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Abstract We apply the Riccati–Padé method and the Rayleigh–Ritz method with
complex rotation to the study of the resonances of a one-dimensional well with two
barriers. The model exhibits two different kinds of resonances and we calculate them
by means of both approaches. While the Rayleigh–Ritz method reveals each set at a
particular interval of rotation angles the Riccati–Padé method yields both of them as
roots of the same Hankel determinants.

Keywords Bound states · Resonances · Pre-dissociation · Riccati–Padé ·
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1 Introduction

Many years ago Moyseyev et al. [1] discussed the application of complex rotation to
the calculation of resonances. As a simple, nontrivial illustrative example they chose
the potential V (x) = ( 1

2 x
2 − J

)
exp

(−λx2
)+ J that exhibits “pre-dissociating reso-

nances analogous to those found in diatomic molecules”. The same model was chosen
by other authors to test different approaches for the calculation of resonances [2–4]
and a controversy about the behaviour of �E versus �E arose [5,6]. The discrepancy
between the results of Rittby et al. [3,4] and Korsch et al. [5] was shown to be caused
by the choice of the rotation angle θ with respect to the critical angle θcri t [6]. The
set of resonances that one obtains with complex-rotation angles θ < π/4 is different
from the one that comes from greater angles θ > π/4. Epifanov [7] and Abramov et
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al. [8] also chose this model for resonance calculations. The latter authors stated that
their results broadly agreed with those of Rittby et al. [4]. For the commonly chosen
parameters are J = 0.8, λ = 0.1 the potential supports only one bound state with
energy E0 < J and many resonances.

On studying the performance of the Riccati–Padémethod (RPM) for the calculation
of bound states and resonances Fernández [9] found an apparently strange resonance
located quite close to the only bound state of the model. This resonance had in fact
been reported by Rittby et al. [6] and labelled as the KLM pole 0+.

The purpose of this paper is to investigate if the RPM yields both sets of poles
REB and KLM [6] or just one kind. To this end we carry out extremely accurate RPM
calculations and compare themwith the results provided by the Rayleigh–Ritz method
with complex rotation.

2 The model

In this paper we study the spectrum of the dimensionless Hamiltonian operator H =
p2 + V (x), where p = −id/dx and

V (x) =
(
x2 − 2J

)
e−λx2 + 2J, J, λ > 0. (1)

Note that this Hamiltonian, which is the one chosen by Fernández [9] , is exactly twice
the one mentioned above [2–8]. The potential (1) exhibits a minimum V (0) = 0 at
origin and two barriers of height

V (±xb) = e−2Jλ−1

λ
+ 2J, xb =

√
2Jλ + 1

λ
, (2)

located at x = ±xb. In addition to it, lim|x |→∞ V (x) = 2J is the threshold of the

continuum spectrum. That is to say: we expect bound states for 0 < E < 2J and
unbound states for �E > 2J . It is well known that there is always a bound state
ψ0(x) with energy E0 for all values of J > 0. The Hellmann–Feynman theorem tells
us that the bound states satisfy

0 <
∂E

∂ J
= 2

〈
1 − e−λx2

〉
< 2. (3)

The energies of the bound states increase with J more slowly than the threshold 2J
and as J increases more bound states appear.

The Taylor expansion of V (x) about the origin

V (x) = (2Jλ + 1) x2 − λ (Jλ + 1) x4 + λ2 (2Jλ + 3)

6
x6 + · · · (4)

suggests that if λ � 1 the bound-state eigenvalues are approximately given by En ≈√
2Jλ + 1(2n + 1), n = 0, 1, . . ., provided that En � 2J . In other words, the
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harmonic approximation is valid in the limit of sufficiently small λ and sufficiently
large J .

3 The Riccati–Padé method

The dimensionless Schrödinger equation for a one-dimensional model reads

ψ ′′(x) + [E − V (x)]ψ(x) = 0, (5)

where E is the eigenvalue and ψ(x) is the eigenfunction that satisfies some given
boundary conditions. For example, lim|x |→∞ ψ(x) = 0 determines the discrete spectrum

and the resonances are associated to outgoing waves in each channel (for example,
ψ(x) ∼ Aeikx ).

