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The SO(4) symmetry of a sector of the quantum chromodynamics (QCD) Hamiltonian
was analyzed in a previous work. The numerical calculations were then restricted to a
particle–hole (ph) space and the comparison with experimental data was reasonable in
spite of the complexity of the QCD spectrum at low energy. Here on, we continue along
this line of research and show our new results of the treatment of the QCD Hamiltonian
in the SO(4) representation, including ground state correlations by means of the Random
Phase Approximation (RPA). We are able to identify, within this model, states which
may be associated to physical pseudo-scalar and vector mesons, like η, η′, K, ρ, ω, φ, as
well as the pion (π).

Keywords: SO(4) symmetries; effective QCD Hamiltonian; RPA; many body aspects of

mesons.
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1. Introduction

Although quantum chromodynamics (QCD) is a well established theory of the
strong interactions, its realization in the low-energy regime is a very difficult task
which until now has not been satisfactorily completed. Part of the difficulties of low-
energy QCD is due to the nonperturbative nature of the theory, which invalidates
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the use of standard perturbative methods of calculations in field theory.1–3 Other
potential difficulties are the uncertainties in the correct identification of physi-
cal degrees of freedom “starting” from the elementary fields of the theory, i.e.,
the origin of confinement in color degrees of freedom,4,5 the competition between
valence-quarks, sea-quarks and gluonic excitations.6–10

Several methods are available to treat QCD in its nonperturbative regime.
Among them, Dyson–Schwinger-type of expansions, which start from quark and
gluon propagators at tree-level, leading to effective potentials,11–14 and Lattice QCD
(LQCD) calculations,4,9,15–20 which consist of a discretization of the dynamical
fields of the theory, have provided significant advances in nonperturbative aspects
of the fundamental theory of strong interactions. Out of them, LQCD is the best for-
malism which can handle QCD from first principles but its numerical implementa-
tion is quite involved. On the other hand, fixing-gauge approaches, like the canonical
Coulomb gauge,1,5,21–27 offers a connection between QCD and the nonrelativistic
many-body problem in nuclear physics. However, the full effects of quark–antiquark
pairs have never been considered because such effects lead to a many-body problem
that can only be treated in some phenomenological approximations. These kinds of
models are of interest to illuminate possible connections between phenomenological
models and QCD.

In a previous work,28 we have shown that a sector of the QCD Hamiltonian in the
canonical Coulomb gauge representation,1,5 exhibits a SO(4) symmetry in a reduced
configurational space. From this point, we shall refer to it as an effective QCD
inspired Hamiltonian suitable to describe light and strange mesonic excitations.
Starting from the generators of the SO(4) group, we have replaced a sector of
the QCD Hamiltonian by a linear combination of the Casimir operators of the
SO(4) group. Then, we have worked with its analytic solution and given to it
a physical interpretation in terms of the available data on Jπ = 0−, 1− meson
states. After that we have partially broken the SO(4) symmetry, enlarging the basis
in order to include particle–hole (ph) excitations and applied the Tamm–Dancoff
Approximation (TDA) to extract the energies and wave functions.

In this work, we continue with this line of approach by considering a larger
space in order to include ground state correlations. We have adopted the Random
Phase Approximation (RPA),29 which is a well-known technique in other fields of
physics like: nuclear physics, solid state physics, atomic physics, etc. It is basi-
cally a harmonic oscillator representation which treats fluctuations around a mean
field as superpositions of one and two ph states. In the present context, we aim
at the description of mesonic states as RPA-phonon states. To perform a more
realistic analysis from the physical point of view, we have also added the flavor
degree of freedom and endowed the single particle states of the basis with a flavor
dependence.

The paper is organized as follows. In Sec. 2, we introduce the QCD Hamiltonian
in the Coulomb gauge and extract from it an effective Hamiltonian which includes
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confinement. Then, in Sec. 3, we write the quantized expression for the effective
Hamiltonian in term of creation and annihilation operators. We perform a mapping
of the quantized effective QCD Hamiltonian onto the SO(4) representations. In the
same section, we extend the SO(4)-scheme of Ref. 28 to include flavor degrees of
freedom. The details of the RPA method and its implementation in the present
study are presented at the end of Sec. 3. In Sec. 4, we resume and discuss the
results of the calculations. We focus on the correspondence between calculated and
physical states and discuss the role of the masses in the calculations. Finally, we
summarize our conclusions in Sec. 5.

2. Canonical QCD Coulomb Gauge Hamiltonian

The fundamental non-abelian theory of strong interactions, QCD, has been widely
studied in its canonical Coulomb gauge representation.1,5,22 It was shown in Ref. 5
that two of the main features of QCD, e.g., confinement and the constituent particles
(quarks and gluons) can be treated simultaneously in that framework. The QCD
Hamiltonian, in the canonical Coulomb gauge representation is written as

HQCD =
∫ {

1
2
[J−1Πtr a

i JΠtr a
i + Ba

i Ba
i ]

− ψcf(−iγ · ∇ +m)ψcf − gψcfγ ·AaT a
cc′ψc′f

}
dr

+
1
2
g2

∫
J −1ρa(r)

〈
a, r

∣∣∣∣ 1
∇ · D (−∇2)

1
∇ · D

∣∣∣∣ a′r′
〉
J ρa′

(r′)drdr′. (1)

The transverse chromo-electromagnetic fields in QCD Coulomb gauge are indi-
cated by Π and B, while ψ represents the quark fields. The last two-terms in Eq. (1)
are the quark–gluon interaction (g-term) and the quark (anti-quark) (ρ(r)) color
charge-density interaction (g2-term), respectively. The latter is a gauge-dependent
interaction coming from the inverse of the Faddeev–Popov term, (∇ ·D)−1, and its
determinant J = det(∇ · D).1 In the low-energy regime of QCD, light quarks and
their interactions play the most important role and the effects of dynamical gluons
may be absorbed in the interaction V (R) = − α

R + βR, which is obtained from a
self-consistent treatment of the gauge-dependent interaction between color charge
densities, as it was shown in Ref. 5. Therefore, one can write for the effective QCD
Hamiltonian the expression

HQCD
eff =

∫
{ψ†(r)(−iα · ∇ + βm)ψ(r)}dr +

1
2

∫
ρa(r)V (|r − r′|)ρa(r′)drdr′, (2)

where ρa(r) = ρa
q(r)+ρa

q̄ (r) = ψ†(r)T aψ(r) and ψ†(r) = (ψ†
1(r, σ, c, f), ψ†

2(r, σ, c, f))
with σ, c, f indicating the spin, color and flavor intrinsic degrees of freedom.

