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A methodology based on second-order data (excitation emission matrices) modeling with one of most

popular algorithms presenting the second-order advantage, parallel factor analysis (PARAFAC),

combined with transference of calibration is proposed to predict the analyte concentration when

significant inner filter effects occur, even in the presence of unexpected sample components.

The quantitation of phenylephrine hydrochloride (PHE) in water samples (concentrations ranged

between 250 and 750 ng mL�1) in the presence of ibuprofen, acetyl salicylic acid and paracetamol

(which produce inner filter effect across the useful wavelength range) was achieved. The strategy

allows reducing the experimental work and increasing the analytical sensitivity in the determination of

the analyte of interest in the presence of unexpected compounds and matrix effect caused by inner

filter, avoiding the preparation of a large number of solutions and maintaining acceptable figures of

merit. Recoveries between 97 and 102% for validation and real spiked water samples, respectively, and

a relative prediction error of 5% were achieved.

Results were compared with those obtained after the application of the classical standard addi-

tion method combined with PARAFAC, carrying out five additions to each sample, in triplicate.

The presented methodology constitutes a simple and low-cost method for the determination of PHE

in water samples with a considerable reduction in standard handling and time. This methodology can

be extended to other systems presenting matrix effect and, consequently, can become in a useful tool to

know the amount of pharmaceuticals in the aquatic environment and to evaluate the effect of

conventional wastewater treatment plants in the elimination of pharmaceutical compounds.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Generally, the determination of pharmaceutical compounds in
complex samples requires the application of different methodo-
logies in order to obtain selectivity when unexpected compounds
are present and, also, to deal with matrix effect, which involves
changes (enhancement or suppression) in the analytical response
(with respect to that found in clean or less complex samples).
In these cases, a calibration curve based on pure analyte samples
will furnish an incorrect determination [1].
ll rights reserved.

oechea).
An inherent problem of many fluorimetric procedures is the
absorption of exciting and/or emitted radiation by dissolved species
(either fluorescent or not) or by the fluorophore itself [2]. This is
termed the inner filter effect and leads to a variation not only in
intensity but also in spectrum shape. Both drawbacks can be
corrected by the well known standard addition method (SAM),
which compensates matrix effects arising from the specific compo-
sition of the sample. However, the major inconvenient linked to this
methodology is the high number of experiments needed, as new
calibration curves must be built when new samples are analyzed.
Furthermore, in order to accomplish acceptable figures of merit, it is
highly recommended that at least four different concentrations of
pure standard should be added to the sample [1–3]. On the other
hand, given a multicomponent mixture with several analytes of
interest, generalized standard addition method (GSAM) is required
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to simultaneously determine the analyte concentrations [4], mostly
according to an experimental design [5]. Several interesting appli-
cations have been developed in this context [5–8].

As mentioned above, real sample composition often includes
undesirable compounds. These multicomponent mixtures can be
solved with multivariate calibration techniques such as partial
least squares (PLS-1). However, with the aim of achieving preci-
sion and accuracy, first order algorithms need to model not only
all the responsive components, but the whole matrix effect in the
calibration step by preparing a large number of samples [9].

It is known that analyte quantitation in the presence of
responsive potential interferents can be performed by measuring
second-order signals and processing them with appropriate
second-order multivariate algorithms achieving the second-
order advantage [10]. Combinations of these algorithms and
SAM have been proposed to solve both inconveniences: presence
of unknown components and matrix effect. Several applications of
PARAFAC have been published in the literature [11–14], when the
sensitivity of the response depends on the matrix composition.
Other second-order calibration algorithms being used in this
context were multivariate curve resolution based on alternating
least squares (MCR-ALS) [15–17], as well as self-weighted alter-
nating trilinear decomposition (SWATLD) [18] and multidimen-
sional partial least squares model coupled to residual
bilinearization (N-PLS/RBL) [19]. Nevertheless, in all cases, a high
number of samples still need to be prepared to reach acceptable
figures of merit.

Recently, the ability of U-PLS/RBL to analyze complex samples
of fluorescent species showing inner filter effects was demon-
strated [20,21]. Interestingly, the time-consuming experimental
procedure for SAM was avoided modeling the spectral changes
through the flexibility of PLS. However, in these cases, both the
analyte and the component causing inner filter effect were
modeled in the calibration step, therefore being necessary to
know the component that causes this effect, which cannot be
easily achieved in most real samples.

