, causally knows the exact packet arrival history. To simplify the notation, we

accumulate the history of packet dropouts in the variable Θk ∈ Ξ =
{

1, · · · , 2d} to denote the binary sequence (ρk−1, · · · , ρk−d),
where Θk = i refers to a certain realization of (ρk−1, · · · , ρk−d). Here, it is easy to see that Θk is first-order Markov, since

Pr{Θk+1 = j|Θk = i,Θk−1, · · · ,Θ0} = Pr{Θk+1 = j|Θk = i} ≜ pi, j.

Furthermore, denote Pr{Θk = i} ≜ πi. We assign the outcomes of ρk to values of Θk by

Θk = 1 +
d∑

𝓁=1

ρk−𝓁2d−𝓁 . (2)

Note in Equation 2, that every possible binary sequence (ρk−1, · · · , ρk−d) gets assigned to a unique value of Θ. Furthermore,

note that

ρk−1 =

{
0, if Θk ≤ r
1, if Θk > r,

(3)

where r = 2d−1.

Since ρk is a binary variable, there are for each Θk only 2 possible outcomes of Θk+1: one where ρk = 1 and one where ρk = 0.

To simplify the notation throughout the remainder of the paper, we introduce the variables ϕi and ϕ̄i. Here, ϕi indicates the case

when the packet arrival history at time k is given by Θk = i, and the most recent packet is successfully received at the actuator

(ρk = 1). Then, Θk+1 = ϕi, where ϕi is computed as

ϕi =
⌈ i

2

⌉
+ 2d−1 ∈

{
r + 1, · · · , 2d} . (4)

Likewise, when at time k, the packet arrival history is given by Θk = i and the packet transmission failed (ρk = 0), Θk+1 = ϕ̄i,

where

ϕ̄i =
⌈ i

2

⌉
∈ {1, · · · , r} . (5)

It hereby follows that

Pr{ρk = 1|Θk = i} = Pr{Θk+1 = ϕi|Θk = i} = pi,ϕi
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FIGURE 2 Illustration of the assignment of Θ to packet arrival sequences (ρk−1, ρk−2) by Equation 2. Here, the sequence (1, 0) means that

ρk−1 = 1 and ρk−2 = 0. The probability p2,1 = Pr{Θk+1 = 1|Θk = 2} = Pr{ρk = 0|ρk−1 = 0, ρk−2 = 1}

and

Pr{ρk = 0|Θk = i} = Pr{Θk+1 = ϕ̄i|Θk = i} = pi,ϕ̄i
= 1 − pi,ϕi .

Example 1. Consider the case of a packet dropout distribution with d = 2. This means that the probability for a successful

transmission at time k depends on the outcomes of ρk−1 and ρk−2. This is illustrated in Figure 2. The Markov states Θ ∈ Ξ,

where Ξ = {1, 2, 3, 4} are assigned using Equation 2. This can be presented using the Markov transition matrix

ρk=0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Θ = 1 Θ = 2

ρk=1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Θ = 3 Θ = 4

P =
⎡⎢⎢⎢⎣

p1,1 0 p1,3 0
p2,1 0 p2,3 0
0 p3,2 0 p3,4

0 p4,2 0 p4,4

⎤⎥⎥⎥⎦
Θ = 1
Θ = 2
Θ = 3
Θ = 4,

(6)

where p1,3 = Pr{ρk = 1|ρk−1 = 0, ρk−2 = 0}. Here, ϕ1 = 3 and ϕ̄1 = 1; thus, p1,ϕi = p1,3. ◻

3 OPTIMAL PREDICTIVE CONTROLLER DESIGN

We utilize predictive control to design a control law that minimizes a receding horizon cost function, which penalizes predicted

future states and controls, as is done in LQ regulator (LQR) design. System (1) is however affected by random packet dropouts

and noise, which are only known for the past, and not the current and future times. We therefore formulate the cost function

using the expectation operator, where the expectation is taken over the packet dropout process ρk and the process noise ωk. When

minimizing the cost function using dynamic programming, we obtain feedback control policies as functions of the state and

packet arrival history. The controller has at time k access to the state xk and the Markov state Θk. We, thus, obtain controllers

of the form

uk = fk (Θk, xk) , k = 0, 1, · · · ,N − 1.

We want to design the control law to minimize the receding horizon cost function

JN
(
x0,U0,N ,Θ0

)
= E

{N−1∑
k=0

||xk||2Q + ρk||uk||2R + ||xN||2SN,ΘN

|||||| x0,Θ0

}
, (7)

where Q ≥ 0, R ≥ 0, and SN,i ≥ 0, ∀i ∈ Ξ are design parameters that trade off control performance vs control effort and the

sequence Uk,N ≜ (uk, · · · , uN−1).

Remark 2. The problem that we presented here can be fitted into the general Markov jump linear system framework, see, eg,

the work of Costa and Fragoso.22 The difference between the framework presented in the work of Costa and Fragoso22 and

the current problem setting is that, we, at time k, do not have the outcome of ρk available. However, the same control laws

can be obtained with both frameworks, ie, our framework and the framework presented in the work of Costa and Fragoso22

by assuming that at time k, the packet transmission will always be successful.

In the rest of this section, the result that we present will differ from the work of Costa and Fragoso22 on 2 points.

1. In the presented setting, it is a consequence of the problem formulation that the optimal strategy is to always design

the control packet to assume that the current transmission is successful.
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2. We take advantage of the special sparse structure of the transition matrix P, which results in simpler expressions,

making it computationally more efficient. ■

Next, we present the controller design.

