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This paper deals with a family of interesting 2 D -quadratic maps proposed by Sprott, in his seminal paper 

[1], related to “chaotic art”. Our main interest about these maps is their great potential for using them 

in digital electronic applications because they present multiple chaotic attractors depending on the se- 

lected point in the parameter’s space. Only results for the analytical representation of these maps have 

been published in the open literature. Consequently, the objective of this paper is to extend the analy- 

sis to the digital version, to make possible the hardware implementation in a digital medium, like field 

programmable gate arrays (FPGA) in fixed-point arithmetic. Our main contributions are: (a) the study 

of the domains of attraction in fixed-point arithmetic, in terms of period lengths and statistical proper- 

ties; (b) the determination of the threshold of the bus width that preserves the integrity of the domain 

of attraction and (c) the comparison between two quantifiers based on respective probability distribution 

functions (PDFs) and the well known maximum Lyapunov exponent (MLE) to detect the above mentioned 

threshold. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Chaotic systems have an increasing number of applications and

heir implementation is specially involved due to the extreme sen-

itivity to initial conditions. In general, these systems are used for

he generation of controlled noises, these digital pseudo-random

oise generators (PRNGs) can be employed in a large number of

lectronic applications, such as encryption sequences for privacy,

ultiplexing techniques, electromagnetic compatibility [2–6] . In

omputers and digital devices only pseudo chaotic attractors can be

enerated. But discretization may destroy the pseudo chaotic be-

avior and consequently is a nontrivial process. 

Several strategies have been proposed in the literature for a cor-

ect selection of the optimal number of bits in hardware imple-

entations. However, most of these procedures are limited to lin-

ar systems [7,8] . In digital chaotic systems, a completely different

ehavior may be obtained by varying the precision. This issue has

ained interest recently, and several new schemes have been pro-

osed [9–11] . 
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In short, in spite of the arithmetic used, i. e. fixed-point or

oating-point arithmetic, the set of numbers that can be repre-

ented is limited. Even using extremely high precision as done by

iao and Wang [12] the generated sequences by a chaotic system

sing digital hardware will always be periodic. 

Grebogi’s et al. work [13] showed that the average length T of

eriodic orbits of a dynamical system implemented in a computer,

cales as a function of the computer precision ξ and the correla-

ion dimension of the chaotic attractor, as T ∼ ξ−D/ 2 . In [14] some

ndings on a new series of dynamical indicators, which can quan-

itatively reflect the degradation effects on a digital chaotic map

ealized with a fixed-point finite precision, have been reported, but

hey are restricted to 1 D piecewise linear chaotic maps (PWLCM).

n [15] the effect of numerical precision on the mean distance and

n the mean coalescence time between trajectories of determin-

stic maps with either multiplicative noise parameter or with an

dditive noise term was investigated. Nepomuceno and Mendes

16] studied the changes in the pseudo orbits of continuous chaotic

ystems when varying the time and discretization schemes. 

Liao [17–19] proposed a numerical algorithm, namely the clean

umerical simulation (CNS). He claimed that the CNS gives an ex-

remely precise numerical approach for chaotic dynamic systems

n a given finite interval. If the initial condition were exact, then

he long-term prediction of chaos would be possible in theory, un-

ortunately, the required CPU time increases exponentially as the

umber of digits precision and Taylor expansion order increases

http://dx.doi.org/10.1016/j.chaos.2017.09.007
http://www.ScienceDirect.com
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Fig. 1. Three attractors for three different sets of coefficients of 2 D -quadratic map. 

s  

p  

F

2

 

p  

i  

m  

a  

e  

d  

t  

b  

w  

t  

v  

s

 

t  

m  

t  

t  

o  

c

 

c  

m  

p  

d  

w  

a

 

w  

D  

e  

m  

t  

v

2

 

a{
 

(for continuous systems), so that it is practically impossible to give

true trajectories of chaos in a very long interval. Unlike our anal-

ysis, which is carried out on a map, we do not address the is-

sue arising from the time discretization. What is more, in [19] ,

lower precisions are despised because they are very far from the

real trajectory. In contradistinction our approach comes from the

hardware implementation point of view, where using minimum re-

sources is mandatory, does not dismiss any precision. Instead, our

goal is to investigate the characteristics for each precision so that

the designer has a complete overview of the options to be used in

its implementation. So that designers will be able to decide which

properties to rescind according to the available resources and re-

quirements. 

