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Abstract
Due to the numerical complexities of studying evolution in an anisotropic 
quantum spacetime, in comparison to the isotropic models, the physics 
of loop quantized anisotropic models has remained largely unexplored. 
In particular, robustness of bounce and the validity of effective dynamics 
have so far not been established. Our analysis fills these gaps for the case of 
vacuum Bianchi-I spacetime. To efficiently solve the quantum Hamiltonian 
constraint we perform an implementation of the Cactus framework which 
is conventionally used for applications in numerical relativity. Using high 
performance computing, numerical simulations for a large number of initial 
states with a wide variety of fluctuations are performed. Big bang singularity 
is found to be replaced by anisotropic bounces for all the cases. We find that 
for initial states which are sharply peaked at the late times in the classical 
regime and bounce at a mean volume much greater than the Planck volume, 
effective dynamics is an excellent approximation to the underlying quantum 
dynamics. Departures of the effective dynamics from the quantum evolution 
appear for the states probing deep Planck volumes. A detailed analysis of the 
behavior of this departure reveals a non-monotonic and subtle dependence on 
fluctuations of the initial states. We find that effective dynamics in almost all 
of the cases underestimates the volume and hence overestimates the curvature 
at the bounce, a result in synergy with earlier findings in the isotropic case. 
The expansion and shear scalars are found to be bounded throughout the 
evolution.
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1. Introduction

In order to understand the generic approach to the classical singularities and their resolution, 
the role of anisotropic spacetimes is fundamental. Of these the Bianchi-I spacetime is one 
of the simplest, yet is an important one to study. In the classical theory, rigorous analytical 
and numerical techniques have established that in cosmological spacetimes the singularity 
either has a Kasner form corresponding to the vacuum Bianchi-I spacetime or undergoes a 
Mixmaster dynamics which is made of a sequence of Kasner phases [1, 2]. For homogeneous 
cosmological spacetimes without spatial curvature and even with a tiny initial anisotropy, the 
singularity structure is determined by the anisotropic shear unless the matter has a stiff or 
ultra-stiff equation of state. For any other equation of state, the metric near the singularity is 
guaranteed to correspond to the vacuum Bianchi-I metric. The presence of anisotropies brings 
considerable richness and complexity to the gravitational dynamics. As an example, it changes 
the point type big bang singularity to a cigar shaped big bang. As this cigar singularity is 
approached, two of the three directional scale factors contract to zero in a finite proper time. 
The expansion and shear scalars diverge, causing a divergence in the Weyl curvature as well as 
the Ricci curvature (if matter is present). It has been hoped that insights on the quantum nature 
of spacetime would provide answers to how the spacetime extends beyond these singularities. 
Certainly one of the most formidable challenges for any theory of quantum gravity is whether 
such singularities can be resolved.

The issue of singularity resolution has been rigorously addressed in a non-perturbative 
approach to the quantization of homogeneous cosmological spacetimes known as loop 
quant um cosmology (LQC) [3, 4]. In this framework based on loop quantum gravity, loop 
quantization of various isotropic and anisotropic spacetimes has been performed in the last 
decade. The key result, which was first shown for the case of a spatially flat homogeneous and 
isotropic model with a massless scalar field, is that the big bang singularity is resolved due to 
the discrete quantum geometric effects near the Planck scale and is replaced by a big bounce 
[5–7]. The existence of bounce first established using numerical simulations was confirmed 
via an exactly solvable model which predicts a minimum volume for all the states in the physi-
cal Hilbert space [8] and consistent probability for singularity resolution to be unity [9]. In the 
isotropic models the results on singularity resolution have been generalized to include spatial 
curvature [10–12], radiation [13], and cosmological constant [14–16]. In all these models, 
quantum expectation values of the relational observables show that at small spacetime curva-
ture there is an excellent agreement between the quantum dynamics of LQC and general rela-
tivity (GR). When the spacetime curvatures reach about a percent of the Planck value, strong 
departures start becoming significant between the two. Unlike a contracting universe ending 
up in a big bang in the backward evolution, the LQC universe bounces when the expansion 
scalar of the isotropic spacetime reaches a universal maximum [17, 18]4.