The main purpose of the strategy presented in this work is to
reduce the number of samples to be prepared when interferences
and inner filter effect are present together in a sample without
the requirement of knowing the sample composition.

In order to solve the first task, the well-known algorithm
PARAFAC was applied to obtain the analyte signal free from those
generated by components not included in the calibration set.
To overcome the inner filter effect with minimum sample
preparation, a novel approach has been implemented, i.e.,
second-order modeling coupled to calibration transfer. Standar-
dization techniques are mostly used to transfer a calibration
model created in one instrument to a new situation (i.e., a
different instrument, altered conditions, etc.), thereby avoiding
full recalibration [22]. Various methods for calibration transfer
exist in the literature attempting to deal with noncalibrated
variations that are detected after the model is already in use
(i.e., change of the instrument or a part of it) [23–25]. An
important development in multivariate transfer is piecewise
direct standardization (PDS) [26], which reconstructs each spec-
tral point on the primary instrument from several measurements
in a small window on the secondary instrument. Some reports
have been published regarding the application of PDS in several
contexts, such as classification [27], correction of spectral varia-
tion induced by temperature [28] and calibration transfer for
three-way data structures [29]. A literature search reveals that
PDS can be considered the routine method for calibration transfer.

We and other authors have previously reported the combina-
tion of PDS with second order modeling to alleviate the experi-
mental work [30–32]. These latter publications corresponded to
high performance liquid chromatography with diode array
detection (HPLC-DADS) applications for determination of emer-
gent contaminants in water samples. Transferred calibration data
sets were obtained from standardization of solvent based calibra-
tion data and used in the prediction step of water samples in
which the matrix effect was evident owing to the SPE step which
needs considerable both time and chemicals. As a result, the
chromatographic profiles obtained by direct injection could be
standardized into chromatograms in real situations using transfer
vector with high determination coefficients among signals before
and after transformation (r2

Z0.99). In the present report effort
was put in performing a full statistical demonstration of the
applicability and robustness of the proposed methodology. Whit
this aim, a set of simulated and experimental excitation–emission
matrices (EEM) data were created in order to evaluate the
performance of the methods. In addition, an experimental system
was used to determine phenylephrine hydrochloride (PHE)
in water samples in the presence of ibuprofen (IBU), acetyl salicylic
acid (ASA) and paracetamol (PAR). PHE has been previously deter-
mined in several pharmaceutical forms by HPLC [33,34], flow
injection analysis [35], spectrophotometry [36], capillary electro-
phoresis [37], spectrofluorometry [38] and multivariate calibration
by using PLS-1 modeling [39]. It has been demonstrated that in the
presence of PAR, the emission intensity of PHE strongly decreases,
due to the high absorbance of PAR across the excitation maximum
of PHE [5,38]. For these reasons, a novel chemometric strategy was
developed. The methodology first applies PDS to unfolded matrices
in order to transfer the sample signal to the calibration curve
conditions using only two standard samples in each situation.
Afterwards, the refolded transferred data is subjected to PARAFAC
modeling in order to obtain the scores useful for analyte prediction
(PDS/PARAFAC). An additional advantage (in addition to the fact that
only two standard additions are needed) is achieved when these
methods are applied, since the analytical sensitivity of the calibra-
tion curve is kept and the sample signal is transferred in order to be
predicted using the standard curve. Results were compared with
those obtained after the application of standard addition method
combined with PARAFAC, carrying out five additions to the sample
in triplicate.
2. Experimental

2.1. Reagents and solutions

PHE, IBU, ASA and PAR were obtained from Laboratory of
Pharmaceutical Quality Control (Faculty of Biochemistry and
Biological Sciences, National University of Litoral, Argentina).
Aqueous stock solutions of PHE (100 mg L�1), ASA (100 mg L�1)
and PAR (200 mg L�1) were prepared. IBU 100 mg L�1 was pre-
pared in methanol of HPLC grade (Aberkon, Buenos Aires,
Argentina). An aliquot of 1.00 mL of the latter solution was placed
into a 10.00 mL volumetric flask, the solvent was evaporated to
dryness by a gentle stream of nitrogen and the flask was then
completed to the mark with Milli-Q water. Ultrapure water was
obtained from a Milli-Q water purification system from Millipore
(Bedford, MA, USA).