One important thing to note is that besides analyzing the

changes in the period lengths, the statistical properties of the se-

quences will be different from those of the real system and so they

also should be analysed. In [20] an excellent work about the con-

sequences finite precision has on the periodicity of a PRNG based

on the logistic map was developed. There, the number, delay, and

period of the orbits of the logistic map at varying degrees of pre-

cision were determined, however they lacked a statistical analysis.

Our research complements their work by adding statistical quan-

tifiers. What is more, they analysed the floating-point architecture

of the map, while here we have chosen fixed-point architecture as

it is the optimal architecture for hardware implementations. From

an engineering point of view, fixed-point arithmetic is more effi-

cient than floating-point, it consumes fewer resources and their

operations require lower number of clock cycles. As a consequence,

power consumption is also diminished. 

Among many chaotic systems available in the literature, we are

interested in a family of 2 D -maps proposed by Sprott [1] . The main

characteristic of this system is it presents multiple chaotic attrac-

tors depending on the selected point in the parameter’s space, this

feature is very attractive to be used in electronic applications. Only

results for the analytical representation of the maps in [1] have

been published in the open literature. 

The objective of this paper is to extend the analysis to the

digital version, to make possible the hardware implementation in

fixed-point arithmetic. For which it is imperative to know both

characteristics, period length and degree of randomness, of the se-

quences. We developed a detailed analysis of the degradation of

the multiattractor chaotic system as a fixed-point implementation

is used. By degradation we mean: (a) the appearance of stable

fixed points and stable periodic orbits with short periods, inside

a floating-point domain of attraction without stable orbits; (b) the

attractor itself becomes periodic and its statistical characteristics

change, making the system more deterministic. 

The main contributions of this paper are: 

• The analysis of the domains of attraction of the chaotic attrac-

tors for a given set of parameters as the number of bits in-

creases; in terms of period lengths and the appearance of stable

fixed points and periodic orbits with short periods are specially

considered; 
• The determination of the consequent threshold width for the

bus, in order to make the statistical properties of the digital

implementation close to those of the floating-point implemen-

tation; 
• Two different probability distribution functions (PDF) are as-

signed to evaluate the stochasticity of the time series for dif-

ferent bus widths. Each PDF P is measured by the respective

normalized Shannon entropy H ( P ). These entropies have abrupt

changes at specific bus widths. Period’s lengths and MLE are

also evaluated and results are compared with H s. 

This work is organized as follows: Section 2 discusses the fun-

damental of the problem that concerns us, including a brief de-
cription of the chaotic system analyzed, and describes the em-

loyed quantifiers. Then, we give experimental results in Section 3 .

inally, the conclusions are given in Section 4 . 

. Preliminary concepts 

When iterating chaotic maps in R 

2 , after a transient that de-

ends on the mixing parameter ( r mix ), the generated sequence lim-

ts in a point or a collection of points called an attractor. A chaotic

ap can have one or more attractors. Attractor domain is called to

ll the initial conditions (ICs) that converge to each attractor. The

rgodic sequences of the attractors, generated by the map, have a

etermined distribution called Invariant Probability Density Func-

ion (IPDF). Main characteristics of chaotic maps, IPDF and r mix , can

e obtained by calculating the Frobenius-Perron operator (FPO),

hich depends on the map’s structure. The fixed points of its spec-

rum are the invariant densities and they correspond to the eigen-

ectors with eigenvalue equal to one, the mixing constant corre-

ponds to the second largest eigenvalue of the FPO [21,22] . 

When using finite precision, this analysis is not valid, all attrac-

ors take the form of fixed points or periodic orbits. The FPO of the

ap no longer describes the sequences’ characteristics. Regarding

he attractor domain, it will also change when digitalized, each ini-

ial value will be part of, or will converge to, a certain fixed point

r periodic orbit. Generally, many new periodic orbits appear, and

hange when the number of bits employed varies. 