Concerning the spectrum of low-energy mesons LQCD9,20 and many-body tech-
niques have been applied, mostly numerically, to reproduce certain characteristics
of the spectrum. Practically, all those approaches fail in reproducing the pion mass.
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Some of the standard bosonization-methods, like the TDA and RPA, have shown to
be useful30 to elucidate the role of the pion as a Goldstone-like state of the theory.
Although the many-body methods are much less involved than lattice calculations,
their implementation, requires some minimal information, i.e., about quarks masses,
couplings and interactions, the fundamental degrees of freedom and about the sym-
metries exhibited by them.

3. The SO(4) Model Hamiltonian and its RPA Treatment

The motivation of this work comes from the side of the effective QCD Hamiltonian,
Eq. (2), and the predictive power of nonperturbative many-body methods for the
low-energy regime of QCD. In particular, the π, η and η′ states seem to be a good
laboratory for testing the many-body-methods.30

The quantized structure of the effective Hamiltonian Eq. (2) has been discussed
in Ref. 27 and its expression, amenable to TDA or RPA treatments, is given by

HQCD
eff =

∑
Γ1

εΓ1(b
†
Γ1µ1

bΓ1µ1 − dΓ1µ1d
†
Γ1µ1

)

+
∑
Γ

∑
Γi

{
V1(Γi)[([b

†
Γ1

⊗ bΓ2 ]
Γ

− [dΓ1 ⊗ d†Γ2
]Γ) ⊗ ([b†Γ3

⊗ bΓ4 ]
Γ − [dΓ3 ⊗ d†Γ4

]Γ)]0̂J

0̂M

+V4(Γi)[([b
†
Γ1

⊗ d†Γ2
]Γ + [dΓ1 ⊗ bΓ2 ]

Γ) ⊗ ([b†Γ3
⊗ d†Γ4

]Γ

+ [dΓ3 ⊗ bΓ4 ]
Γ)]0̂J

0̂M

}
. (3)

In Eq. (3), b†Γiµi
(bΓiµi) and d†Γiµi

(dΓiµi) refer to the creation (annihilation) opera-
tor of quarks and anti-quarks, respectively. We have used the short-hand notation
Γi = {ji, (1, 0), (1, 0)} and µi = {mi, ci, fi} for the single particle irreducible repre-
sentations (irreps) of spin, color and flavor quantum numbers and their magnetic
projections, respectively. The intermediate couplings of spin, color and flavor are
indicated by [⊗]Γ with Γ = {L, (1, 1), (0, 0)} and L = 0, 1.25,27 The matrix elements,
Vi, of a confining interaction (Coulomb plus linear potential) in the harmonic oscil-
lator basis have been explicitly given in Ref. 27. The scalar character of the Hamilto-
nian in spin, color and flavor quantum numbers is represented by the symbol [· · ·]0̂J

0̂M
,

where the upper index 0̂J is a short-hand notation for the irreps {0, (0, 0), (0, 0)}
and the lower index 0̂M indicates their magnetic projections {0, 0, 0}. The uncor-
related vacuum state is represented by |0̃〉 and it is annihilated by the action of
bΓµ, and dΓµ, i.e., bΓµ|0̃〉 = dΓµ|0̃〉 = 0. In order to achieve basis independence of
the observables (eigenvalues) from the diagonalization of the Hamiltonian of Eq.
(3) the number of configurations (Γiµi) should be large, but a reduction of the Fock
space may provide some insights on the low-energy spectrum of mesons. To achieve
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(a) (b)

Fig. 1. (a) Rising and lowering of the σ-value operations. (b) Invariant σ-value operations.

this goal, we have constructed all possible transition operators which are activated
in the space depicted in Fig. 1.

The minimal model studied in Ref. 28 relies on the fact that physical states are
color singlets and that the states were not classified by their flavor content since that
requires the flavor symmetry to be explicitly broken. In Ref. 28, it was also shown
that all the operations of Fig. 1 and the corresponding algebra are described by the
SO(4) group. In Ref. 31, the SO(4) group algebra and its irreducible representations
(j0, η) have been widely analyzed.

The number of operations in this specific space is 16, and they are also shown in
Fig. 1. Eight of these correspond to rising and lowering the value of σ and the other
eight leave the value of σ invariant. The label σ is associated with anti-particle
(σ = 1) and particle (σ = 2) states and m denotes the magnetic number of the
particle (anti-particle) state. All the operations of the space shown in Fig. 1 are
described by the action of the following six operators:

Ĵ+ =
∑
m

C†
2mC1m, Ĵ− = Ĵ†

+, Ĵ0 =
∑
σ,m

(−1)σ

2
C†

σmCσm,

V̂+ =
∑
m

C†
2mC1−m, V̂− = V̂ †

+, V̂0 =
∑
σ,m

(−1)σ

2
C†

σmCσ−m,

(4)

which are analogous to the operators appearing in the effective Hamiltonian of
Eq. (3). This can be seen using the association b† → C†

2 and d† → C1. Then, it
is rather easy to identify the operators Ĵ0 and V̂0 with the transitions depicted in
Fig. 1(b), while the operators J± and V± are to be associated to the transitions
depicted in Figure 1(a). The commutators [Ô1, Ô2] for the set of operators of Eq. (4)
are given by28

[Ĵ±, Ĵ∓] = ±2Ĵ0, [V̂±, V̂∓] = ±2Ĵ0, [Ĵ±, V̂∓] = ±2V̂0,

[Ĵ0, Ĵ±] = ±Ĵ±, [V̂0, V̂±] = ±Ĵ±, [Ĵ0, V̂±] = ±V̂±, [V̂0, Ĵ±] = ±V̂±,
(5)
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and the two Casimir operators of the SO(4) group, Ĉ1 and Ĉ2, which commute with
all the generators are given by

Ĉ1 = Ĵ2 + V̂2 = Ĵ+Ĵ− + V̂+V̂− + V̂ 2
0 + Ĵ0(Ĵ0 − 2),

Ĉ2 = Ĵ · V̂ =
1
2
(Ĵ−V̂+ + Ĵ+V̂−) + Ĵ0V̂0.