2.2. Apparatus

All spectrofluorimetric measurements were performed using
a Perkin-Elmer LS-55 luminescence spectrometer equipped with
a Xenon discharge lamp, Monk-Gillieson type monochromators
and a gated photomultiplier connected to a PC microcomputer via
a RS232C connection and using 1.00 cm quartz cells. Excitation–
emission fluorescence matrices were collected varying the excita-
tion wavelength between 215 and 240 nm each 2 nm, and



A.V. Schenone et al. / Talanta 109 (2013) 107–115 109
registering the emission spectra from 270 to 360 nm each 0.5 nm.
Hence, the size of each data matrix was 181�13.
The slit band widths for the excitation and emission monochro-
mators were fixed at 10 nm and the detector voltage at 650 V.

For data processing, all implemented routines were performed
using the software MATLAB 7.1 [40] and the PLS_Toolbox 2.1.1.
from Eigenvector Inc. [41]. A useful interface for data input and
parameters setting, written by Olivieri et al. [42] was employed
for PARAFAC implementation.

2.3. Data

2.3.1. Simulated data

Simulated excitation–emission data were used to study the
performance of the present strategy. A calibration set of second-
order signals was built with a single analyte at nominal concen-
trations from 1.0 to 6.0 (in arbitrary units) each 1 unit, in
triplicate. A test set was also created with 51 test samples in
which one uncalibrated component was included together with
the calibrated analyte, the latter at nominal concentrations from
1.0 to 6.0 each 0.1. The uncalibrated compound simulates not
only an interferent but also causes inner filter effect, decreasing
the fluorescence intensity of the original signal at any channel,
and modifying the emission analyte profiles, which vary across
the set of samples. Moreover, six analyte additions from 1.0 to
6.0 were done for each of the test samples in triplicate.

The dimension of each data matrix was 31�31 data points
(corresponding to the first and second dimension, which is
intended to mimic emission and excitation wavelengths, respec-
tively). The level of noise added to the simulated second-order
data was 1% and 5% in signal and concentration, respectively.
Fig. 1 shows the excitation and emission spectra of components
1 and 2 and ilustrates how the analyte profiles in both dimensions
vary in a test sample.

In the absence of inner filter effects, the calibration signals
would be computed as:

Xc,i ¼ y1,c,i S1þR sX ð1Þ
Fig. 1. Simulated excitation and emission profiles for pure component 1 (solid line) and

effect produced by component 2 in both dimensions (dotted line).
in which Xc,i is the J�K matrix of second-order signals for the ith
calibration sample, yn,c,i is the nominal concentration of each
analyte, and Sn¼kn bn cn

T are the corresponding matrix signals at
unit concentration for the analyte n (bn and cn are the profiles in
the first and second dimensions, both normalized to unit length,
and kn is a scaling factor, all set at 1), R is a matrix of Gaussian
random numbers with unit standard deviation of appropriate
size, and sX is the standard deviation of the noise added to signals.

The test signals were built using the following expression:

Xu ¼ y1,u S1þy2,u S2þR sX ð2Þ

where Xu is the J�K matrix for the unknown sample, yn,u is the
nominal concentration of each component, and S2 is the matrix
signal for the unexpected component.

When inner filter effect from component 2 on component 1 is
present, then S1 is replaced in Eq. (2) by an S1,if matrix whose
generic (j,k) element is given by the following expression:

S1,if ðj,kÞ ¼ S1ðj,kÞ � exp½�ðe2jþe2kÞy2,u� ð3Þ

in which e2j and e2k are the absorptivities of component 2 at
channels j and k, respectively, in each of the data dimensions. The
product (e2j y2,u) represents the inner filter effect produced when
component 2 absorbs the excitation intensity at channel j,
whereas (e2ky2,u) corresponds to absorption of the emission
intensity at channel k. The absorptivities are given by the product
of an adjustable scaling factor and the values of the excitation
profile c2 at each of these two channels.

2.3.2. Experimental data

2.3.2.1. Sample collection and preparation. Well water and tap
water were collected from Santa Fe (Argentina). Before analysis
they were centrifuged at 5000� g, filtered through 0.45 mm filters
and stored at 4 1C in refrigerator.