Proposition 1. The optimal control at each time step is given by the linear function

u⋆
k = L⋆

k,Θk
xk, (8)

where the control gain for each i ∈ Ξ is given by

L⋆
k,i = −

(
R + BTSk+1,ϕi B

)−1BTSk+1,ϕi A ∀i ∈ Ξ, (9)

with
Sk,i = Q + AT (

Sk+1,ϕ̄i
pi,ϕ̄i

+ Sk+1,ϕi pi,ϕi

)
A − pi,ϕi A

TSk+1,ϕi B
(
R + BTSk+1,ϕi B

)−1BTSk+1,ϕi A, (10)

and ϕi and ϕ̄i are defined in Equations 4 and 5. Here, pi,ϕi = Pr{Θk+1 = ϕi|Θk = i}, and SN,i is given for all i ∈ Ξ. This
results in the optimal cost

J⋆N (x0,Θ0) = xT
0
S0,Θ0

x0 + c0,Θ0
, (11)

where
ck,i =

∑
j={ϕi,ϕ̄i}

(
trace(ΣωSk+1, j) + ck+1, j

)
pi, j (12)

with cN,i = 0 for all i.

Proof. The proof is given in Appendix A.

It is worth to note from Equation 9 that the control law at time k only depends on Θk for the computation of Sk+1, which, in

turn, depends on Θk+1. Now, since the transition probabilities to go from Θk to Θk+1 are not used in Equation 9, the value of Lk,i
will not depend on ρk−d. Therefore, only 2d−1 out of the 2d control laws are unique and need to be stored in a lookup table.

Remark 3. Many network models, such as the Gilbert-Elliot model13,14 (also referred to as the pq model), use a Markov

chain with length d = 1. It is worth noting that in this case using Proposition 1, only 1 unique controller gain is obtained.

This means that the controller here does not have to observe the history of the packet dropouts to find the appropriate

control gain. ■

The results in Proposition 1 can be vectorized for a relevant history of length d by defining the matrix

i, j ≜

⎡⎢⎢⎢⎢⎢⎢⎣

In
√

p(i+1),( j+1) 0 · · · 0

0 0 · · · 0
0 In

√
p(i+3),( j+2) · · · 0

0 0 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · In

√
p(i+2d−1),( j+r)

⎤⎥⎥⎥⎥⎥⎥⎦
∈ R

(2d−1)n×rn

and

0, j ≜
[ 0, j

0n,rn

]
∈ R

2dn×rn 1, j ≜
[

0n,rn1, j

]
∈ R

2dn×rn.

Now, define the following matrices describing the successful and lost transmissions:

 ≜ [
02dn×rn 0,r 02dn×rn 1,r

]
∈ R

2dn×2d+1n

̄ ≜ [0,0 02dn×rn 1,0 02dn×rn
]
∈ R

2dn×2d+1n,

respectively. Define Q̄ ≜ diag{Q}, Ā ≜ diag{A}, B̄ ≜ diag{B}. Furthermore, let

R̄ ≜ diag
{[

Rp1,ϕ1
,Rp2,ϕ2

, · · · ,Rpd,ϕd

]}
S̄k ≜ diag

{[
Sk,1, Sk,2, · · · , Sk,2d

]}
,

and

Γk ≜  ŜkT (13)

Γ̄k ≜ ̄ Ŝk̄T , (14)
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where

Ŝk ≜ I2 ⊗ S̄k.

Then, Equation 10 can be expressed as

S̄k = Q̄ + ĀT (
Γk+1 + Γ̄k+1

)
Ā − ĀTΓk+1B̄

(
R̄ + B̄TΓk+1B̄

)−1B̄TΓk+1Ā. (15)

The augmented control gains can then be computed by

⋆
k =

(
R̄ + B̄TΓk+1B̄

)−1B̄TΓk+1Ā, (16)

where ⋆
k is a block diagonal matrix with the control gains L⋆

k,i, i ∈ Ξ from Equation 9 presented on the diagonal. The control

gain L⋆
k,i can be extracted as the ith n × m diagonal block of ⋆

k .

To implement the predictive controller design from Proposition 1, one would use a lookup table that contains the control

gains, and then at each time step, use the history that is contained in Θk to select the corresponding control gain. This requires

enough memory to store the 2d−1 control gains. One question that arises here is whether it is necessary to take the full packet

dropout history into account in the controller design to guarantee a reasonable control performance. Omitting part of the history

will result in fewer control laws, and thereby a smaller lookup table. In the next section, we will present suboptimal controller

designs that reduce the amount of unique control laws at the cost of performance.

4 SUBOPTIMAL REDUCED COMPLEXITY CONTROLLERS

When designing the optimal control law for system (1) affected by correlated packet losses, we, as described in Section 3, obtain a

controller for every possible sequence of packet arrivals. This, for a relevant history of length d, results in 2d−1 unique controllers.

The amount of controllers will thus grow exponentially when a longer relevant history is considered. In the remainder of this

work, we will study methods to reduce the number of controllers. This, however, will inevitably result in some degradation in the

control performance. We will therefore investigate different methods that reduce the number of controllers while maintaining

satisfying control performance.

We propose to reduce the amount of controllers by designing a controller for a group of possible packet arrival sequences.