In isotropic models in LQC, numerical simulations have played a crucial role in deciphering 
the details of singularity resolution and associated Planck scale physics [21, 22]. A key difference 

4 Conventionally, bounce in isotropic models has been characterized by a universal maximum in energy density, 
see for e.g. [7, 19]. However, it has been recently shown that a more faithful characterization of the bounce in LQC 
which is valid irrespective of spatial curvature is expansion scalar [20]. In the vacuum Bianchi-I spacetime as con-
sidered here, one of our goals will be to understand the behavior of expansion and shear scalars.
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in the numerical techniques used in LQC in comparison to numerical relativity concerns with the 
nature of evolution equation. Unlike in GR where the spacetime is a continuous differentiable 
manifold and the evolution equations  are differential equations, in LQC the evo lution equa-
tion in the geometric representation is fundamentally discrete. There is no freedom to change the 
discreteness to achieve a stable evolution. This puts non-trivial computational constraints, espe-
cially if one wishes to study fate of singularity resolution for widely spread states, and aniso-
tropic spacetimes. In the former case, if one is interested in simulations involving general states 
then the recently proposed Chimera scheme proves quite useful [23]. Using this scheme, singu-
larity resolution has been established for a wide variety of states and the validity of an effective 
spacetime description in LQC has been rigorously studied. The latter description which captures 
the LQC dynamics quite well in a continuum spacetime has proved extremely valuable to extract 
physical implications and phenomenological predictions [3, 4]. It was recently found that though 
effective description is an excellent approximation for states which are initially sharply peaked 
in a macroscopic universe and bounce at volumes large compared to Planck volume, the situa-
tion changes if states are widely spread and probe deep Planckian geometry [24, 25]. In this case 
effective dynamics underestimates the volume at the bounce, thus overestimating the spacetime 
curvature where singularity resolution occurs. Further, the dependence of the departure between 
the quantum and effective dynamics was found to non-trivially and unexpectedly non-monoton-
ically depend on the state parameters and fluctuations.

Unlike the case of isotropic models where there exist thorough studies on the fate of singu-
larities in LQC, investigations on Bianchi models have been so far focused on two frontiers: 
(i) establishing the details of quantization [26–33] and (ii) using effective dynamics to under-
stand genericity of singularity resolution [17, 34–38] and extract various phenomenological 
aspects (see for e.g. [39–46]). In contrast there has been only one study on the numerical 
aspects using quantum states in Bianchi-I model [47]5. This seminal study which established 
a quantization prescription for Bianchi-I spacetime in LQC demonstrated that bounce occurs 
at least for sharply peaked Gaussian state. In this first important step to understand singular-
ity resolution, the details of the validity of effective dynamics and the robustness of bounce 
and associated features were not studied. Without a rigorous numerical analysis with sharply 
peaked as well as widely spread states, robustness of singularity resolution and bounce in the 
loop quantization of Bianchi-I spacetime and the validity of effective dynamics can not be 
established. Despite the availability of a consistent quantization prescription where physi-
cal Hilbert space, inner product and relational observables are known, numerical analysis 
and hence analysis of physical implications of quantum theory had so far been been limited 
because of additional numerical complexities and very high computational costs.

The goal of this manuscript is to fill the above important gap in the understanding of 
Bianchi-I spacetimes in LQC. We focus on the quantization prescription put forward in [28, 
47] which provides a viable quantization when the spatial manifold is a 3-torus. Note that 
the quantization prescription which we employ in this analysis is not a unique choice to loop 
quantize Bianchi-I spacetimes. There exists another loop quantization, first proposed in [27] 
and rigorously studied in [29]. These choices result from quantization ambiguities which arise 
due to different prescriptions to obtain the field strength of the Ashtekar-Barbero connections 
and the way loops over which holonomies of these connection are considered capture the 
underlying quantum geometry. Surprisingly these are the only two viable choices if the spatial 
manifold is compact [17]. If the spatial manifold is non-compact, the quantization prescription 
of [28, 47] results in physics which depends on certain rescalings of the shape of the fiducial 

5 These spacetimes have also been discussed to understand numerical stability of quantum difference equation, see 
for e.g. [48, 49].
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cell used to define the symplectic structure [17]. In comparison, the quantization prescription 
developed in [29] promises to provide a viable quantization irrespective of the choice of the 
topology of the spatial manifold. However, so far some of the important details of the physi-
cal Hilbert space which are crucial to perform analytical and numerical investigations have 
remained unavailable in the latter approach. On the other hand, though the quantization pre-
scription of [28, 47] is restricted to a 3-torus spatial topology, details of the physical Hilbert 
space are rigorously available. Finally, both the viable quantizations result in the so called 
improved dynamics prescription in the isotropic limit [17], which by itself is a unique consist-
ent choice for the loop quantization of isotropic models [50]. It is to be noted that working 
with 3-torus topology should not be viewed as a restriction since the same setting is very use-
ful to implement the loop quantization of polarized Gowdy models and understand the role of 
inhomogeneities on bounce using a hybrid quantization [51] (see [52] for a review).