(6)

Having identified the SO(4) group-operators within a sub-space of the quantized
QCD-Coulomb-gauge Hamiltonian, we introduce a new Hamiltonian which maps
the QCD Hamiltonian onto a combination of the two invariant SO(4) Casimir oper-
ators and theirs corresponding generators

H = 2εĴ0 + aM Ĉ1 + bM Ĉ2, (7)

where the first term is the free Dirac term and aM , bM are the coupling constants
of the model. A brief summary of the findings of our previous work, Ref. 28, is
the following: (i) we have considered the possible SO(4)-irreps (j0, η) that could be
involved in the meson spectrum of Eq. (7), i.e., (j0, η) = (0, 1), (0, 2), (±1, 2), (ii) a
fit of the parameters to experimental meson states up to 1 GeV led to the values ε =
54.20 MeV, aM = 236.98 MeV and bM = 15.82 MeV and (iii) the SO(4) spectrum
indicated that the physical states (J,MJ) may be contained in the SO(4) (j0, η)-
irreps, where we have identified the (0, 1)-irrep as a state of zero mass (Goldstone
boson) which is independent of the parameters of the model. The other SO(4)-
irreps (0, 2) and (±1, 2) were located at average masses between the pseudo-scalar
and vector meson masses.28 To get a closer contact with the experimental energies
may require additional corrections coming from, e.g., a more general interaction,
the SU(3)-flavor symmetry breaking and vacuum-correlations, among others.

Taking the Casimir structure of Eq. (7) as the starting point, we have con-
structed a more general Hamiltonian for the space of Fig. 1. It reads

H = 2(ε− a4)Ĵ0 − a7V̂0 + a2V̂
2
0 + a3Ĵ

2
0 + a6V̂0Ĵ0 +

a1

2
(Ĵ+Ĵ− + V̂+V̂−)

+
a5

2
(Ĵ+V̂− + V̂−Ĵ+ + h.c.) + b((Ĵ+ + V̂+)(Ĵ+ + V̂+) + h.c.). (8)

In QCD, the gluon field carries spin and color intrinsic degrees of freedom, making
the two-body interaction coefficients a’s and b’s spin and color dependent. When
the effects of gluons are ignored the bilinear combinations ĴiV̂j with i, j = 0,±
should be removed from the Hamiltonian of Eq. (8), since they are not scalars.

In this work, we leave open the possibility of more general or realistic interac-
tions expected from QCD, motivated from its Coulomb gauge representation given
in Eq. (1), and implement the RPA-method for a flavor-symmetry-breaking Hamil-
tonian (FSBH). From the QCD Hamiltonian, Eq. (1), it is easy to see that the
simplest way to break the flavor symmetry is by the Dirac mass term. In our case,
the ε-term is associated with the Dirac term and the a4-term is associated explicitly
with mass corrections coming from the two-body interactions. Therefore, since we
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are going to work with effective masses (dressed or corrected by interactions), we
replace the term 2(ε − a4) by a flavor dependent single particle term. In doing it
we are explicitly breaking the chiral symmetry, as it will become evident from the
values of the effective quark masses which we use in the calculations (see Sec. 4).
We will use effective masses for light u, d and strange s quarks, whose values are in
agreement with those introduced as running dynamical masses, near zero momen-
tum in Ref. 30.

Therefore, we write the Hamiltonian in the following form:

H = (εfC
†
2m,fC2m,f − εf ′C†

1m,f ′C1m,f ′) − a7V̂0 + a2V̂
2
0 + a3Ĵ

2
0 + a6V̂0Ĵ0

+
a1

2
(Ĵ+Ĵ− + V̂+V̂−) +

a5

2
(Ĵ+V̂− + V̂−Ĵ+ + h.c.)

+ b((Ĵ+ + V̂+)(Ĵ+ + V̂+) + h.c.). (9)

The εf -term takes into account the nonexact SU(3) flavor symmetry between the
up, down and strange quarks. This should be relevant in order to make a better
analysis of the structure of the spectrum in the low-energy regime.

The ai coefficients associated to the bilinear combinations J+J− and V+V− in
Eq. (9), play the role of scalar interactions associated to the creation-annihilation of
pairs. The ai coefficients associated to the bilinear combinations J±V∓ and J0V0 in
Eq. (9), play the role of the interactions that take into account the gluonic degrees of
freedom, in an effective way (e.g., a power expansion in gluon fields (Ai = Aa

i T
a),1)

since these interactions require a spin transfer. The bilinear terms J±V∓ and J0V0

appear natural in the SO(4) invariant operators, Eq. (6), and can be associated
with the power expansion in gluon fields of the inverse of the Faddeev–Popov term
in Eq. (1). The a7 coefficient associated to the one-body operator V0 also accounts
for the gluonic degrees of freedom in an effective way, since it plays the role of the
quark–gluon interaction (g-term) in Eq. (1). The a2 and a3 coefficients associated
to V̂ 2

0 and Ĵ2
0 respectively, play the role of number operators in the SO(4) group

but the a2-term is also capable of spin transfer. The b-coefficient associated to the
two-body interactions, responsible of the creation and annihilation of two-pairs,
accounts for the effects of the ground state correlations.

3.1. RPA-method in the SO(4) model

The details of the RPA-method are presented in Appendix A. The RPA-method,
applied to the Hamiltonian of Eq. (9) yields the forward (Aa′b′,ab) and backward
(Ba′b′,ab) matrices,29

Aα′β′,αβ =
{
εfα + εfβ

+ 2a1 +
a2

2
+ a3

}
δmα′ ,mαδmβ′ ,mβ

δfα′ ,fαδfβ′ ,fβ

+
{a5

2
+
a6

2
− a7

}
(δmα′ ,mαδmβ′ ,−mβ

δfα′ ,fαδfβ′ ,−fβ

1750012-7
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+ δmα′ ,−mαδmβ′ ,mβ
δfα′ ,−fαδfβ′ ,fβ

)

+
a2

2
δmα′ ,−mαδmβ′ ,−mβ

δfα′ ,−fαδfβ′ ,−fβ

Bα′β′,αβ = b; for all (m, f). (10)

where α = mα, fα, β = mβ , fβ, etc. Every RPA excitation |n〉 = Γ†
n|RPA〉, with

Γ†
n =

∑
αβ

(Xn
αβγ

†
αβ − Y n

αβγβα) (11)

and γ†mαfαmβfβ
= C†

2mαfα
C1mβfβ

, is characterized by two amplitudes Xn
αβ and

Y n
αβ indicating the creation and annihilation of a pair, respectively. The amplitude-

squares |Xn
αβ |2 and |Y n

αβ |2 are analyzed in the next section in order to study the
flavor content of each RPA-eigenstate.

4. RPA Results and the Analysis of the Wave Functions

In this section, we present the RPA results for the FSBH of Eq. (9). The imple-
mentation of the RPA-method will allow us to explore more in detail the structure
of the pion state in terms of the interactions and to visualize it as a Goldstone
boson on more involved effective QCD Hamiltonians like the one of Eq. (3). We
have performed several fits of the parameters introduced in the previous section
and four sets of values were selected as representative of different possible scenar-
ios. On these examples, we shall illustrate on how to identify physical states using
their quark content.