With the purpose of utilizing these systems in electronic appli-

ations it becomes necessary to understand how the attraction do-

ain evolves with the variation of bits employed. It is mainly im-

ortant to know which is the period’s length and the randomness

egree of the cycle at which each seed converges. For this reason,

e have included randomness quantifiers that indirectly estimate

 sort of r mix and IPDF of the digitalized system. 

In this paper we have emulated the behaviour of a digital hard-

are implementation, such as FPGA, Complex Programmable Logic

evice (CLPD) or Application Specific Integrated Circuit (ASIC), to

xactly replicate the operation of the device. Our interest is to

easure how the domains of attraction degrade with a change in

he number of bits n employed, as well as to find the threshold

alue n min . 

.1. Chaotic system under study 

The family of 2 D -quadratic maps studied here are modelled by

 pair of coupled quadratic equations: 

x n +1 = a 1 + a 2 x n + a 3 x 
2 
n + a 4 x n y n + a 5 y n + a 6 y 

2 
n 

y n +1 = a 7 + a 8 x n + a 9 x 
2 
n + a 10 x n y n + a 11 y n + a 12 y 

2 
n 

(1)
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Fig. 2. Four chaotic attractors and their domains of attraction in floating-point arithmetics. 

Fig. 3. Coexisting areas in attraction domains for: (a) n f = 5 , (b) n f = 6 , (c) n f = 7 , 

(d) n f = 8 , (e) n f = 9 , (f) n f = 10 , (g) n f = 11 , (h) n f = 12 , (i) n f = 13 , (j) n f = 14 , 

(k) n f = 17 , (l) n f = 18 . 
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Table 1 

Lengths of the periods within the attractor domain x and y ε [ −2 , 2] . 

n f T (Percentage of ICs that converge to this period’s length cycle) 

5 2 (92.7%);6 (7.3%) 

6 88 (41.6%);44 (36.7%);12 (13.8%);16 (6.2%);2 (0.8%);24 (0.6%);26 (0.2%) 

7 12 (83.5%);14 (8.9%);24 (5.2%);34 (1.8%);2 (0.6%) 

8 68 (91.7%);14 (6.2%);12 (1.8%);17 (0.2%);15 (0.1%) 

9 140 (54.5%);123 (25.4%);34 (8.6%);44 (4.3%);38 (3.9%);22 (2.9%);48;2;12;4 

( < 0.1%) 

10 655 (78.2%);212 (21.1%);143 (0.5%);12 (0.1%);2;36;13;20;10;4 ( < 0.1%) 

11 153 (78.1%);461 (10.8%);1381 (8.7%);434 (2.3%);18;30;53;32;34;10;2 

( < 0.1%) 

12 2,278 (64.4%);438 (22.4%);598 (7.6%);886 (4.7%);12 

(0.7%);87;2;42;23;32;10 ( < 0.1%) 

13 11,510 (98.9%);1052 (1%);12;26;2;10 ( < 0.1%) 

14 21,333 (69.2%);5.804 (16.5%);4,795 (7.9%);1,264 (5.8%);2,429 (0.5%) 

46;23;21;10;12;17 ( < 0.1%) 

15 10,099 (58.6%);1.762 (19.4%);14,887 (18.3%);1,598 

(3.4%);750;105;23;14;2;10 ( < 0.1%) 

16 54,718 (87.5%);5,017 (4.7%); > 10 5 (3.7%);5,367 (2.5%);703 (0.9%) 

1,159;1,802 (0.2%);377;75;10 ( < 0.1%) 

17 37,812 (53.1%);38,456 (24.1%); > 10 5 (16.0%);34,749 (3.0%);3,362;718 

(1.5%) 3,006,5,222 (0.1%);15 ( < 0.1%) 

18 > 10 5 (87.4%);52,069 (12.5%);2,471 (0.1%);146;51 ( < 0.1%) 

float > 10 5 (100%) 
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here { x, y } are the state variables and { a i , i = 1 , . . . , 12 } are the

arameters. The main characteristic of this system is it presents

ultiple chaotic attractors depending on the selected point in the

arameter’s space. The 12 D parameters space generated by coeffi-

ients A = { a 1 , . . . , a 12 } is very hard to be explored. 