2.3.2.2. Preparation of standards and spiked samples. A calibration
curve of five standard samples of PHE was prepared in the range from
250 to 750 ng mL�1 each 125 ng mL�1, in triplicate. Furthermore, the
2 (dashed line) and component 1 in a test sample after computing the inner filter
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same set of samples was prepared in the presence of 10.00 mg L�1 of
PAR in order to compare the slope of both regressions.

Following a fractional central composite design of four factors
at five levels, a validation set of seventeen samples was prepared
in Milli-Q water with different concentrations of PHE (from 248 to
400 ng mL�1), IBU (from 251 to 400 ng mL�1), ASA (from 50 to
79 ng mL�1) and PAR (from 5.0 to 20.0 mg L�1). Composition of
the validation samples is shown in Table 1.

Well water and tap water samples, treated as described above,
were spiked with PHE, IBU, ASA and PAR at different concentra-
tion levels. The composition of these samples is explained below
in the ‘Results and discussion’ section.

Two additions of PHE stock solution were made to each
validation and water sample (375 and 625 ng mL�1) in order to
implement the transference procedure. Moreover, five additions
(from 250 to 750 ng mL�1) of analyte stock solution were carried
out in triplicate to three of the test samples (samples 2, 12 and 14
from Table 1) to apply the standard addition method.

Samples were prepared by measuring appropriate aliquots of
standard solutions of each drug, placing them into 10.00 mL
volumetric flasks to obtain the desired concentrations and com-
pleting to the mark with Milli-Q water or with each sample in the
case of validation samples and water samples, respectively.
3. Theory

3.1. PDS

In the present report, a combination of second-order algorithm
and piecewise direct standardization (PDS) [26] was used in order
to isolate the analyte signal and to transform the sample data into
the signal corresponding to pure analyte situation, respectively.
As a consequence, an additional advantage is achieved since the
analytical sensitivity of the response will be that corresponding to
the calibration curve made with pure standards instead of the one
from the curve with inner filter effect.

PDS relates the response r of a sample obtained in a situation
A (XA) to the response obtained in a situation B (XB), the relation-
ship being described by the transformation matrix F, according
Table 1
Composition of the experimetal validation setn.

Sample PHE (ng mL�1)a IBU (ng mL�1)a AAS (ng mL�1)b PAR (mg L�1)c

1 365.0 369.6 54.5 8.04

2 365.0 280.0 74.3 12.5

3 321.2 400.4 64.4 20.0

4 277.4 369.6 54.5 12.5

5 321.2 324.8 79.2 17.0

6 394.2 324.8 64.4 8.04

7 277.4 280.0 54.5 12.5

8 365.0 369.6 74.3 8.04

9 321.2 324.8 64.4 17.0

10 321.2 324.8 64.4 12.5

11 365.0 280.0 54.5 12.5

12 248.2 324.8 64.4 17.0

13 321.2 250.6 64.4 12.5

14 321.2 324.8 49.5 5.0

15 321.2 324.8 64.4 12.5

16 277.4 369.6 74.3 8.04

17 277.4 280.0 74.3 17.0

n Following a fractional central composite design of four factors at five levels.
a Uncertainty in concentration s¼7 ng mL�1 estimated by error propagation.
b Uncertainty in concentration s¼6 ng mL�1 estimated by error propagation.
c Uncertainty in concentration s¼0.1 mg L�1 estimated by error propagation.
to:

XA ¼XBF ð4Þ

In the case under study, situation A corresponds to excitation–
emission signals from standards built in Milli-Q water and
situation B to excitation–emission signals with inner filter effect.