In Table 1, we list four set of parameters of the Hamiltonian of Eq. (9) and
the corresponding RPA-eigenvalues at b = bfit. The calculations shown in Table 1
were performed by following a simple procedure. The parameters εf and {ai} are
chosen in order to get for b = 0 (which is the TDA limit) energies within the
range of 350–1100 MeV. Within this range of energies are located the physical
mesons with negative parity, i.e., pseudo-scalar (K(493), η(547.8), η′(957.7)) and
vector (ρ(770), ω(782),K∗(892), φ(1020)) mesons, which we attempt to describe as
RPA excitations. We then study how they modify as b �= 0, and finally, the b = bfit

value is obtained when the lowest RPA-excitation approaches the energy of the pion
mass (≈ 150–200 MeV). It is worth to mention that we are not fitting the RPA solu-
tions to experimental values since we do not know a priori the flavor content of the
RPA solutions. Instead, we chose several scenarios (well established gaps between
the TDA solutions) in order to study the effects of the ground state correlations.

These results in the domain 0 ≤ b ≤ bfit are shown in Fig. 2. We use a flavor
dependent single particle term εf = mu,dδf,− 1

2
+msδf, 1

2
. Since we are not making

any difference between up (u) and down (d) quarks, f = − 1
2 will be used for both

flavors and f = 1
2 for strange quarks. To implement this flavor symmetry breaking

term without changing the SO(4) structure of Eq. (4) we just added a flavor index
to each operator, C†

σm → C†
σm,f with m, f = ± 1

2 . Once this is done we are no
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(a) (b)

(c) (d)

Fig. 2. Energy dependence of the RPA states, as a function of the backward-going matrix element,
(b), for (a) Set-1, (b) Set-2, (c) Set-3 and (d) Set-4. The values of the parameters are given in
Table 1.

longer working with a SU(3) flavor symmetry, and instead we have a (2+1)-flavor
model. The RPA-solutions for the FSBH will be compared with the experimental
data32 in the following subsections.

To obtain the eigenvalues Ei(Ωi) shown in Table 1, we have used effective quark
masses mu,d = 80 MeV and ms = 300 MeV. These masses exhibit explicitly that
the chiral symmetry is broken. However, these values are lower compared to those
used in quark models. In Ref. 30, it was argued that the reason for such lower
values could be an indication that a more correlated ground state is needed and
the RPA method was proposed. Here in our SO(4)-QCD-approach, the use of the
RPA method allows us for constructing, quoting Ref. 30, a “more sophisticated
ground state”. The origin of these effective quark masses from the theory of QCD is
related to the confinement of color charged particles as well as mass corrections due
to interactions. Lattice calculations and the treatments based on Dyson–Schwinger
equations of quark propagators have determined a saturation point for the quarks
masses at small momentum (p→ 0).13,14
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4.1. Analysis of the RPA-states

Since in Eq. (11) the indices (α, β) span a space of 16 configurations each RPA (or
TDA) phonon state is a linear combination of these 16 states. When the backward-
going amplitudes are set at b = 0 for all (α, β)-pairs (TDA-limit), one gets four
energy eigenvalues each of them fourth-degenerated. These eigenvalues are shown
in Fig. 2 (values at b = 0). Calling Si (i = 1, . . . , 16) the phonon states, we
group them in four subsets {S1, S2, S3, S4}, {S5, S6, S7, S8}, {S9, S10, S11, S12} and
{S13, S14, S15, S16}, each subset corresponding to an energy eigenvalue in the TDA
limit. This is done in order to follow the evolution of the amplitudes Xn

αβ and Y n
αβ

of each RPA-excitation as a function of b until the point b = bfit, which is the
value associated to the collapse of the lowest RPA state close to the pion mass. By
comparing the difference of the amplitudes |Xαβ |2 − |Yαβ |2 for b = 0 and b = bfit,
we have extracted their quark–antiquark flavor content. Since we are not making
any difference between u- and d-quark-masses, we denote from now on q = u, d for
up and down and s for strange quarks.

We analyze the RPA-states of each set of Fig. 2 for b = 0 and for b = bfit. As
we already mentioned before for b = 0 each state is four-fold degenerated while
the degeneration of the RPA-states at bfit (indicated by Ωi in Table 1) is explicitly

Fig. 3. (X2 − Y 2) amplitude analysis of {S1, . . . , S4} and {S5, . . . , S8} RPA-states of Set-1 at
b = 0 and at b = bfit.

Fig. 4. (X2 − Y 2) amplitude analysis of {S9, . . . , S12} and {S13, . . . , S16} RPA-states of Set-1
at b = 0 and at b = bfit.
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Fig. 5. Same as in Fig. 3 for Set-2.

Fig. 6. Same as in Fig. 4 for Set-2.

Fig. 7. Same as in Fig. 3 for Set-3.

shown on the right-hand side of each plot of Fig. 2 and will depend on the specific
parametrization of the interaction. Therefore, we have sixteen states to analyze in
order to look for the structure of physical states within the FSBH-SO(4) model. This
search depends on the possibility of opening or closing specific flavor components.
This is done in order to determine the flavor character and energy associated to
each state.

In the following, we shall discuss the flavor content of each eigenstate obtained
with the four set of parameters {ai} listed in Table 1, for both the TDA-limit at b =
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Fig. 8. Same as in Fig. 4 for Set-3.

Fig. 9. Same as in Fig. 3 for Set-4.

Fig. 10. Same as in Fig. 4 for Set-4.

0 and for the RPA-states at b = bfit. In Figs. 3–10 we show the X2−Y 2 amplitudes
for each state. The flavor content (qq̄, ss̄, qs̄, sq̄) of each state is indicated by bar-
charts for both b = 0 and b = bfit. The summation of all flavor-content-amplitudes
is the normalization of the state. The detailed numerical analysis of the flavor con-
tent of each state is shown in Tables B.1–B.4 in Appendix B. The interpretation
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of these states in terms of physical states is given in the text accompanying
Figs. 3–10.

4.2. Analysis of the parameter set-1 (Set-1)

For the first set of parameters {ai} of Table 1 at b = 0 (TDA-limit) the results
show that the flavor content of the {S1, . . . , S4}-states is almost pure qq̄, for the
{S5, . . . , S8}- and {S9, . . . , S12}-states it is pure or almost pure qs̄, sq̄, and for the
{S13, . . . , S16}-states almost pure ss̄, (see Figs. 3 and 4). The identification of the Si-
states with physical states at b = 0 is straightforward, except for states like η and η′,
since these states rely on nontrivial flavor mixing effects.33–35 We do not implement
traditional SU(3) flavor mixing since we have accounted for it within the {ai}-
and b-parameters, as it can be seen in the structure of the forward and backward
matrices of Eq. (10) and quantified explicitly in Tables B.1–B.4 in Appendix B.