In order to apply the RPM we define the regularized logarithmic derivative of the
eigenfunction

f (x) = s

x
− ψ ′(x)

ψ(x)
, (6)

that satisfies the Riccati equation

f ′(x) + 2s f (x)

x
− f (x)2 + V (x) − E = 0, (7)

where s = 0 or s = 1 for even or odd states, respectively. If V (x) is a polynomial
function of x or it can be expanded in a Taylor series about x = 0 then one can also
expand f (x) in a Taylor series about the origin

f (x) = x
∞∑

j=0

f j (E)x2 j . (8)

On arguing as in earlier papers (see, for example [9] and references therein) we con-
clude that we can obtain approximate eigenvalues to the Schrödinger equation from
the roots of the Hankel determinant

Hd
D(E) =

∣∣∣
∣∣∣∣∣∣

fd+1 fd+2 · · · fd+D

fd+2 fd+3 · · · fd+D+1
...

...
. . .

...

fd+D fd+D+1 · · · fd+2D−1

∣∣∣
∣∣∣∣∣∣

= 0, (9)

where D = 2, 3, . . . is the dimension of the determinant and d is the difference
between the degrees of the polynomials in the numerator and denominator of the
rational approximation to f (x). In those earlier papers we have shown that there are
sequences of roots E [D,d], D = 2, 3, . . . of the determinant Hd

D(E) that converge
towards the bound states and resonances of the quantum-mechanical problem. We
have at our disposal many sequences, one for each value of d, but it is commonly
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sufficient to choose d = 0. For this reason, in this paper we restrict ourselves to the
sequences of roots E [D] = E [D,0] (unless stated otherwise).

The Hankel determinants (9) are polynomial functions of E with real coefficients.
Therefore, since both E and E∗ are roots we simply show the absolute value of the
imaginary part of the complex eigenvalues calculated by means of the RPM.

It has been shown that the quantization condition (9) is consistent with moving a
zero of ψ(x) towards infinity either along the real axis [10,11] or along a ray xeiβ on
the complex coordinate plane [12]. In order to appreciate the latter statement clearer
consider the canonical transformation

UxU−1 = γ x, UpU−1 = γ −1 p, (10)

that is commonly called scaling or dilatation transformation. If γ is real, then U is
unitary andU−1 = U † (the adjoint ofU ). The coefficients f̃ j of the Taylor expansion
of f̃ (x) = f (γ x) about x = 0 are given by f̃ j = γ 2 j+1 f j and the corresponding
Hankel determinants are related by Hd

D( f̃ ) = γ D(2D+2d+1)Hd
D( f ). It is clear from

this expression that the roots of the Hankel determinant Hd
D( f ) are also those of

Hd
D( f̃ ).

4 Results and discussion

We first comment on a particular feature of the RPM that was already discussed in
earlier papers(see, for example, [9]). The canonical transformation (10) with γ = eiθ

leads to
UHU−1 = e−2iθ

[
p2 + e2iθV (eiθ x)

]
. (11)

When θ = π/2 then

UHU−1 = −HCR, HCR = p2 +
(
x2 + 2J

)
eλx2 − 2J. (12)

The Hamiltonian HCR exhibits discrete spectrum for all E > 0 and, according to
the discussion of the preceding section, the application of RPM to H yields also the
eigenvalues of−HCR . For example, from a sequence of negative roots E [D], 2 ≤ D ≤
7, we obtained −ECR

0 = −1.144507971437882. Note that in this case the RPM is
moving the zero of ψ(x) towards infinity along the imaginary axis (UxU−1 = i x).

Some time ago, Rittby et al. [3,4] calculated the resonances for the potential (1)
with J = 0.8 and λ = 0.1 finding a curious oscillation in the plot of �E versus
�E and that �E < Ethreshold . Korsch et al. [5] argued that such oscillation was due
to numerical instabilities or to a limited range of variation of the complex-rotation
angle and presented alternative results for �E versus �E that exhibited a smoother
behaviourwith amaximum. The discrepancywas found to bemore noticeable between
the resonances with high quantum number. In a reply to this comment Rittby et al. [6]
showed that one obtains either one set of results or the other depending on the angle
of rotation of the coordinate in the complex plane. They obtained their earlier results
when θ < θcri t and those of Korsch et al. [5] when θ > θcri t , where θcri t = π