PDS builds a multivariate model between the response r of a
sample measured at the jth wavelength in situation A and
different responses obtained in situation B. These secondary
responses are in a window that is centered in the jth wavelength.
The relationship can be described as follows:

rj ¼Rjbj ð5Þ

in which Rj is the localized response matrix of the transfer
samples and bj is the vector of transformation coefficients for
the jth tensor. The regression vectors calculated for each window
in the data are then assembled to form a banded diagonal matrix
F, according to

F¼ diag ðb1
T, b2

T,. . ., bj
T,. . ., bk

T
Þ ð6Þ

in which k is the number of sensors. In the case under study,
F matrix was calculated using only two samples in each situation
and window size equal to three. The samples in situation A were
two pure standard samples (2 and 5 in arbitrary units for
simulated data, 375 and 625 ng mL�1 for experimetal data) and
in situation B, two additions made to the sample (in the same
levels as the standards) in the presence of inner filter effect.
The response of any unknown sample can then be standardized
according to:

xS
T ¼ xTF ð7Þ

in which xS
T represents the sample as if it would have been

measured under situation A (absence of inner filter effect).
As can be seen, the explained methodology is suitable for first

order signals. Consequently, data matrices were first unfolded into
two-way data and subjected to PDS, followed by the application of
PARAFAC to the refolded transfered matrices. The gathered scores
were then useful for sample prediction (see Fig. 2).

3.2. PARAFAC

The strategy presented in this report combines PDS with
PARAFAC. This was carried out by first unfolding the EEM into
vectors and then submiting them to PDS as explained in Section
3.1. Once the sample data was transferred to the calibration curve
situation, the refolded matrices were subjected to PARAFAC (see
Fig. 2).

A PARAFAC model of a three-way array is given by three
loading matrices, A, B, and C with elements ain, bjn, and ckn [43].
The trilinear model is found to minimize the sum of squares of the
residuals, eijk in the model:

xijk ¼
XN

n ¼ 1

ainbjncknþeijk i¼ 1,2,:::, I, j¼ 1,2,:::, J, k¼ 1,2,:::,K

ð8Þ

The matrix form of this trilinear model is as follows:

Xk ¼A diag ðcðkÞÞB
T
þEk k¼ 1,2,. . ., K ð9Þ

In chemistry, the columns of the loading matrices A and B can
always be assigned with certain physical meanings, i.e., excitation
and emission spectra in fluorescence spectrometry, and chroma-
tographic profiles and ultraviolet–visible spectra in HPLC-DAD.
The columns of the loading matrix C often represent concentra-
tions of components in mixtures.

In second-order calibration, PARAFAC first treats all the loading
matrices A, B and C as unknowns. Then, they are estimated by



Fig. 2. Diagram indicating how predictions are made by PDS/PARAFAC on a new test sample containing unexpected components and inner filter effect. See text for details

on the employed symbols.
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alternating least squares algorithm after random initialization. The
concentrations of the components in unknown samples are predicted
by regressing the loading matrix C estimated by PARAFAC on the
known concentrations of the calibration samples.

When the standard addition method is combined with
PARAFAC, the raw second-order data of the sample and that of
each five additions in triplicate are analyzed together. The
estimation of the analyte concentration in the sample can be
obtained through a plot of the scores (sample mode loadings in C)
as a function of the amount of standard added by fitting a line to
the data and finding its intercept on the abscissa, in the same way
as in univariate standard addition.
4. Results and discussion

4.1. Simulated data

For illustrating the performance of the developed method,
simulated excitation–emission data with two components, a
given noise level and inner filter effect were built (see ‘Experi-
mental’ section).

The second-order data for each of the 51 test samples was
treated as follow: first, the data from a test sample and two
additions (2 and 5) as well as two samples from the calibration
curve were unfolded into vectors. After that, the sample vector
was subtracted from the vectors of each of the two additions
made to this sample. PDS was then applied to obtain F using
a window size equal to three and a tolerance equal to 0.01.
This transformation matrix was then used to transfer the sample
unfolded data matrix. The new sample signal was refolded into a
matrix and subjected to PARAFAC together with the standard
curve and the scores were used for sample prediction. The
number of PARAFAC factors for these samples was determined
through the analysis of the core consistency [44], which allows
establishing it as two in samples with the interference.
The transformation impact can be appreciated in Fig. 3, which
shows the contour plots of the same simulated test sample before
and after PDS/PARAFAC and are compared with the pure analyte
signal. The standard addition method, combined with PARAFAC,
was also applied to simulated data in order to compare the results
gathered with the method described in this work.

Prediction parameters from the 51 simulated samples are
summarized in Table 2. Prediction results were satisfactory,
leading to mean recovery of 100.0% and a relative error of
prediction (REP) of 3.7% for PDS/PARAFAC. Interestingly, when
applying the classical SAM combined with the second-order
algorithm, the results obtained were of the same quality, showing
that the experimental work can be considerably reduced.