At b = bfit we observe few relevant changes: The decrease of the energy of the
first RPA excited state to 184.81 MeV (Fig. 2(a)), the considerable enhancement
of the qs̄, sq̄- and the small contribution of ss̄-components. The interpretation of
this state as a collective state rises immediately, although the state S1 continues
to exhibit a qq̄-dominance. These properties allow us to make our first guess of
the physical pion state, π(139), to be the collective state S1. This interpretation
might not be the natural one for the pion due to the considerable qs̄, sq̄ content,
but within this parametrization the high collectivity of the S1 state seems to be
responsible for pushing downwards the RPA S1 state of about 400 MeV respect the
TDA solution. This is important to remark in order to get some insights about
the structure of the pion state in phenomenological models and to look for the
origin of such collectivity in real QCD. All of these properties come explicitly from
considering the ph-correlations in the vacuum of the theory.

The almost pure qq̄ S2, . . . , S4 states are the ρ, ω-like states for the Set-1 and
they are located at 579.10 MeV which is relatively low compared to the physical
ρ(770)- and ω(782)-mesons. However, the ground state correlations have generated
an energy gap of about 400 MeV between the pion-like state and the ρ, ω-like states.
Due to the simplicity of the schematic model these results are a good starting
point for later corrections, e.g., like improvements on the spin dependence of the
parameters.

At b = bfit, the state S5 changes drastically its flavor content giving approxi-
mately a 50% decrease of the qs̄, sq̄ components and the enhancement of the qq̄- and
ss̄- components and consequently of the qq̄ + ss̄ combination. Putting this obser-
vation in the context of excitations, though the state is not a pure qq̄ + ss̄ state,
we consider the possibility that the state S5 could be interpreted as the η-like state
and/or η′ at 716.44 MeV. The rearrangement of the states of Set-1 at b = bfit sug-
gests that the state S5 is the first excitation of the qq̄+ ss̄ components and that it
could be associated to the η-meson. This opens the question on the location of the
η′-like state in these RPA results. Either it is an independent excitation or the S5
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state is a mixture of both η and η′. For this first parametrization, the answer looks
unclear, making our best guess that η- and η′-like states are mixed and located at
716.44 MeV.

On the other hand, the S6, . . . , S12 states are the RPA kaon-like states of Set-1
at about 780.00–827.55MeV. The last feature observed is that the state S13 suffers
a small decrease in its energy as well as in its ss̄ content. Figure 4 shows that it
is still a ss̄ dominated state making the identification of the S13, . . . , S16 states as
the φ-like states located at about 1011.01–1033.34 MeV (see Table 1), which are in
good agreement with the physical φ(1020)-meson.

4.3. Analysis of the parameter set-2 (Set-2)

The second set of parameters {ai} of Table 1 at b = 0 (TDA-limit) shows for
the first eight states S1, . . . , S8 no considerable difference with respect to Set-1,
but for the S9, . . . , S16-states, considerable changes are observed. The S9, . . . , S12-
states are dominated by the qs̄, sq̄-sector while the contribution of the qq̄ + ss̄

combination amounts to 18% (see Table B.2 in Appendix B). The S13, . . . , S16-
states are dominated by the ss̄ sector, then within the RPA results, the φ-like
states lie at about 1086.41 MeV. The S13, . . . , S16-states contain a small percentage
of qq̄ suggesting a mixture of η′- and φ-like states as well as the possibility that
the η′ meson is built by qq̄ + ss̄ contributions but being highly dominated by the
strange sector.

The changes observed for Set-2, with respect to the Set-1, might be associated
with the null contribution of the a5-interaction-term. It is not difficult to trace the
origin of this interaction from the QCD Hamiltonian. As it was mentioned in Sec. 3,
the activation of this term requires the inclusion of other degrees of freedom, like
gluons. In particular, the a5-term corresponds to the creation and annihilation of
a ph pair connected by an operator which changes the spin by one unit. A direct
candidate to describe this interaction is one-gluon-exchange.

At b = bfit, we observe that the first RPA excited state, S1, is lowered to
164.49 MeV (see Fig. 2(b)) and that it is more collective with respect to the case
b = 0 (see Fig. 5). The energy of this state is 20 MeV lower than the one obtained
with Set-1. However, the state continues being of the qq̄-type and therefore, it is
interpreted as the π-like state of Set-2, with almost the same collectivity of the
π-like state of Set-1. The S2, . . . , S4 states, which are almost pure qq̄ states, remain
at 590.31 MeV making them best candidates for ρ- and ω-like states of this Set.

The second change observed at b = bfit (also noted for Set-1) is the enhancement
on the qq̄ with a small admixture of ss̄ components for the state S5 with about 35%
decreasing on the qs̄− and sq̄-components. Such signal is important since it opens
the possibility for the identification of the η-like state at about 670.06 MeV and
the identification of the η′-like state at higher energies, which seems encouraging
due to the 86.5% content of the qq̄ + ss̄ combination on S14, . . . , S16 states (see
Table B.2 in Appendix B). The latter leaves well-defined sets of kaon-like states
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at 780 MeV and 863.27 MeV. The last change observed for Set-2 is that the state
S13 has been enhanced in the ss̄ sector and lowered approximately 120 MeV in
energy, leading to our first guess about the η′-like state located at 965.95 MeV,
which is a good result compared to the physical η′(957.7) meson. This state shows
that the interactions and the vacuum-ph-correlations are trying to separate it from
the S14, . . . , S16 states. This picture agrees with the results of Ref. 30 where only
pseudo-scalar mesons seem to be affected by the RPA treatment. Nevertheless, from
the analysis of the amplitudes, for this η′-like state, we see that the ss̄ combination
is dominant. The null contribution of the a5 term in Set-2, seems to be related
with the presence of larger qq̄ content at higher energies, with respect to the results
obtained with the parametrization of Set-1. The latter might suggest that a better
interpretation of the η′-like state in this model could be related with the selec-
tion of the ai parameters associated to those terms capable of flavor mixing, i.e.,
a2, a5, a6, a7 and b. The choice of values for the coefficients ai and b is a sensible
aspect at the time of making the calculations, since in principle they can be taken
as free parameters, only restricted to satisfy that the TDA solutions lie within
the range of 350–1100MeV. However, we can analyze gradually the effects of the
parameters in order to reproduce some observed features of the meson spectrum
and explore the dependence of the results upon them.

Finally, the S14, . . . , S16 states due to their ss̄ dominant nature are identified
with φ-like states at 1086.41 MeV, which is also a good estimation for the physical
φ(1020) meson.