The reasons to study this particular system are two-fold: 

1. Using floating-point arithmetic Sprott saw that by automatic

swept of parameters a i a huge number of points in the param-

eter’s space (about 6.10 16 ) having a chaotic permanent regime

may be detected. He also found a correlation between the

correlation dimension and the Lyapunov exponents of these

chaotic attractors, with their visual appeal , an interesting issue

for automatic art generation. 
2. It is possible to employ them in a wide variety of electronic

applications, such as generate novel encryption systems either

by replacing the S-box in AES [23,24] , or even by developing

new encryption algorithms [2,3] . 

Three of these chaotic attractors are shown together in Fig. 1 .
heir parameters sets A i are: 

 1 = {−0 . 7 , −0 . 4 , 0 . 5 , −1 . 0 , −0 . 9 , −0 . 8 , 0 . 5 , 0 . 5 , 0 . 3 , 0 . 9 , −0 . 1 , −0 . 9 } , 
 2 = {−0 . 6 , −0 . 1 , 1 . 1 , 0 . 2 , −0 . 8 , 0 . 6 , −0 . 7 , 0 . 7 , 0 . 7 , 0 . 3 , 0 . 6 , 0 . 9 } , 
 3 = {−0 . 1 , 0 . 8 , −0 . 7 , −1 . 1 , 1 . 1 , −0 . 7 , −0 . 4 , 0 . 6 , −0 . 6 , −0 . 3 , 1 . 2 , 0 . 6 } . 

s it can be seen in the figure it is possible to get very different

utputs just modifying the value of the parameters and maintain-

ng the structure of the system. In an electronic implementation

his would be equivalent to keeping the hardware structure and by
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Fig. 4. Enlarged views of sections of the attraction domains for higher values of n f . 
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modifying the parameters through, for example, an input it would

be possible to vary the output. 

Fig. 2 a–d show the same three attractors A 1 

to A 3 of Fig. 1 and together with attractor A 4 =
{−1 , 0 . 9 , 0 . 4 , −0 . 2 , −0 . 6 , −0 . 5 , 0 . 4 , 0 . 7 , 0 . 3 , −0 . 5 , 0 . 7 , −0 . 8 } , su-

perimposed with their basins of attraction (in grey). The white

areas of each figure correspond to those initial conditions gener-

ating divergent trajectories of the system (useless seeds regarding

their use as PRNGs). 

2.2. Analysis tools 

The normalized Shannon entropy applied to two different PDFs

and the maximum Lyapunov exponent along with the mean pe-

riod’s lengths are the quantifiers employed here to estimate the

system’s properties. The entropies help us to evaluate the two

properties that determine the randomness degree, the equiprob-

ability among all possible values and the statistical independence

between consecutive values, while the MLE determines the pres-

ence of chaos 1 . 

2.2.1. Period lengths analysis 

Using n bits to represent the state variables of a D -dimensional

system the maximum theoretical period T max that can be reached

is T max = 2 D.n . Actually, the periods obtained are much lower than

the maximum and are heavily dependent on the IC. 

We have developed an algorithm that emulates the operation

of the system in a digital environment. One task of this code is

to analyze the reached period when starting iteration from each

initial condition using different precisions in a fixed-point archi-

tecture. Each seed could converge to a limit cycle, or it could be

one value of the limit cycle itself. This procedure was repeated for

all the initial conditions to obtain the attraction domain scheme of

the system. 
1 A positive MLE is a necessary condition for the presence of chaos. 

o  

t  

d  
.2.2. Quantifiers of randomness 

The new quantifiers proposed here bring us information about

he degree of randomness, that is not available in “pass-nonpass”

ests like those used as standard to evaluate random number gen-

rators. 