The estimation of figures of merit in multi-way calibration has
been subject of several papers in the recent literature [45–47].
Sensitivity (SEN), defined as the change in net response for a given
change in analyte concentration, can be considered as one of the
most relevant in the scenario of analytical chemistry owing it is a
decisive factor in estimating other figures of merit, such as limit
of detection (LOD), limit of quantitation (LOQ) and uncertainty in
prediction of concentration (SD) [45].

According to Olivieri and Faber [47], a general expression for
computing the sensitivity in any calibration situation using
second-order bilinear signals can be obtained as:

SENn¼ sn ðBexp
T Pb, unxBexpÞ n ðCexp

TPc, unxCexpÞ

h i�1
� ��1=2

nn

ð10Þ

in which ‘n’ indicates the element-wise Hadamard matrix pro-
duct, ‘nn’ implies the (n,n) element of a given matrix and sn is the
integrated total signal for component n at unit concentration. Bexp

and Cexp are the expected sample components that are present in
the calibration set of samples, and Pb,unx and Pc,unx can be
obtained by the following expressions:

Pb, unx ¼ I2Bunx ð11Þ

Pc, unx ¼ I2Cunx ð12Þ



Table 2
Results and figures of merit of simulated data analysis.

PDSc SAMc

Rec (%)a 100 (4)71 99 (3)71

REP (%)b 3.7 2.5

SEN d 2.2 1.5

ge 221 108

g�1 0.004 0.009

a Mean recovery (%).

b Relative error of prediction (%), REP¼ 100
c

1
I

PI
1

ðcact�cpredÞ
2

� �1=2

, where I is the

number of samples, cact and cpred are the actual and predicted concentrations, and

c is the mean concentration.
c Between parenthesis the standard deviation.
d Mean sensitivity.
e Mean analytical sensitivity.

Fig. 3. Contour plots of EEMs from a test sample before (A) and after (B) PDS/PARAFAC procedure and from a calibration sample only containing the component 1 (C).
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where Bunx and Cunx contain the profiles for the unexpected
components as columns, and I is an identity matrix. Notice that
the matrices Bunx and Cunx can be built with columns representing
the true spectral profiles for the unexpected components.

Better insight is furnished by the analytical sensitivity, defined
by

gn ¼ ðSENn=99dr99Þ ð13Þ

where 99dr99 is a measure of the instrumental noise, which can be
estimated by statistical analysis of blank samples replication. It
allows comparing analytical methods, regardless the specific
technique equipment and scale employed. Moreover, it estab-
lishes the minimum concentration difference (g�1) which is
statistically discernible by the method along the dynamic range,
considering the random instrumental noise as the only source of
errors.

In the present report, the above defined figures of merit were
selected to gather knowledge about the convenience or not of the
implementation of the discussed methodology to reduce experi-
mental work and to improve the sensitivity. Thus, the main
difference between the methods can be visualized in Table 2
when the analytical sensitivity is considered. As can be seen, this
value increased more than two fold when PDS/PARAFAC was
applied. Consequently, its inverse, which means the minimum
concentration difference that can be measured, was dropped from
0.009 to 0.004 (arbitrary unity of concentration).
An important observation should be made: as the transforma-
tion matrix (built with information of the analyte without and
with inner filter effect) is used to transfer the sample unfolded
data matrix, one want to know if the interference spectrum is
modified during this process. Thus, in order to compare the
profiles of the interferent obtained after the application of both
methodologies with its pure spectra, the degree of spectral over-
lap (S12) was calculated employing the following expression:

S12 ¼
99s1

T s299
99s19999s299

ð14Þ

in which s1 and s2 are the pure spectra for the interferent and the
profile obtained in each case, respectively. The value of S12 ranges
from zero to one, corresponding to the extreme situations of no
overlapping and complete overlapping, respectively. In the excitation
mode, the S12 values were 0.9256 and 0.9999 for PDS/PARAFAC and
SAM, respectively, whereas they were 0.9038 and 1.0000 when the
emission mode was analyzed for PDS/PARAFAC and SAM, respec-
tively. The latter indicates that the spectrum of the interferent is
slightly modified, although this fact does not exerts a high influence
on the analytical figures of merit (see Table 2).
4.2. Experimental data