4.4. Analysis of the parameter set-3 (Set-3)

The results obtained with the Set-3 of parameters {ai} of Table 1 are interesting for
several reasons: they exhibit a bigger gap between energies in the TDA-limit and
the location of the first excited subset S1, . . . , S4 is closer to the pion energy (see
Fig. 2(c)). Despite these larger gaps in energies, most of the states look like mixtures.

At b = 0 several flavor sectors appear mixed up and only one subset remains pure
in qs̄ and sq̄ configurations, (see Figs. 7 and 8). The S1, . . . , S4-states are mostly
admixtures between the qq̄- and qs̄, sq̄-sectors, indicating that the most probable
states involved would be π-, ρ-, ω- and kaon-like states. The S5, . . . , S8-states show
a high percentage of qq̄+ss̄ combinations which are even higher than the qs̄+sq̄ one
(see Table B.3 in Appendix B) allowing the identification of η-like mesons within
these states. The states S9, . . . , S12 belong to the pure qs̄- and sq̄ sector indicating a
clear identification of kaon-like states while the S13, . . . , S16-states are ss̄-dominated
and they are directly associated with φ-like states. At b = 0, there is no signal of
considerable percentage of qq̄ contribution in the S9, . . . S16, i.e., above 735.12 MeV
(see Table B.3 in Appendix B).

At b = bfit, we observe peculiar changes compared not only to b = 0 but also
to the results previously analyzed for Set-1 and Set-2. The π-like state is found
at 187.27 MeV and the decreasing of the qs̄- and sq̄-components is stronger. This
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makes the identification of the π-like state of Set-3 more like a qq̄-pair condensate,
but it still shows some collectivity. The less collectivity of the π-like state of Set-3
with respect to those of Set-1 and Set-2 seems to be a consequence of the a2 term,
since it changes sign and therefore decreases the diagonal part of the forward matrix,
Eq. (10). It also seems to allow more flavor mixing in the first subset S1, . . . , S4 of
the TDA solutions (b = 0). Then, when the ground state correlations, quantified
by the backward-going term (b �= 0) are activated, the system pushes the RPA S1

state downwards by suppressing the qs̄ and sq̄ contents, which one can think as the
natural description of the π-like state. Of course, the rearrangement of the other
RPA Si states would be different that those described by Set-1 and Set-2, as it is
discussed in the following.

The second change observed in Set-3 at b = bfit is the enhancement on
the qs̄- and qs̄-channels for the state S5, which is also pushed downwards in
energy almost to the energy of the S2, . . . , S4-states, supporting our first guess
(at b = 0) which included the presence of kaon-like states. Therefore, the energy
range 364.98–402.11 MeV associated to the S2, . . . , S5 states is considerable low
for physical ρ, ω mesons but relatively good for pseudo-scalar kaons K(493). This
set also indicates that a better fit for the pseudo-scalar kaons can be obtained at
the expenses of lowering the energies of the ρ- and ω-like states, and generating a
smaller energy gap between the π-like state and the ρ, ω-like states.

The S6, . . . , S8 states are dominated by the qq̄ + ss̄-combination, with high
probability of containing the η-like state at about 735.12 MeV. This energy is higher
than the reported value η(547.8) and it could be a consequence of the percentage
of strange content in these states. The S9, . . . , S12 states are not modified in their
flavor content keeping their qs̄, sq̄ structure. They are located at 780 MeV and
related to physical kaon states. The energy of these kaon-like states is relatively low
with respect to K∗(892). Because of these energy differences, one might question
the model but it is worth to mention that our aim is to get some insights on
the structure of the states and test the many-body methods and interactions in a
reduced space (see Fig. 1) rather than performing a fit of every individual state.

The state S13 is pushed downwards in energy and it is considerable enhanced
in the qq̄ + ss̄ combination while its qs̄- and sq̄-components are suppressed (see
Fig. 8). Then, the qq̄ enhancement effect above 735.12 MeV is associated with the
ph-correlations considered in the RPA-ground-state. These properties make the
state S13 a good candidate to represent the η′-like state due to its location at energy
895.17 MeV. The latter is in relatively good agreement with the physical value
η′(957.7). We can compare the experimental energy difference Eη′ −Eη ≈ 400 MeV
with the calculated energy difference ES13 − ES7 = 160 MeV, which is about one-
half of the experimental value. In spite of the simplicity of the present model, Set-3
allows us to estimate the energy difference Eη′ −Eη, something difficult to achieve
in realistic QCD calculations.33 The easier identification of the η′-like state in Set-3
seems to be related with the sign of the a2-term, which also seems to be responsible
for a higher qs̄ and sq̄ content in the TDA subset S13, . . . , S16, and once again, the
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effects of the ground state correlations evident in the RPA S13 state is to suppress
the qs̄ and sq̄ content and push it downwards in energy.

Finally, S14, . . . , S16-states are isolated at higher energies keeping their dominant
ss̄- sector untouched and therefore making them the best candidates to be the φ-like
states at the energy 1039.89 MeV. This is in good agreement with the experimental
value φ(1020).

4.5. Analysis of the parameter set-4 (Set-4)

The parametrization of Set-4 shows almost only pure states at b = 0 (see Figs. 9
and 10) where the states {S1, . . . S4} and {S13, . . . S16} are qq̄ and ss̄ dominated,
respectively. The states {S5, . . . S8} and {S9, . . . S12} show equal amplitudes in the
qs̄ and sq̄ sectors. This might be a consequence of the fact that most of the bilinear
combinations ĴiV̂j with i �= j, do not play any role in the interaction, see Eq. (9) and
Table 1. This Set is also a good test for the effects of ph-correlations coming from
the vacuum state for b = bfit without the influence of additional flavor mixtures.

At b = bfit, the first RPA excitation is located at 201.37 MeV (see Fig. 2(d))
breaking its almost pure content by a more collective one (see Table B.4
in Appendix B). However, this state keeps its qq̄ content dominant, representing
the π-like state of Set-4 (very similar to the π-like states of Set-1 and Set-2). The
remaining qq̄ dominated S2, . . . , S4 states, identified as ρ- and ω-like states, lie at
energy 622.56 MeV. This is encouraging for further corrections in order to get closer
to the reported values ρ(770) and ω(782).

The state S5 is an explicit signal of qq̄+ss̄ excitations and it lies at 741.59 MeV.
This is the only state below 800 MeV with dominant qq̄+ ss̄ combination and with
more than 10% of ss̄ content. Therefore, its identification with a η-like state seems
reasonable. There is also some room to think of the S5 state as a mixture of the η-
and η′-like states, just like in the case of Set-1. However, for Set-4, there is about 3%
of qq̄ content in the higher subset S13, . . . , S16, which did not appear in the case of
Set-1. Therefore, we could think about two possible scenarios for the identification
of the η′-like state for the parametrization of Set-4, which we discuss below.