Based on results of previous research [25–27] the normalized

hannon entropy was adopted as quantifier to characterize deter-

inism and stochasticity of the generated sequences. This quanti-

er derives from the Information Theory, and it is a functional of

he PDF. Once the PDF is determined the entropy is defined by the

ery well known normalized Shannon expression: 

 = −
∑ M 

i =1 p i log p i 
log(M) 

, (2)

here M is the number of elements of the alphabet. 

From a statistical point of view, a chaotic system is the source of

 symbolic time series with an alphabet of M symbols. To evaluate

ntropy one needs first to define a probability distribution function

f the time series. It should be noted that the classical probability

istribution, here termed PDF based on histograms, takes only into

ccount the ocurrence of values, but it is not able to detect the or-

er of appearance of them. For example, a sequence of random val-

es generated by any noise generator will exhibit a constant PDF

etween 0 and 1. On the other hand, a saw-tooth sequence will

lso present a constant PDF between 0 and 1. In both cases the

alues appear in the series the same number of times but in a dif-

erent order. This characteristic is crucial because it differentiates a

andom signal from an entirely predictable one. 

There exist different procedures to obtain a PDF [25,28–32] and

he determination of the best PDF P is a fundamental problem be-

ause P and the sample space are inextricably linked. Their appli-

ability depends on particular characteristics of the data, such as

tationarity, time series length, variation of the parameters, level

f noise contamination, etc. In previous work devoted to PRNGs,

he use of two PDFs was successful for the comparison between

ifferent systems. One PDF is the normalized histogram, and its
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Fig. 5. Period’s lengths evolution of the attraction domains for: (a) n f = 5 , (b) n f = 6 , (c) n f = 7 , (d) n f = 8 , (e) n f = 9 , (f) n f = 10 , (g) n f = 11 , (h) n f = 12 , (i) n f = 13 , (j) 

n f = 14 , (k) n f = 17 , (l) n f = 18 . 
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[

ormalized Shannon entropy is denoted here H hist . The other one

s the ordering PDF proposed by Bandt and Pompe [32] and its

ormalized Shannon entropy is here denoted as H BP . By this se-

ection of the PDFs it is possible to cover the two mentioned prop-

rties, namely, (1) the probability of occurrence of each element of

he alphabet (PDF based on histograms), and (2) the order of the

tems in the time series (PDF based on Bandt-Pompe technique).

ne may consider the statistics of individual symbols or the statis-

ics of sequences of d consecutive symbols. In the first case P is

on-causal because it does not change if the outcomes are mixed

p and the number of different possible outcomes is M . In the sec-

nd case, the outcome changes if the output is mixed and then one

ays that P is causal . In the second case the number of different

utcomes is equal to M 

d and increases rapidly with d . Bandt and

ompe made a proposal in [32] that is computationally efficient,

ecause it limits the outcomes to d !, but retains causal effects. 

The representation plane H BP vs H hist is considered in [25] . A

igher value in any of the entropies, H BP and H hist , implies an in-

rease in the uniformity of the involved PDFs. The point (1, 1) rep-

esents the ideal point for a system with uniform histogram and

niform distribution of ordering patterns. A discussion about the
onvenience of using these quantifiers is beyond the scope of this

aper but there is an extensive literature [25,33,34] . 

.2.3. Maximum Lyapunov exponent 

The Lyapunov exponents are quantifiers that characterize how

he separation between two trajectories evolves [35] . It is well

nown that chaotic behaviors are characterized mainly by Lya-

unov numbers of the dynamic systems. A chaotic behavior re-

uires that one or more Lyapunov numbers to be greater than zero.

therwise, the system is stable. In this paper, we employ the max-

mum Lyapunov number as it is one of the most useful indicators

f chaos. 

The distance between trajectories changes in 2 MLE for each iter-

tion, on average. If MLE < 0 the trajectories converge, this may be

ue to a fixed point, if MLE = 0 the trajectories keep their distance,

his may be due to a limit cycle, if MLE > 0, the distance between

rajectories diverges, and is an indicator of chaos [36] . 