4 is

123



J Math Chem

Table 1 Resonances of type a (REB poles) for the potential well (1) with J = 0.8 and λ = 0.1

n �E |�E |
0 1.00408072428393443017

1 2.84194190210246090571 0.00011653325419685182

2 4.25439414535445676474 0.03089463756140796363

3 5.16916573799994004827 0.34750141927735930069

4 5.84884378317999747884 1.12958996483545345776

5 6.51097253363998538888 2.22306318914049287816

6 7.11443165024522044127 3.51101211133329168976

7 7.64865900791597156098 4.97489236442085409173

8 8.11086942948812965998 6.59728208929395179151

9 8.49991012723345008717 8.36633927847726677570

10 8.81554505392263084583 10.27290632674290915601

the angle at which the asymptotic limit of V (eiθ x) ceases to exist. More precisely, the
real part of V (eiθ x) exhibits an oscillation of increasing magnitude when θ ≥ π

4 .
It follows from the discussion above that there are two sets of eigenvalues that for

brevity we decided to call type a and type b. The former appear at complex-rotation
angles θ < π

4 and the latter at θ > π
4 . They are obviously the REB and KLM poles

discussed by Rittby et al. [6] and reported in their Tables 1 and 2, respectively. The
RPM yields both sets of resonances but those of type a, including the bound state that
is probably the REB pole 0+, appear at considerably larger determinant dimensions.
For example, from determinants of order 115 ≤ D ≤ 132 we estimated

Ea
16 = 9.19265185 − 24.2859880i, (13)

while, on the other hand, from determinants of dimension D ≤ 34 we obtained

Eb
16 = 9.178238697954503583761 − 24.263016247192105546239i. (14)

For even solutions ψ(−x) = ψ(x) there is always a bound state and from roots of
Hankel determinants of order D ≤ 34 we obtained

Ebs
0 = 1.004080724283934. (15)

As stated above, this bound state is probably the REB pole 0+ that was supposed to
exhibit a very small imaginary part (∼ 10−14) [6]. It was also reported in a table of
another paper by the same authors [4]. Close to this bound state lays the resonance
Eb
0 that one easily obtains by means of the RPM. From determinants of dimension

D ≤ 34 we obtained

Eb
0 = 1.004080726301570469395614592615994014289250

−0.2934712718907477714672477215058936 × 10−8i. (16)
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Table 2 Resonances of type b (KLM poles) for the potential well (1) with J = 0.8 and λ = 0.1

n �E |�E |
0 1.00408072630157046940 0.00000000293471271891

1 2.84194189142938641479 0.00011653056177108158

2 4.25439415504499186371 0.03089462568361036622

3 5.16916571970620038273 0.34750143832439856191

4 5.84884385847547449718 1.12958993116515299773

5 6.51097228004676307937 2.22306320004939896286

6 7.11443232530273964386 3.51101246935385004749

7 7.64865805373778059202 4.97489030645579846012

8 8.11086733641836896565 6.59728840290639287908

9 8.49992787752865274035 8.36633165517743824541

10 8.81549677260886623210 10.27287881393211008638

11 9.05762805573781967843 12.30961933401526496646

12 9.22657497347881017987 14.47051165461491434216

13 9.32269370788061645446 16.75044181031167253591

14 9.34639100651463929862 19.14500056419140530520

15 9.29809501050649218041 21.65033039282456000024

16 9.17823869795450358376 24.26301624719210554624

17 8.98725046024366224546 26.98000499389483811828

18 8.72554882720201232788 29.79854439102831848701

19 8.39353964985405639416 32.71613581097854432033

20 7.99161475460693463976 35.73049690934641949224

21 7.52015148083891622536 38.83953166339397165944

22 6.97951274517891567252 42.04130598427444775492

23 6.37004741335819685837 45.33402762088381309024

24 5.69209084394630221200 48.71602942021668615706

25 4.94596551967542290825 52.18575524932345994550

26 4.13198171411806152281 55.74174805382654044018

27 3.25043816167984493764 59.38263965038260687933

28 2.30162271167951448456 63.10714194024298827641

29 1.28581295544208483457 66.91403929790148766545

30 0.20327682052002685664 70.80218193928122646417

31 −0.94572687055748570093 74.77048011249426351515

32 −2.16094787755166857383 78.81789898404686559215

33 −3.44214405508360832566 82.94345411668353883653

34 −4.78908089905121521519 87.14620745346424210130

35 −6.20153112503278609622 91.42526373731795161905

36 −7.67927427662588964625 95.77976730707267051567

37 −9.22209636161676757971 100.20889922046949752260

38 −10.82978951390703259870 104.71187466241100492439
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Table 2 continued

n �E |�E |
39 −12.50215167920702077572 109.28794060304091487333

40 −14.23898632261633438011 113.93637367548645768060

It is worth noting that
∣∣�Eb

0

∣∣ is of the order of
∣∣�Eb

0 − Ebs
0

∣∣.
The first odd resonance of type b is embedded in the continuum:

Eb
1 = 2.84194189142938641479284813290283093

−0.11653056177108158006256047430109 × 10−3i. (17)

By means of the RPM we calculated some of the REB poles (Table 1) and all
the KLM poles (Table 2). Resonances of type a with larger quantum number n are
very difficult to obtain by means of the RPM because they appear at rather too large
determinant dimensions. However, the results shown in these tables are more accurate
than those reported by Rittby et al. [3,4,6] and Korsch et al. [5] (note that our results
are twice those in references [3–6]).