The two subsets of kaon-like S6, . . . , S8- and S9, . . . , S12-states are located at
780 and 930 MeV, respectively.

The state S13 is located at 1042.88 MeV. This state decreases its energy about
40 MeV with respect to the S14, . . . , S16 states. This indicates that the effects of
the interactions and the ph-correlations of the vacuum are not able to create a
bigger energy separation. For the Set-2 and Set-3 the energy separation between
the RPA S13 state and the S14, . . . , S16 states was about 120 and 150 MeV, respec-
tively. Without such separation, it seems that the Set-4 could present two possible
scenarios for the η′-like state. In the first scenario, the η- and η′-like states are
mixed and located at 741.59 MeV, which is almost the average energy of the physi-
cal η(547.8) and η′(957.7) states. Leading to the identification of the ss̄ dominated
states S13, . . . , S16 as the φ-like states. The second scenario is based on the fact that
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Fig. 11. RPA solutions for Sets−1, 2, 3, 4 (solid-lines) and experimental pseudo-scalar (Jπ = 0−)
and vector mesons (Jπ = 1−) up to 1GeV (dashed-lines). The labeling of the calculated RPA
states follows from the analysis of their flavor content.

the interactions and the ground state correlations were not capable of extracting
the η′-like state from the subset S13, . . . , S16. Thus, the η′- and φ-like states remain
mixed up and located within the range of energy 1042.88–1087.43 MeV.

The latter identification provides a possible scenario for the model which
describes the η-like meson as a very collective state built by a qq̄ content almost
twice the ss̄ one and where the combinations qq̄ + ss̄ and qs̄+ sq̄ have almost the
same weight. This is not the case of the η′-meson, which is built as a nearly pure
ss̄ state. This description might be naive referring to a theory like QCD, but for
this simple model it could be a reasonable explanation for the difference in energy
between the η- and η′-mesons.

The possibility that the η′-like state could be mixed up with the φ-like states
within the S13, . . . , S16 states, allow us to quantify the energy difference ES13+ES14

2 −
ES5 = 323.56 MeV, which is a good estimation for the experimental valueEη′−Eη ≈
400 MeV.

Finally, in Fig. 11, we collect the results of the RPA calculations performed
with the parameters of Set-1–Set-4, and compare them with the available data. In
Fig. 11, for the states obtained with the parametrization of Set-4, the state shown
as the η′-like state is the one described by the second scenario of Set-4, as explained
before. The first scenario of Set-4 is very similar to that depicted by Set-1.

5. Summary

In this work, we have studied the SO(4) group structure contained in the QCD
Hamiltonian written in the canonical Coulomb gauge representation. The SO(4)
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group seems to host a significant number of features associated to the low-energy
QCD mesons. We have also extended our previous study28 of the SO(4) group struc-
ture to include ph-like correlations in the ground state. This was done by means
of the RPA and taken into account the broken SU(3)-flavor-symmetry. Both the
inclusion of ph-correlations in the ground state and the broken flavor symmetry
represented by a flavor dependent single particle term improve significantly the
agreement with data, as compared to the results of Ref. 28.

Relevant features were observed in the calculated RPA spectrum for each set of
parameters:

• The state S1 with dominant qq̄-content is lowered significantly in energy. Partic-
ularly, the best representation of the pion within this work is by the S1 state, as
a collective state lying at about 200 MeV.

• The ρ, ω-like states are consistently lower than the experimental values. This
leaves room for further spin-dependent corrections of the coefficients.

• The state S5 is also lowered in energy by the effects of ph-correlations on the
ground state. It is a good example to illustrate the effects of the backward-going
term at higher energies, by the activation or suppression of flavor contents. With
the representative RPA results presented in Sec. 4, we were able to get some
insights about the structure of the pseudo-scalar η- and kaon-states by analyzing
the state S5.

• The identification of kaon- and φ-like states is straightforward within our RPA
results. Their associated energies are reasonable compared to data.

• The effects of the ph-correlations of the ground state over the states at about
1 GeV can still be quantified by changes in theirs flavor content and energy. This
led to our best identification of the η′-like state at about 895.17 MeV.

In general, these considerations allowed us to make a more realistic guess about
the presence of physical meson states. As shown here, we have started from a
rigorously-formulated QCD Hamiltonian, mapped it onto a group representation
and found that the masses of physical states at about 1 GeV are in correspondence
with the eigenvalues predicted by our RPA treatment of the SO(4)-group-QCD
Hamiltonian. The use of these concepts may lead us to a better understanding of
the structure of physical states belonging to the QCD scheme. We conclude our
analysis by stressing the potential of the use of standard many-body techniques to
explore the extremely rich and complicated structure of QCD in the nonperturba-
tive regime.
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Appendix A. RPA Procedure

The RPA method can be seen as a direct extension of the TDA method where the
collective ph-operator is written as

Γ̂†
n =

∑
mαmβ

Xn
mαmβ

γ†mαmβ
(A.1)

with γ†mαmβ
= C†

2mα
C1mβ

, which restricts the approximation to the space of 1p−1h
excitations relevant for low-lying states of negative parity. The nth TDA-excited
state is given by |n〉 = Γ̂†

n|0̃〉 and the ground state satisfies Γn|0̃〉 = 0.
The TDA-equation of motion is written as∑

mαmβ

〈0̃|[γmβ′mα′ , [Ĥ, γ†mαmβ
]]|0̃〉Xn

mαmβ
= ETD

n Xn
mα′mβ′ , (A.2)

where the 1p − 1h correlations are only taken into account in the excited states
keeping the ground state |0̃〉 unchanged.

The most straightforward generalization of the collective 1p− 1h-operator, and
the corresponding excitations, is the RPA. Calling |RPA〉 the correlated ground
state and defining the phonon operator as

Γ†
n =

∑
mαmβ

(Xn
mαmβ

γ†mαmβ
− Y n

mαmβ
γmβmα), (A.3)

with γmβmα = (γ†mαmβ
)†, the nth-RPA-state is constructed as |n〉RPA = Γ†

n|RPA〉.
The RPA-ground-state is constructed in such a way that the condition Γn|RPA〉 = 0
is fulfilled.