This, for example, means that we design 1 controller that is to be applied for packet arrival sequences Θ = {1, 2, 3, 4}. This,

however, leads to 2 questions:

1. How to group the Markov states that govern the different packet arrival sequences, and

2. what controller to use for each of these groups?

This problem thus breaks down to a grouping and a controller design problem. First, we will present a method on how to group

the packet arrival sequences. Then, we present 3 possible methods for the controller design. The 3 controller design methods

differ in where in the process the grouping, and thereby reduction (or quantization) is done. This is illustrated graphically in

Figure 3. The 3 methods are as follows:

• Markov averaged (MA): The grouping is done for the Markov chain. Here, we reduce or aggregate the Markov chain prior

to the controller design. The controller design is thus done for the reduced Markov chain, which therefore will lead to a

reduced number of controllers.

• Group averaged (GA): The grouping is done after the controller design. The controller design is thus done for the full

Markov chain, and afterward, the number of controllers is reduced.

• Cost averaged (CA): In this method, the controller design is done for the full Markov chain, and the reduction of the number

of controllers is enforced in the design.

In the MA design method, the quantization is done when reducing the Markov chain prior to the controller design. This thus

means that the optimal controller is designed for a less precise network model, which will result in performance loss. In the GA

controller design, one first obtains the full complexity optimal controllers for the full Markov chain. To reduce the number of

controllers, the quantization is applied at the end of the design process. This thus means that the suboptimality is first introduced

at the end of the design process. Both of these methods utilize the controller design that is presented in Proposition 1 and are

relatively simple to implement. Finally, in the CA design method, we enforce the quantization when the controller design is

performed. Here, the suboptimality is taken into account in the cost function directly. The control laws that are obtained here

should therefore result in a lower cost, and therefore also better performance, than the controllers that are obtained using the

MA and GA methods. However, the CA controller design is more complex.
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controllers
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CA
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Controller
design

Markov model

states

FIGURE 3 An illustration of where to do the grouping in the controller design. Here, one can reduce the number of Markov states prior to the

controller design (Markov averaged [MA]), reduce the number of control laws after the controller design (group averaged [GA]), or reduce the

number of control laws while doing the controller design (cost averaged [CA])

Next, in Section 4.1, we present a method on how to group the packet arrival sequences. This grouping method is applied

in all 3 reduced complexity controller designs. The difference between the controller design methods is, as mentioned before,

where in the design process the grouping function is applied. After presenting the grouping method, we present the MA, GA,

and CA designs in Sections 4.2 to 4.4.

4.1 Grouping the packet arrival sequences
In this section, we will discuss how to group the packet arrival sequences, such that we then can design a controller for each

of these groups. In Section 2, we assigned the packet arrival sequences to values Θ ∈ Ξ using Equation 2. In this section, we

present a surjective function g ∶ Ξ → Ξ̂, which maps the individual packet arrival sequences to a group, for which we then

design a controller for. Since we aim at reducing the number of controllers, card
(
Ξ̂
) ≤ card (Ξ). Let Θ̂ ∈ Ξ̂ indicate the number

of the group and associate with Θ̂ = v the subset Ξ̂v, which is defined as

Ξ̂v ≜ {i ∈ Ξ ∶ g(i) = v} , (17)

to indicate which Θ get mapped to Θ̂ = v. Note that Ξ̂v are disjoint sets (Ξ̂v ∩ Ξ̂j = ∅ when v ≠ j).
The design of the grouping function is a well-known problem.34,35 The only method on how to find the optimal grouping

function is by performing a combinatorial search among all the possible grouping functions, which is a non-deterministic

polynomial-time (NP)-hard problem. To avoid this, we instead propose to design the grouping function g, such that the packet

arrival sequences are grouped by their most recent packet arrival history. The intuition behind this is that the most recent history

has the largest impact on the outcomes of future packet dropouts. Thus, we group the packet arrival sequences such that the

most recent packet arrival history
(
ρk−1, ρk−2, · · · , ρd−q

)
, where 0 ≤ q ≤ d, is identical for all Θ ∈ Ξ̂v. This results in a total of

2d−q groups. The grouping function g is in this case given by

g(Θ) =
⌈Θ

2q

⌉
, (18)

and let Θ̂ = g(Θ). We then design control laws for each group, such that these become

ûk = f̂k
(
Θ̂k, xk

)
, (19)

where variable Θ̂k ∈ Ξ̂ with Ξ̂ =
{

1, · · · , 2d−q}, and each Θ̂k = i is linked to a given packet arrival sequence of the most recent

d − q packet arrivals.

Example 2. Consider the case from Example 1. Then, with q = 1, we group the packet arrival sequences by the most recent

transmission outcome. Thus, Θ̂ takes values in Ξ̂ = {1, 2}. This is illustrated in Figure 4. Using Equations 17 and 18, we

obtain that Ξ̂1 = (1, 2) and Ξ̂2 = (3, 4). □

4.2 Optimal controller for reduced Markov chain (MA)
In this section, we present the MA controller design. We here use the grouping function g from Equation 18 to obtain the groups

of packet arrival sequences as explained in Section 4.1. We then compute the transition probabilities between the groups Θ̂ ∈ Ξ̂
from the transition probabilities of the full packet arrival sequences. This is called the aggregation of the Markov chain and is

a well-studied topic for efficient steady-state analysis of large Markov chains (see the work of Schweitzer35 and the references

therein). We hereby obtain a reduced order Markov chain with transition matrix P̂ ∈ R2d−q×2d−q
. For a given state space for the
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FIGURE 4 An example of the grouping of the packet arrival sequences. Here, q = 1 and the relevant history in each group (encircled by the

dashed line) is marked in red [Colour figure can be viewed at wileyonlinelibrary.com]

network model, and a choice of grouping of the reduced state space, the aggregate steady-state probabilities are for each group

computed by35

π̄v = Pr
{
Θ̂ = v

}
=

∑
j∈Ξ̂v

πj, ∀v ∈ Ξ̂,

and aggregate transition probabilities by

p̂v,𝓁 = Pr
{
Θ̂k = 𝓁||| Θ̂k−1 = v

}
=

∑
j∈Ξ̂v

∑
i∈Ξ̂𝓁

πipi,j∑
j∈Ξ̂v

πj
,

which forms the aggregated transition matrix P̂.