In this case we have adopted a non-analytical way to measure

t as here only the inputs and outputs of the system are accessible

35] . 
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Fig. 6. Plane H hist - H BP for different number of bits. 

Fig. 7. Summary of initial conditions’ behavior. 
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3. Results 

An ANCI C code that simulates iterating a nonlinear system, the

quadratic map, in any digital electronic device was developed in

order to generate sequences which were then analyzed. 

It iterates the 2 D -quadratic map 10 5 times, in this case coeffi-

cients a to a have the values: 
0 11 

c  
{ a i } = {−1 . 0 , 0 . 9 , 0 . 4 , −0 . 2 , −0 . 6 , −0 . 5 , 0 . 4 , 0 . 7 , 0 . 3 , −0 . 5 , 0 . 7 , −0 . 8 } .
he system was intended to be working in fractional fixed-point

rchitecture with n bits, where n = n i + n f , in two’s complement

epresentation ( Ca 2 ). In this case we employed n i = 4 bits for

epresenting the integer part, and the code automatically varies

he number of bits representing the fractional part of the number,

 f , in order to analyze how the system reacts when the precision

hanges. The code runs through all the ICs within the interval
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Fig. 8. Weighted average of quantifiers H BP , H hist and MLE as functions of the num- 

ber of bits. 
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 −2 , 2] in steps determined by the current n f , so, the step_grid

ill be: 

tep _ grid = 

1 

n f . 2 

n f 
. (3) 

On each case it was determined whether the systems evolves

o a fixed point, diverges or goes towards a periodic cycle, also se-

uences for each cycle of that IC using n f bits of precision were

enerated. These data were then evaluated using the randomness

uantifiers previously introduced in Section 2.2 . 

Fig. 3 displays the obtained domains of attraction for n i = 4

nd some values of n f . The abscissa and ordinate axis correspond

o initial values of x and y respectively. Each point represents an

C and the colour is associated to its final state, the darker the

one of grey the shorter the cycle, fixed points are in black and

ivergent points in white. So, the different domain attractors (in-

luding the attractors) that coexist in the system can be seen

ere. 

With the purpose of being able to distinguish the different

oexisting areas, a diverse range of gray tones have been used

n each figure. It must be taken into account that each figure

as its own gray range, this means that, for example, an almost

hite area when n f = 5 ( Fig. 3 a) corresponds to a period of 6,

hile a darker area in a figure with higher n f may correspond

o a period higher than a thousand ( Fig. 3 e). These figures al-

ow reflecting the complex domains of attraction that appear when

igitalizing. 

It can be seen in Fig. 3 that the smaller the value of n f the big-

er the area of ICs that tends to diverge and to converge to fixed

oints. As n f increases, the area of divergent and fixed points de-

reases. These figures along with Table 1 allows an easy interpre-

ation of the system’s behavior. In Table 1 the sequence lengths

hat appear in the attractor domain for every n f are sorted by the

ore to the less numerous ICs that converges to that cycle. It can

e seen the rate of occurrence. Indeed, figures with lower values

f n f present irregular, or rough surfaces, pointing out that differ-

nt lengths cycles coexist there. For example, for n f = 5 there is a

revalence of short periods cycles. In that case, there exist just two

imit cycles, the lighter grey zone corresponds to the attraction do-

ain of the limit cycles of length six, that is the less numerous cy-

le, according to Table 1 , and, the darker zone corresponds to the

ttraction domain of length two cycle. 

Although for n f ≥ 13 ( Fig. 3 i–l) the attractor domain appears to

e smooth and uniform, however, if we enlarge a section of the fig-

res ( Fig. 4 ) it can be seen that there are still cycles with different

eriods that coexist in the attractor for n f = 14 , 17 and 18. 

Nevertheless, when we want to make a general comparison of

hat happens to the periods when the precisions are varied a

olor scale is required, see Fig. 5 . Fig. 5 shows that as the value of

 f increases the colour of the area becomes more smooth and clear,

ndicating that the ICs converge to higher periods cycles. This is the

ange of initial values that generate useful sequences increases for

igher values of n f . 