EEMs were recorded for calibration and validation samples in
order to build a second-order model. The three dimensional plots
of fluorescence signals, as a function of emission and excitation
wavelengths, in absence and in presence of PAR (10.0 ng mL�1),
are shown in Fig. 4A and B, respectively. A significant decrease in
the emission intensity of PHE can be observed in presence of PAR,
due to the inner filter caused by the latter. This behavior can also
be observed in Fig. 4C, in which PHE calibration curves at
lex¼215 nm and lem¼305 nm, in absence and presence of PAR
(10.00 mg L�1) are plotted, being the difference between both
slopes evident. In addition, a small shift between the peaks in the
emission spectra of PHE with or without PAR can be seen in
Fig. 4D. Therefore, the strategy under study has been proposed to
solve the inner filter effect and the presence of unexpected
compounds whose spectra are severely overlapped with the
signal of the target analyte.

The number of responsive components to be included in
PARAFAC model was selected by the core consistency analysis
[44]. In all cases, the number of components in the validation



Fig. 4. Three-dimensional plots of fluorescence signals as a function of emission and excitation wavelengths for a calibration sample containing 500 ng mL�1 of PHE

in absence (A) and in presence (B) of PAR (10.00 mg L�1). (C) PHE calibration curves at lex¼215 nm and lem¼305 nm in absence (circles) and in presence (triangles up)

of PAR (10.00 mg L�1). (D) Standard PHE (250 ng mL�1) emission spectra without (solid line) and with PAR (dotted line).
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samples was three, attributed to the fluorescence signals of PHE,
IBU and ASA. As PAR is not intrinsically fluorescent in aqueous
solutions, it did not interfere, but it caused inner filter effect.
The application of PDS/PARAFAC to the experimental data fol-
lowed the same steps described for simulated data (Section 4.2).

SAM combined with PARAFAC was also applied to samples 2,
12 and 14 from experimental data in order to compare the results.
Table 3 shows the prediction results of the validation set with
seventeen samples containing different mixtures of PHE, IBU, ASA
and PAR (see Table 1). As can be seen, mean recovery values are
highly satisfactory for the strategy under study and comparable
with those from SAM.

The significance of the comparison of the relative error of
prediction (REP) values (REP¼4% for SAM/PARAFAC and REP¼5%
for PDS/PARAFAC) was tested using the randomization approach
described in Ref. [48]. Specifically, the use of the randomization
t-test for the comparison of the REP yields significance level
higher than 0.05 (calculated using 1999 iterations, for details see
Ref. [48]). This probability indicates that the REP for SAM is
statistically equal to the REP for PDS/PARAFAC. Hence, it could be
concluded that the performances of the proposed method is
comparable with the standard addition method.

It is important to stand out that different values of slope are
obtained for the different levels of PAR (data not shown). Conse-
quently, different standard addition curves must be made for each
sample coming to the laboratory, which involves at least four
different concentrations of pure standard to be added. As was
stated above, the influence of the compound causing the inner
filter effect was modeled by Escandar et al. with U-PLS/RBL
achieving excellent results, but it should be remarked that this
can only be done when interferent causing the inner effect filter is
known [20,21].

In the case studied herein, which would call for a complete
SAM (i.e., five triplicate standard additions if the IUPAC recom-
mendation are followed [1,3]) only two additions without repli-
cates have to be done to the sample in order to apply PDS/
PARAFAC. This strategy reduces the experimental work but still
maintains acceptable figures of merit since the same calibration
curve (five levels in triplicate) built in Milli-Q water is used for
sample prediction. Furthermore, Table 3 shows that the analytical



Table 3
PHE prediction results for the experimental validation set.