Afterwards, we design an optimal control law using Proposition 1 for the reduced Markov chain with the transition matrix P̂.

This results in a reduced number of controllers. Since we reduce, or quantize, the Markov model prior to the controller design,

we obtain an optimal control law for a Markov model that is representative, but not completely describing the actual network

model that is affecting the controlled system.

4.3 GA controller
The other simple approach that we present for the reduced complexity controller is the GA controller. With this method, we first

design the optimal controllers for the entire Markov chain in the state-space Ξ using Proposition 1. We then, using the grouping

function g from Equation 18 in Section 4.1, group the controllers, such that there is 1 controller for every group Θ̂ of packet

arrival sequences. The reduced controllers will then be of the form

ûk = L̂k,vxk g (Θk) = v,

where the control gains are given by

L̂k,v = E
{

Lk
|||Θ̂k = v

}
, ∀v ∈ Ξ̂

=
∑
j∈Ξ̂i

Lk, j
πj

π̂v
, (20)

with

π̂v ≜ Pr
{
Θ̂k = v

}
=

∑
j∈Ξ̂v

πj.

4.4 Reducing the amount of controllers in the design (CA)
In this section, we design the CA controller. In this method, we force the control gain to be equal for all possible packet arrival

sequences that are contained in a group Θ̂, where the grouping is done as described in Section 4.1. The control law is thus

designed by taking the expected value over the full history of ρ in the cost function and then setting the controller for the different

outcomes of Θ to be identical. The difference to the MA design is here, that we, in the MA design, reduce the Markov chain

prior to the controller design. We thereby introduce suboptimality into the design process before designing the controllers. On

wileyonlinelibrary.com
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the contrary, in the CA controller, we take the full Markov chain into account while minimizing the cost, but then introduce the

suboptimality directly when minimizing the cost function by forcing some of the controllers to be equal.

Here, we aim at forcing the grouping of the packet arrival sequences through in the cost function that we utilize to design the

predictive controller. This is done by designing a control law of the form

ûk,i = f̂k (g(i), xk) , ∀i ∈ Ξ̂ (21)

to minimize the finite-horizon cost function

J̄N
(
U0,N , x0

)
= E

{
JN

(
U0,N , x0,Θ0

) |x0

}
= E

{N−1∑
k=0

||xk||2Q + ρk||uk||2R + ||xN||2SN,ΘN

|||||| x0

}
. (22)

Since g maps Ξ onto Ξ̂, the controller f̂k (g(i), xk) is identical for all i ∈ Ξ that g(i) maps to the same Θ̂ ∈ Ξ̂. We, therefore,

obtain the sequence of reduced controllers Ū0,N = (ū0, · · · , ūN−1) with ūk =
(
ûk,1, · · · , ûk,2d−q

)
.

The controller design is thus done by evaluating the optimization problem

min
U0,N

J̄N
(
U0,N , x0

)
(23a)

subject to uk,i = f̂k (g(i), xk) i ∈ Ξ, k = 0, · · · ,N − 1. (23b)

Furthermore, note that the control law (21) is only allowed to depend on xk and through g(Θk) on Θ̂k, and thereby not on

previously applied controls. This allows us to obtain closed-form solutions to problem (23a) and (23b). Note, however, that

these control laws not necessarily are optimal, as described in the works of Yang et al36 and Vargas et al.37,38 The control laws

that are presented in the works of Vargas et al37,38 cannot, however, be computed using closed-form expressions, and an iterative

algorithm is required. We, therefore, instead focus on suboptimal control laws that allow us to obtain closed-form expressions.

We obtain the following result.

Theorem 1. The controls of form (21) for Equations 23a and 23b are given by

û⋆
k = L̄⋆

k,vxk, g(Θk) = v, (24)

where

L̄⋆
k,v = −

(
R̄v + BTS̄k+1,vB

)−1BTS̄k+1,vA (25)

and for all i ∈ Ξ

Sk,i = Q + ATSk+1,ϕ̄i
Api,ϕ̄i

+
(

L̄⋆
k,g(i)

)T
RL̄⋆

k,g(i)pi,ϕi +
(

A + BL̄⋆
k,g(i)

)T
Sk+1,ϕi

(
A + BL̄⋆

k,g(i)

)
pi,ϕi . (26)

Here, SN,i = SN and
S̄k,v =

∑
i∈Ξ̂v

Sk,ϕi pi,ϕiπi (27)

R̄v = R
∑
i∈Ξ̂v

pi,ϕiπi. (28)

This results in the cost

J̄⋆N (x0) =
∑
i∈Ξ

xT
0
S0,ix0πi + c0,iπi, (29)

where
ck,i = trace

(
Σω

(
Sk+1,ϕi pi,ϕi + Sk+1,ϕ̄i

pi,ϕ̄i

))
+ ck+1,ϕi pi,ϕi + ck+1,ϕ̄i

pi,ϕ̄i
, (30)

with cN,i = 0, i ∈ Ξ.