The equation of motion (H |n〉 = ERPA
n |n〉) in the RPA formalism is equivalent

to the double commutator

〈RPA|[Γ̂n′ , [H, Γ̂†
n]]|RPA〉 = ERPA

n δn,n′ , (A.4)

with eigenvalues ERPA
n . Therefore, from Eq. (A.4), we get two sets of equations,

which in matrix form can be written as(
A B

B∗ A∗

)(
Xn

Y n

)
= ERPA

n

(
1 0

0 −1

)(
Xn

Y n

)
, (A.5)

with
Aα′β′,αβ = 〈0̃|[C†

1β′C2α′ , [H,C†
2αC1β ]]|0̃〉,

Bα′β′,α,β = 〈0̃|[C†
1β′C2α′ , [H,C†

1βC2α]]|0̃〉,
(A.6)

being the forward and backward matrices of the RPA-method, respectively.
To calculate the commutators in Eq. (A.6), we enforce the quasi–boson approx-

imation

〈RPA|[C†
1β′C2α′ , C†

2αC1β ]|RPA〉 	 〈0̃|[C†
1β′C2α′ , C†

2αC1β ]|0̃〉 = δα′αδβ′β . (A.7)
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Appendix B. Flavor Content of the RPA Solutions

In this appendix, and for the sake of completeness, we are listening the amplitudes
of the qq̄, ss̄, qs̄ and sq̄ configurations of the TDA (b = 0) and RPA (b = bfit)
phonon states (see Sec. 4), for the different sets of parametrization considered in
the calculations.

Table B.1. (X2 − Y 2)−RPA-amplitudes, in percentage, in terms of the flavor content of each
state of Set-1.

Content\
Sk states S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

b = 0

qq̄ 98.0 98.0 98.0 98.0 0.0 0.0 0.0 0.0 1.5 1.5 1.5 1.5 0.4 0.4 0.4 0.4
ss̄ 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 3.6 3.6 3.6 3.6 96.2 96.2 96.2 96.2
qs̄ 0.9 0.9 0.9 0.9 50.0 50.0 50.0 50.0 47.4 47.4 47.4 47.4 1.6 1.6 1.6 1.6
sq̄ 0.9 0.9 0.9 0.9 50.0 50.0 50.0 50.0 47.4 47.4 47.4 47.4 1.6 1.6 1.6 1.6

b = bfit

qq̄ 62.2 98.0 98.0 98.0 37.9 0.0 0.0 0.0 0.0 1.5 1.5 1.5 −0.1 0.4 0.4 0.4
ss̄ 4.2 0.2 0.2 0.2 11.3 0.0 0.0 0.0 0.0 3.6 3.6 3.6 84.4 96.2 96.2 96.2
qs̄ 16.7 0.9 0.9 0.9 25.4 50.0 50.0 50.0 50.0 47.4 47.4 47.4 7.8 1.6 1.6 1.6
sq̄ 16.7 0.9 0.9 0.9 25.4 50.0 50.0 50.0 50.0 47.4 47.4 47.4 7.8 1.6 1.6 1.6

Table B.2. Same as in Table B.1 for Set-2.

Content\
Sk states S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

b = 0

qq̄ 94.6 94.6 94.6 94.6 0.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 2.3 2.3 2.3 2.3
ss̄ 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 15.1 15.1 15.1 15.1 84.3 84.3 84.3 84.3
qs̄ 2.4 2.4 2.4 2.4 50.0 50.0 50.0 50.0 40.8 40.8 40.8 40.8 6.7 6.7 6.7 6.7

sq̄ 2.4 2.4 2.4 2.4 50.0 50.0 50.0 50.0 40.8 40.8 40.8 40.8 6.7 6.7 6.7 6.7

b = 58.12

qq̄ 67.8 94.6 94.6 94.6 32.0 0.0 0.0 0.0 0.0 3.0 3.0 3.0 0.1 2.3 2.3 2.3
ss̄ 2.8 0.5 0.5 0.5 2.8 0.0 0.0 0.0 0.0 15.1 15.1 15.1 94.3 84.3 84.3 84.3
qs̄ 14.6 2.4 2.4 2.4 32.5 50.0 50.0 50.0 50.0 40.8 40.8 40.8 2.7 6.7 6.7 6.7
sq̄ 14.6 2.4 2.4 2.4 32.5 50.0 50.0 50.0 50.0 40.8 40.8 40.8 2.7 6.7 6.7 6.7

Table B.3. Same as in Table B.1 for Set-3.

Content\
Sk states S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

b = 0

qq̄ 61.2 61.2 61.2 61.2 38.2 38.2 38.2 38.2 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5
ss̄ 5.8 5.8 5.8 5.8 16.7 16.7 16.7 16.7 0.0 0.0 0.0 0.0 77.5 77.5 77.5 77.5
qs̄ 16.4 16.4 16.4 16.4 22.5 22.5 22.5 22.5 50.0 50.0 50.0 50.0 10.9 10.9 10.9 10.9
sq̄ 16.4 16.4 16.4 16.4 22.5 22.5 22.5 22.5 50.0 50.0 50.0 50.0 10.9 10.9 10.9 10.9
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Table B.3. (Continued)

Content\
Sk states S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

b = 54.37

qq̄ 86.3 61.2 61.2 61.2 5.0 38.2 38.2 38.2 0.0 00.0 0.0 0.0 8.1 0.5 0.5 0.5
ss̄ 8.2 5.8 5.8 5.8 0.0 16.7 16.7 16.7 0.0 0.0 0.0 0.0 93.1 77.5 77.5 77.5
qs̄ 2.7 16.4 16.4 16.4 47.5 22.5 22.5 22.5 50.0 50.0 50.0 50.0 −0.6 10.9 10.9 10.9
sq̄ 2.7 16.4 16.4 16.4 47.5 22.5 22.5 22.5 50.0 50.0 50.0 50.0 −0.6 10.9 10.9 10.9

Table B.4. Same as in Table B.1 for Set-4.

Content\
Sk states S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

b = 0

qq̄ 97.3 97.3 97.3 97.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 2.7 2.7 2.7
ss̄ 2.7 2.7 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.3 97.3 97.3 97.3
qs̄ 0.0 0.0 0.0 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0.0 0.0 0.0 0.0
sq̄ 0.0 0.0 0.0 0.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 0.0 0.0 0.0 0.0

b = 54.37

qq̄ 65.3 97.3 97.3 97.3 34.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.7 2.7 2.7
ss̄ 2.4 2.7 2.7 2.7 16.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.8 97.3 97.3 97.3
qs̄ 16.1 0.0 0.0 0.0 24.4 50.0 50.0 50.0 50.0 50.0 50.0 50.0 9.4 0.0 0.0 0.0
sq̄ 16.1 0.0 0.0 0.0 24.4 50.0 50.0 50.0 50.0 50.0 50.0 50.0 9.4 0.0 0.0 0.0
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