Sample PDSa

(ng mL�1)

SEN g (mL ng�1) g�1 (ng mL�1) SAMa (ng mL�1) SEN g (mL ng�1) g�1 (ng mL�1)

1 380(3)

0.3 0.4

2 393(4) 361(3) 0.19 0.32 3.1

3 325(4)

4 259(3)

5 315(4)

6 375(6)

7 285(3)

8 389(5)

9 308(2) 2.5

10 341(1)

11 378(2)

12 239(9) 238(3) 0.16 0.30 3.3

13 312(2)

14 343(3) 337(9) 0.22 0.25 4.0

15 342(2)

16 289(3)

17 287(3)

Rec (%)b 102 (5) 100 (5)

REP (%)c 5 4

a Between parenthesis the standard deviation of prediction.
b Mean recovery (%), between parenthesis the standard deviation.

c Relative error of prediction, REP¼ 100
c

1
I

PI
1

ðcact�cpredÞ
2

� �1=2

, where I is the number of samples, cact and cpred are the actual and predicted concentrations, and c is the

mean concentration.

Table 4
PHE prediction results for water samples.

Component Sample

Tap water Well water

Spiked Predicteda Spiked Predicteda

PHE (ng mL–1) 306.6 297 (5) 499.8 484 (5)

306.6 293 (6) 499.8 493 (7)

306.6 304 (5) 499.8 491 (6)

IBU (ng mL–1) 397.7 – 299.9 –

AAS (ng mL–1) 70.8 – 50.6 –

PAR (mg mL–1) 13.0 – 11.0 –

Mean recovery (%) – 97 – 98

a Between parenthesis the standard deviation of prediction (n¼3). Three

independent samples were predicted during three consecutive days.
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sensitivity is once again increased as the inner filter effect is
eliminated from the sample signal by applying PDS.
4.3. Water samples

The described methodology was applied to the determination of
PHE in two different water samples, i.e., tap water and well water
(Table 4). As the EEMs corresponding to the analyzed samples
showed that they contained no detectable amounts of PHE, IBU and
ASA, spiked samples were prepared at the nominal concentration for
IBU and ASA, which are informed in Table 4.
It should be noted that sensitivity changes due to the sample matrix
were present in these real samples. In addition, PAR was also added to
real samples, increasing their complexity. In order to evaluate
repeatability and intermediate precision, three independent samples
were analyzed in triplicate during three consecutive days. Then,
ANOVA tests were applied to each level of concentration to analyze
if the differences in the mean values among the three day were not
great enough, i.e., if the variation was due to random sampling
variability. In could be concluded that there is not statistically
significant difference among the mean values (p¼0.111 for tap water
and p¼0.240 for well water).

The number of responsive components to be included in PARAFAC
model was four in both cases, attributed to the fluorescence signals of
PHE, IBU, ASA and an unexpected component from the water samples
matrix. Table 4 summarizes the results obtained when different PHE
levels were analyzed in real matrices with the presented strategy.

The loadings of the three modes gathered by PARAFAC are
observed in Fig. 5, corresponding to the analysis of well water sample.
Fig. 5A and B correspond to the excitation and emission mode,
respectively, while Fig. 5C shows the relationship between the
loadings of the sample mode (scores) and the true concentration of
PHE in the calibration samples. The presence of the matrix inter-
ference can be attributed to humic substances, such as humic and
fulvic acid, which are commonly found in water samples. These
molecules are known to be fluorescent since they possess different
functional groups [49].

As can be seen, the results are comparable with those obtained
for the validation set (Table 3), suggesting that the proposed
method is appropriate for the determination of PHE.
5. Conclusion

The methodology herein described shows that it is possible to
reduce the experimental work in the determination of an analyte in
the presence of unknown compounds and inner filter effect, avoiding
the preparation of a large number of solutions and maintaining
acceptable figures of merit. This advantage was achieved combining
the second-order algorithm PARAFAC with a standardization
approach named PDS. Contrarily to previous applications [30–32], a
statistical demonstration related to the applicability of the proposed
methodology has been performed in the present report. This allowed
us to conclude that the presented PDS/PARAFAC constitutes a simple
and low-cost strategy for the determination of PHE in water samples
with a considerable reduction in standards handling and time. This
methodology can be extended to other systems presenting matrix
effect and, consequently, can become in a useful tool to know the



Fig. 5. Modes of the PARAFAC model for PHE (solid line) in the presence of IBU

(dashed line), ASA (dotted line) and an unexpected component (dash-dotted line):

(A) excitation mode, (B) emission mode and (C) sample mode (circles) in the

analysis of transferred well water sample (cross).
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amount of pharmaceuticals in the aquatic environment and to
evaluate the effect of conventional wastewater treatment plants in
the elimination of pharmaceuticals.
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