Proof. The proof of Theorem 1 is presented in Appendix B.
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TABLE 1 The conditional probabilities for the network model

(𝛒k−𝟏 , · · · , 𝛒k−𝟒) 𝚯 pi , �̄�(i) and Pr{𝛒k =𝟎} pi,𝛟(i) and Pr{𝛒k =𝟏}

0000 1 p1,1 = 0.2 p1,9 = 0.8

0001 2 p2,1 = 0.65 p2,9 = 0.35

0010 3 p3,2 = 0.78 p3,10 = 0.22

0011 4 p4,2 = 0.2 p4,10 = 0.8

0100 5 p5,3 = 0.85 p5,11 = 0.15

0101 6 p6,3 = 0.3 p6,11 = 0.7

0110 7 p7,4 = 0.75 p7,12 = 0.25

0111 8 p8,4 = 0.2 p8,12 = 0.8

1000 9 p9,5 = 0.6 p9,13 = 0.4

1001 10 p10,5 = 0.8 p10,13 = 0.2

1010 11 p11,6 = 0.5 p11,14 = 0.5

1011 12 p12,6 = 0.3 p12,14 = 0.7

1100 13 p13,7 = 0.5 p13,15 = 0.5

1101 14 p14,7 = 0.1 p14,15 = 0.9

1110 15 p15,8 = 0.4 p15,16 = 0.6

1111 16 p16,8 = 0.7 p16,16 = 0.3

5 SIMULATION STUDIES

We compare the performance of the predictive controller designs proposed in Sections 3 and 4 using Monte Carlo simulation

studies. The controllers are implemented as model predictive control, that is, we set xk = L0,Θk xk for all k. We demonstrate the

performance of the proposed controller designs for both a direct-current (DC) servo and a mass-spring system with 3 masses.

In both systems, consider a relevant history of length d = 4. This results in 16 possible packet arrival sequences and thereby

8 unique controllers. These packet arrival sequences are assigned to Markov states using Equation 2. The conditional transmis-

sion success and failure probabilities are given in Table 1. Both simulations consider a system of the form (1) with Σω = Im, and

the results are obtained by averaging 500 simulations each of length 50 000. The costs are computed with horizon length N = 500

to obtain a steady-state solution. A standard LQR controller that does not take the network conditions into account is used to

benchmark. We also include a controller that considers utilizing an i.i.d model of the network. The i.i.d packet dropout is com-

puted from the steady-state probabilities of the Markov chain in Table 1. This results in a probability of Pr{γk = 1} = 0.5308

for a successful transmission. The controller design for the i.i.d model is done, as described in the work of Peters et al.39 The

controller performance is measured using the empirical cost

cost = 1

50 000

50 000∑
k=1

xT
k Qxk + ρkuT

k Ruk.

5.1 DC servo
Here, we consider a DC servo with states x =

[ .

Θ Θ
]T

with Θ being the angular position and
.

Θ the angular velocity. The

continuous-time model is given by

A =
[

1

τ
0

1 0

]
B =

[ K
τ
0

]
.

We select time constant τ = 5 and gain K = 50. The system has been discretized using c2d in MATLAB R2017a with a sampling

interval of 1 second, resulting in the discrete dynamics

A =
[

0.819 0
0.906 1

]
B =

[
9.063
4.683

]
and has open-loop eigenvalues located at 1 and 0.819.
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FIGURE 5 Averaged results for the simulations of the direct-current (DC) servo. The optimal control law is designed using Proposition 1, the

Markov-averaged (MA), group-averaged (GA), and cost-averaged (CA) control laws, designed using Sections 4.2 and 4.3 and Theorem 1,

respectively. The number trialing the name indicates the amount of unique controllers [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 An illustration of the model with 3 masses connected by springs that is considered in the simulation in Section 5.2. The actuator

exerts force F on the first mass

The simulation results in Figure 5 show that the stochastic controller design (Optimal 8) presented in Proposition 1 signif-

icantly outperforms LQR, which results in a cost of 23.4. Compared with the i.i.d controller design from the work of Peters

et al,39 the cost is reduced by 2.61%.

When reducing the number of controllers to 4 controllers, the performance is only slightly reduced compared with the optimal

design. However, when only 2 controllers are desired, the CA controller (from Theorem 1) results in the lowest performance

reduction, followed by the MA design (Section 4.2). Interestingly, the performance of the MA design is identical when 1 or

2 controllers are used. This matches the performance of the CA design with 1 controller. Both the CA and MA controllers

outperform the i.i.d controller. The GA controller, presented in Section 4.3, does not lose much performance when only 4 control

laws are used. Reducing the number of controllers to 1 or 2, however, results in noticeably poorer performance than the i.i.d
design.