Resonances in the discrete spectrum also appear for odd solutions provided that J
is large enough. For example, when J = 2 we have one odd bound state with energy

Ebs
1 = 3.203701434562602, (18)

and its partner resonance

Eb
1 = 3.20370148589618139565563226675496312

−0.83665793634597482016260533385 × 10−8i, (19)

both obtained from determinants of dimension D ≤ 34. In this case we also appreciate
that

∣
∣�Eb

1

∣
∣ is of the order of

∣
∣�Eb

1 − Ebs
1

∣
∣. Note that �Eb

1 increased with J but not
as fast as 2J and, consequently, it crossed the threshold from the continuum to the
discrete spectrum. Our numerical results suggest that the resonances also satisfy the
bound-state condition 0 < ∂�Eres/∂ J < 2 and that ∂ |�Eres | /∂ J < 0.

For the same potential parameters we have the ground state

Ebs
0 = 1.117002075677124853805, (20)

and its partner resonance

Eb
0 = 1.117002075832116444713357703111286477

−0.9999285894038481299231357 × 10−10i, (21)

obtained from determinants of dimension D ≤ 34.
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Fig. 2 �E versus J for the first (left) and second (right) resonances of type b (KLM poles)

For small J it is easier to obtain the resonance in the discrete part of the spectrum
than the partner bound state by means of the RPM. This behaviour tends to be exactly
the opposite as J increases.

According to the results of Rittby et al. [6] (see also present Tables 1 and 2) the REB
and KLM poles with the same quantum number are almost identical if the resonance
number n is small enough. As n increases the members of each pair move apart.
Present results suggest that if J increases a pair of complex eigenvalues crosses the
threshold 2J into the discrete spectrum. The eigenvalue of type a becomes the energy
of a bound state (�Ea = 0 when �Ea < 2J ) while the eigenvalue of type b becomes
its accompanying resonance.

In order to test theRPMresultswe have carried out aRayleigh–Ritz calculationwith
complex-rotation (see, for example, reference [1] and references therein) and the basis
set of the harmonic oscillator HHO = p2 + x2. Fig. 1 shows log

∣∣ERR(θ) − ERPM
REB

∣∣

and log
∣∣ERR(θ) − ERPM

K LM

∣∣ for J = 0.8, λ = 0.1 and N = 80 basis functions.
This figure shows that the optimal angles satisfy θREB < π/4 < θK LM . A more
extensive calculation with several values of N suggests that both optimal complex-
rotation angles increase with N in such a way that while the REB one remains smaller
that π/4 the KLM one becomes clearly greater than such critical angle.
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An interesting property of the resonances of type b (KLMpoles) emerged during the
calculation. If we look for stable eigenvalues roughly in the interval 0.85 < θ < 0.95
then �Eb oscillates as shown in Fig. 2 for the first two ones Eb

0 and Eb
1 . On the other

hand, �Ea is always negative when 0.65 < θ < 0.78. As argued above, the latter
eigenvalues become real when crossing the continuum threshold �E = 2J and the
rate of convergence of the Rayleigh–Ritz method becomes remarkably small about
such point.

There is no doubt that the one-dimensional potential (1) exhibits two kinds of
resonances (REB and KLM poles) that the complex-rotation method reveals at two
different intervals of rotation angles. What is most interesting is that the RPM yields
both sets of eigenvalues as roots of the same Hankel determinants. The only difference
is that the KLM poles appear in Hankel determinants of smaller dimension and we
can calculate them more accurately when J is relatively small. Exactly the opposite is
commonly true for sufficiently large values of J . TheRPMyields both sets of eigenval-
ues because the roots of the Hankel determinants are invariant under complex-rotation
of the coordinate. Since the resonances of type a become bound states when they pass
from �Ea > 2J to �Ea < 2J one may interpret them as the usual metastable states
and bound states. It only remains to know if the resonances of type b have any useful
physical meaning.
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