This can also be seen in Table 1 , where as n f increases the

redominant limit cycle’s length increases. In order to compare

he obtained values with the real sequences we have simulated in

oating-point with 236 −bit mantissa (IEEE 754 octuple-precision

inary floating-point format) we call this here floating-point or just

oat , it is the arithmetic closest to real numbers. Then, using float

recision all the limit cycles are higher than 10 5 , they converge to

he chaotic attractor seen in Fig. 2 d. 

In relation to the randomness quantifiers, we realized that the

nalysis performed up to this point was not enough to fully de-

cribe the changes in the dynamic of a digitalized chaotic system.

o reach long periods does not ensure that the systems’ exhibit
ood properties with respect to randomness. So we decided to fur-

her study the data obtained by employing statistical quantifiers. 

As said, in Fig. 3 a the two gray zones correspond to the ini-

ial conditions that converge to the two coexisting cycles of pe-

iod two and six respectively. Then this two cycles will have a

etermined value of H hist and H BP , H hist | T =2 = 0 . 0625 , H hist | T =6 =
 . 1199 , H BP | T =2 = 0 . 1053 and H BP | T =6 = 0 . 2723 . However, the re-

orted value of these quantifiers can not be the average of both,

ince the rate of occurrence of cycle two is much greater than

hat of cycle six (period two appears 92.7% times while period six

nly 7.3%, see Table 1 ). Therefore, we have calculated the averaged

uantifiers by weighting each quantifier by its rate of occurrence. 

The H hist vs H BP plane, shown in Fig. 6 , allows a quick visual-

zation of the behavior in terms of randomness of the system, in

his plane the “ideal” point, from the statistical point of view, is (1,

). Here, the system seems to stabilize for n f higher than 12. It can

e seen that while the H hist stabilizes close to the maximum value

 H hist = 1 ), the H BP tends to stabilizes to 0.5. This value of H BP is

haracteristic of chaotic systems and is due to the inner structures

f their attractors. 

A summary of the observed analysis of these outputs can be

een in Fig. 7 . 

Fig. 7 a and b show the number of points that diverge and con-

erge to fixed points respectively as the value of n f increases, in

oth cases, the final value tends to the floating-point case. It is

lear from these figures that for n f ∼ 12 the system seems to have

tabilized. Fig. 7 c shows that the averaged period of cycles in-

reases at a logarithmic rate. Finally, Fig. 7 d shows the number

f initial conditions that present periods T higher and lower than

,0 0 0. Again, a value of 12 for n f seems to be the limit to obtain a

ood approximation of the system. 

Fig. 8 shows the weighted average of quantifiers H hist , H BP and

LE . In the figure it can be seen that the three quantifiers tend

o the value calculated using floating-point arithmetic. While H BP 

nd MLE stabilize for n f ∼ 12 or 13, H hist reaches the floating-point

alue for n f ∼ 19, showing that there are properties of the output

equences that only this quantifier can detect. This confirms the

eed to use both quantifiers to characterize the randomness of the

equences. 

As can be seen from the above analysis, the minimum number

f bits is determined by H hist quantifier and results to be n f = 19

lus the number of bits used to represent the integer part n i = 4 ,

herefore n turns out to be equal to 23. 
min 
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4. Conclusion 

In this work, we have developed a detailed analysis of the

changes in behaviour of a 2 D -quadratic map fixed-point imple-

mentation. Our goal is to report the rate of degradation for each

systems’ property, so as to be used by authors at the time of de-

signing their particular applications. Results show that it is pos-

sible to determine a threshold for the number of bits employed

in the fixed point representation of the system, whereas the do-

main of attraction preserves its integrity and the characteristics of

the generated sequences are kept. With the help of the quanti-

fiers of randomness introduced it was possible to determine that

limit, in the case of study it was 23 bits. The same procedure

should be repeated for any other system if it is desired to be

used in a digital electronic application, such as controlled noise

generators or to develop novel encryption systems. In the partic-

ular case of Sprott’s chaotic system, if the minimum number of 23

bits is satisfied at the time of digitalizing, we conclude that it is

possible to successfully use it as a component of new encryption

algorithms. 
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