5.2 Mass-spring system
In this simulation, we consider a system with 3 masses on a surface connected by springs to each other and sidewalls. This

system is depicted in Figure 6. There is an actuator exerting a force to the first mass. There is an integrator at the actuator such

that the previous control input is held at the actuator. The masses are denoted by m and are equal. The spring coefficients are

denoted by k and are also all equal. This system has continuous-time dynamics given by

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−2km km 0 0 0 0 1
km −2km km 0 0 0 0
0 km −2km 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

m
0
0
1

m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where km = k
m

. We set m = 1 and k = 0.323. This gives open-loop eigenvalues at ±1.05j, ±0.804j, ±0.435j, and one at 0 due to

the integrator. We discretize the system using c2d in MATLAB R2017a with a sampling interval of 1 second. The discrete-time

system has eigenvalues at 0.498 ± 0.867j, 0.694 ± 0.72 j, 0.907 ± 0.421j, and 1.

wileyonlinelibrary.com
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FIGURE 7 Averaged results for the simulations of the mass-spring system. The optimal control law designed using Proposition 1, the

Markov-averaged (MA), group-averaged (GA), and cost-averaged (CA) control laws, designed using Sections 4.2 and 4.3 and Theorem 1,

respectively. The number trialing the name indicates the amount of unique controllers [Colour figure can be viewed at wileyonlinelibrary.com]

The simulation results are shown in Figure 7. The standard LQR did not manage to maintain stability and is therefore omitted.

The optimal controller that takes the full history into account (Optimal 8) performs 18.2% better than the i.i.d controller from

the work of Peters et al.39 When the number of controllers is decreased, the control performance is reduced. Similar to the

simulations for the DC servo, the CA controller outperformed the MA and GA controllers. When only one control law is desired,

the MA and CA controllers outperform the i.i.d controller by a small margin. It is, however, noteworthy that with the MA with

only 1 controller, the performance is better than the MA with 2 controllers. This is believed to be due to the combination of a

suboptimal selection of the grouping function and a suboptimality that is introduced when the Markov chain is reduced. The

CA method outperforms the other methods; however, with only 1 controller, the performance difference between the CA and

MA is small.

6 CONCLUSIONS

We studied stochastic predictive control for systems that are affected by correlated packet dropouts between the controller

and the actuators. The probability for a successful transmission depends on a history of packet transmission outcomes. This

results in a special structure for the Markov transition matrix, which we take advantage of to obtain simple expressions for the

controller design. We obtain feedback policies that take into account the packet arrival history by selecting representative gains

from a lookup table. Simulation studies show that the designed controller outperforms the standard LQR controller design by

a large margin, and for some systems, the presented designs are able to maintain stability where the traditional LQR fails. An

implementation of this controller will, however, result in a significantly sized lookup table.

To reduce the size of the lookup table for the controllers, we presented 3 suboptimal methods to design the control laws.

The difference between these methods is where the reduction of the amount of controllers is performed. All 3 of these methods

show merely a minor performance degradation when the number of controllers is reduced, which allows for a good trade-off

between performance and controller complexity. From the 3 algorithms, the best results for the reduced complexity controller

design are obtained using the CA controller, which enforces the reduction of the number of controllers through the cost. It is

also noteworthy that while the design procedure of the GA controller is simple, there is, in general, only little performance loss

compared with the CA controller.
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25. Val JBRD, Başar T. Receding horizon control of Markov jump linear systems. Paper presented at: Proceedings of the 1997, American Control
Conference, vol. 5; 1997; Albuquerque.

26. Dolz D, Quevedo D, Peñarrocha I, Sanchis R, et al. Performance vs complexity trade-offs for Markovian networked jump estimators.
Paper presented at: Proceedings of the 19th IFAC World Congress, 2014. International Federation of Automatic Control (IFAC);
2014; Cape Town.

27. Smith S, Seiler P. Estimation with lossy measurements: jump estimators for jump systems. IEEE Trans Autom Control. 2003;48(12):2163-2171.

28. Shi Y, Fang H. Kalman filter-based identification for systems with randomly missing measurements in a network environment. Int J Control.
2010;83(3):538-551.

29. Wang Z, Yang F, Ho DWC, Liu X. Robust H∞ control for networked systems with random packet losses. IEEE Trans Syst Man Cybern, Part B
(Cybernetics). 2007;37(4):916-924.
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APPENDIX A

PROOF OF PROPOSITION 1
This proof is done using dynamic programming.40 We define the optimal cost

J⋆N (x0,Θ0) = min
U0,N−1

JN
(
U0,N−1, x0,Θ0

)
.

Note that the cost at any stage n can be written as

J⋆N (x0,Θ0) = min
(u0,· · · ,un)

E

{ n∑
k=0

||xk||2Q + ρk||uk||2R + J⋆N−(n+1) (Axn + ρnBun + ωn,Θn+1)
||||| Θ0, x0

}
.

At stage N, we have

J⋆
0
(xN ,ΘN) = E

{
xT

NSNxN|ΘN , xN
}
= xT

NSN,ixN .

Now, at stage k + 1, we have a cost of the form

J⋆N−(k+1)(xk+1,Θk+1) = xT
k+1

Sk+1,Θk+1
xk+1 + ck+1,Θk+1

,

where ck,Θk ≜ E{ck|Θk}. Then, at stage k, we have

J⋆N−k (xk,Θk) = min
uk

E
{||xk||2Q + ρk||uk||2R + J⋆N−(k+1)(Axk + ρkBuk + ωk,Θk+1)

||| Θk, xk

}
.

Writing this out yields

J⋆N−k (xk,Θk) = min
uk

E
{

xT
k
(
Q + ATSk+1,Θk+1

A
)

xk + ρkuT
k
(
R + BTSk+1,Θk+1

B
)

uk

+ 2ρkuT
k BTSk+1,Θk+1

Axk + ωT
k Sk+1,Θk+1

ωk + ck+1,Θk+1
||Θk, xk

}
,

where we used the fact that ρ2
k = ρk and that ωk is white. Computing the expectation yields

J⋆N−k (xk,Θk) = min
uk

∑
j∈Ξ

(
xT

k (Q + ATSk+1,jA)xk + 1(1,· · · ,r)( j)uT
k (R + BTSk+1,jB)uk

+ 21(1,· · · ,r)( j)uT
k BTSk+1,jAxk + trace(ΣωSk+1,j) + ck+1,j

)
Pr{Θk+1 = j|Θk},

since ρk is only nonzero when Θk+1 ≤ r, as shown in Equation 3. By Equations 4 and 5, we have that Pr{Θk+1 = j|Θk} is only

nonzero when j = ϕΘk and j = ϕ̄Θk . Utilizing this, results in

J⋆N−k(xk,Θk) = min
uk

∑
j=

{
ϕΘk ,ϕ̄Θk

}
(
xT

k (Q + ATSk+1,jA)xk + trace(ΣωSk+1,j) + ck+1,j

+ 1(1,· · · ,r)( j)uT
k (R + BTSk+1,jB)uk + 21(1,· · · ,r)( j)uT

k BTSk+1,jAxk
)

Pr{Θk+1 = j|Θk}.

https://doi.org/10.1002/rnc.3896
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By defining S̄k+1,i ≜ ∑
j={ϕi,ϕ̄i}Sk+1,jpi,j, the above can be written as

J⋆N−k(xk,Θk) = min
uk

xT
k (Q + ATS̄k+1,Θk A)xk + Pr{Θk+1 = ϕΘk |Θk}

(
uT

k

(
R + BTSk+1,ϕΘk

B
)

uk + 2uT
k BTSk+1,ϕΘk

Axk

)
+ trace(ΣωS̄k+1,Θk ) +

∑
j=

{
ϕΘk ,ϕ̄Θk

} ck+1,jPr{Θk+1 = j|Θk}. (A1)

The uk that minimizes Equation A1 is found by taking the gradient of Equation A1 with respect to uk and setting it equal

to 0. This yields

0 = 2Pr{Θk+1 = ϕΘk |Θk}
(

R + BTSk+1,ϕΘk
B
)

uk + 2Pr{Θk+1 = ϕΘk |Θk}BTSk+1,ϕΘk
Axk.

Here, the terms Pr{Θk+1 = ϕΘk |Θk} cancel out. Isolating uk results in Equations 8 and 9.

Substituting the optimal control (8) into Equation A1 results in

J⋆N−k(xk,Θk) = xT
k Sk,Θk xk + ck,Θk

where Sk,Θk is as in Equation 10 and ck,Θk is given in Equation 12.

APPENDIX B

PROOF OF THEOREM 1
This proof is organized as follows. We first show that cost (22) can be expressed as a sum of the costs given the history Θ̂k for

all Θ̂k ∈ Ξ̂. We then show that each of these costs can be stated as a function of the cost at the current stage plus the cost at the

future stages. Finally, we show by induction that the optimal control laws of the form (21) are given by Equation 25.

To simplify the presentation of the proof, let

Vk ≜ ||xk||2Q + ρk||ûk,v||2R.
Then, cost (22) at stage N − k depending on Θk can be stated as

J̄N−k
(
xk, Ūk,N

)
= E

{N−1∑
𝓁=k

||x𝓁||2Q + ρ𝓁||û𝓁,v||2R + ||xN||2S0

||||| xk

}

= E

{N−1∑
𝓁=k

V𝓁 + ||xN||2S0

||||| xk

}

=
∑
v∈Ξ̂

E

{N−1∑
𝓁=k

V𝓁 + ||xN||2S0

||||| xk, Θ̂k = v

}
Pr

{
Θ̂k = v

}
=

∑
v∈Ξ̂

E
{

JN−k
(
xk, Ūk,N ,Θk

)||| xk, Θ̂k = v
}
π̂v, (B1)

where π̂v ≜ Pr
{
Θ̂k = v

}
=

∑
i∈Ξ̂v

πi. Define cost (B1) conditioned on Θ̂k = v by

FN−k
(
xk, Ūk,N , v

) ≜ E
{

JN−k
(
xk, Ūk,N ,Θk

)||| xk, Θ̂k = v
}
π̂v. (B2)

This allows us to state (B1) as

J̄N−k
(
xk, Ūk,N

)
=

∑
v∈Ξ̂

FN−k
(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
. (B3)

In the next lemma, we show that the partial cost (B2) can be expressed as a function of the cost at stage N − k plus the cost

at stage N − (k + 1).

Lemma 1. With control law (21), the partial costs (B2) can at each stage N − k be expressed as

FN−k
(
xk,

(
ûk,v, ūk+1,N

)
, v
)
= E

{N−k
(
xk,

(
ûk,v, ūk+1,N

)
,Θk

)||| xk, Θ̂k = v
}
π̂v, (B4)
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where
N−k

(
xk,

(
ûk,v, Ūk+1,N

)
,Θk

) ≜ xT
k Qxk + ρkûT

k,vRûk,v + JN−k−1

(
Axk + ρkBûk + ωk, Ūk+1,N ,Θk+1

)
(B5)

and JN−k−1 is given in Equation 7.

Proof. For each FN−k
(
xk,

(
ûk,v, Ūk+1,N

)
, v
)
, we have

FN−k
(
xk, (ûk,v, Ūk+1,N), v

)
= E

{N−1∑
𝓁=k

V𝓁 + ||xN||2S0

|||||| xk, Θ̂k = v

}
π̂v

= E
{

Vk
|||xk, Θ̂k = v

}
π̂v + E

{ N−1∑
𝓁=k+1

V𝓁 + ||xN||2S0

|||||| xk, Θ̂k = v

}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ck

π̂v, (B6)

where computing the second expectation on the right-hand side yields

Ck = E

{
E

{ N−1∑
𝓁=k+1

V𝓁 + ||xN||2S0

||||| xk+1,Θk+1

}||||| xk, Θ̂k = v

}

= ∫ E

{ N−1∑
𝓁=k+1

V𝓁 + ||xN||2S0

||||| xk+1,Θk+1

}
Pr

{
xk+1,Θk+1

|||xk, Θ̂k = v
}

dxk+1dΘk+1

= ∫ JN−k−1

(
xk+1, Ūk+1,N ,Θk+1

)
Pr

{
xk+1,Θk+1

|||xk, Θ̂k = v
}

dxk+1dΘk+1

= E
{

JN−k−1

(
xk+1, Ūk+1,N ,Θk+1

) |||xk, Θ̂k = v
}
. (B7)

The result then follows by substituting Equation B7 back into Equation B6.

Now, we can proof Theorem 1 using an induction argument. At stage 0, we have the cost

J̄⋆
0
(xN) = E

{
xT

NSNxN|xN
}
=

∑
i∈Ξ

J̄0,i(xN)πi,

with J̄0,i(xN) defined in Equation B1. At stage N − k − 1, we have with control laws of form (19) the optimal cost

J̄⋆N−k−1
(xk+1) =

∑
i∈Ξ

J̄⋆N−k−1,i(xk+1)πi,

where J̄⋆N−k−1,i (xk+1) ≜ J̄N−k−1,i (xk+1, Ū⋆
k+1,N) is given by

J̄⋆N−k−1,i(xk+1) = xT
k+1

Sk+1,ixk+1 + ck+1,i.

Then, by Lemma 1, we have at stage N − k for Θ̂k = v the cost

F⋆
N−k(xk, v) = min

ûk,v
E
{N−k,Θk (xk, ûk,v)

||| xk, Θ̂k = v
}
π̂v

= min
ûk,v

∑
i∈Ξ

E
{N−k,Θk(xk , ûk,v)

||| xk,Θk = i
}

Pr{Θk = i|Θ̂k = v}π̂v

(a)
= min

ûk,v

∑
i∈Ξ̂v

E
{N−k,Θk

(
xk, ûk,v

) ||| xk,Θk = i
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Di

πi, (B8)

where in (a), we used Bayes' law. Now

Di = E
{

E
{N−k,Θk

(
xk, ûk,v

) |||xk,Θk+1,Θk

} |||xk,Θk = i
}

=
∑
j∈Ξ

E
{N−k,i

(
xk, ûk,v

) ||xk,Θk+1 = j
}

pij

(a)
=

∑
j∈{ϕ̄i,ϕi}

N−k,j
(
xk, ûk,v

)
pij, (B9)
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where (a) follows by Equations 4 and 5 and

N−k,j
(
xk, ûk,v

) ≜ E
{N−k,i

(
xk, ûk,v

) |xk,Θk+1 = j
}

= xT
k
(
Q + ATSk+1,jA

)
xk + trace(ΣωSk+1,j) + ck+1,j

+ 1(r+1,· · · ,d)( j)ûT
k,v

(
R + BTSk+1,jB

)
ûk,v + 21(r+1,· · · ,d)( j)ûT

k,vBTSk+1,jAxk.

Substituting Equation B9 back into Equation B8 yields

F⋆
N−k (xk, v) =

∑
i∈Ξ̂v

N−k,ϕ̄i
(xk, 0) piϕ̄i

πi + min
ûk,v

N−k,ϕi

(
xk, ûk,v

)
piϕiπi.

Writing out N−k,ϕ̄i
and N−k,ϕi yields

F⋆
N−k(xk, v) =

∑
i∈Ξ̂v

∑
j∈{ϕ̄i,ϕi}

[
xT

N−1

(
Q + ATSk+1,jA

)
xN−1 + trace(ΣωSk,j) + ck+1,j

]
pijπi

+ min
ûk,v

⎡⎢⎢⎣
∑
i∈Ξ̂v

(
ûT

k,v
(
R + BTSk+1,ϕi B

)
ûk,v + 2ûT

k,vBTSk,ϕi Axk

)
piϕiπi

⎤⎥⎥⎦ . (B10)

Here, the last part can, using Equation 27, be rewritten to

min
ûk,v

ûT
k,v

(
R̄v + BTS̄k+1,vB

)
ûk,v + 2ûT

k BT S̄k+1,vAxk.

Taking the gradient of Equation B10 with respect to ûk,v and setting this equal to 0, then results in Equations 24 and 25. Inserting

the result into Di in Equation B9 and rewriting this yields

Di = xT
k Sk,ixk +

∑
j∈{ϕi,ϕ̄i}

(
trace(ΣωSk,j) + ck+1,j

)
pij

= xT
k Sk,ixk + ck,i = J̄⋆N−k,i (xk) , (B11)

where Sk,i is given in Equation 26 and ck,i in Equation 30. Combining Equations B3, B8, and B11, then results in Equation 29.
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