As we will show later, numerical simulations of Bianchi-I spacetime in LQC for states 
which are widely spread and probe deep Planck regime come with significant computational 
challenges. In particular, we need high performance computing (HPC) resources to solve this 
problem and hence a parallelization of code is a necessity. We therefore employ the Cactus 
computational toolkit [53, 54]. Cactus was originally developed for numerical relativity 
in order to solve the partial differential equations originating from the full classical general 
relativistic field equations. The design of Cactus is modular and allows domain specialists 
to focus on their particular domain of expertise while still writing inter-operable modules. 
Thus computer scientists can focus on infrastructure for parallelization, I/O and other neces-
sary things, while the physicist can focus on the physics part of the implementation assuming 
some of the more technical aspects of the parallelization. In this way Cactus provides an 
abstraction of parallelization that enables much faster development of parallel codes. Once 
the Cactus implementation was performed for the loop quantum Bianchi-I spacetime, HPC 
resources of Extreme Science and Engineering Discovery Environment (XSEDE) [55] were 
used for our investigations in this manuscript. It is to be noted that our work is the first of its 
kind to use the Cactus framework and HPC in quantum gravity.

Numerical simulations carried out in our analysis reveal various so far not known features 
of the Bianchi-I spacetime in LQC. We first establish rigorously the existence of bounce(s) of 
directional volumes for sharply peaked and widely spread Gaussian states. In over a hundred 
simulations carried out with different states, big bang singularity is found to be resolved and 
replaced by the bounce of mean volume. We find that for states which bounce at volumes 
much larger than the Planck volume, the effective spacetime description provides an excel-
lent approximation to the underlying quantum dynamics. However, for states which probe 
the deeper Planck volumes there are departures of the effective dynamics from the quantum 
theory. It is important to note that in this manuscript we do not include any state dependent 
corrections to the effective Hamiltonian. Any reference to the departure of effective dynamics 
from the quantum theory will be made under this assumption. Having gained the evidence 
of existence of departure between the effective dynamics and quantum theory which turns 
out to be maximum in the bounce regime, we explore the dependence of the departure on 
state parameters ωi whose inter-relationship captures anisotropy and which are proportional 
to the directional Hubble rates in the classical theory, and fluctuations of the initial state. The 
Hamiltonian constraint relates three ωi’s, allowing only two of them say, ω2 and ω3, to be 
independent. Working in the mixed representation with conjugate of directional volume v1 as 
time, the initial states are parameterized by ω2 and ω3. The measure of the departure between 
the quantum theory and the effective dynamics is found using the expectation value of the 
relational observable for logarithm of directional volume in the quantum theory and its analog 
in the effective dynamics when bounce occurs. We find that the departure of the effective 
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dynamics from the quantum theory increases rapidly when one of the ωi is decreased keeping 
the other one fixed. Varying the value of ωi where the state is peaked shows that the behavior 
of the departure is sensitive to the choice of a given dispersion for different values of ωi. There 
is an increase in the departure as one of the ωi is decreased keeping the other one fixed, and 
some evidence of a non-monotonic behavior for larger values of ωi. The dependence of the 
departure of the effective dynamics from the quantum theory shows a striking non-monotonic 
behavior with respect to the dispersion in the logarithm of the directional volume. The depar-
ture takes largest values when the dispersion in logarithm of the directional volume is largest, 
however it does not take smaller values at the smallest values of this dispersion. There exists 
an unambiguous regime where the departures increase on decreasing the dispersion. We find 
that dispersion in logarithm of volume can only be decreased to a certain value for a given 
value of ωi. Our results show that departure of the effective dynamics for quantum theory has 
non-trivial and subtle relationship with state parameters and fluctuations. We find that in most 
cases the states which have wide spreads bounce at volumes greater than those predicted by 
effective dynamics. That means, effective dynamics generally overestimates the spacetime 
curvature at the singularity resolution. This result is in harmony with the similar results earlier 
obtained for isotropic models in LQC [24, 25]. Interestingly, we do find some states for cer-
tain values of parameters and dispersions for which the difference in the expectation value of 
logarithm of the directional volume and its counterpart in the effective dynamics is negative. 
This means that there are certain states for which the above conclusion is reversed. Finally, 
using the expectation values of the relational observables and some inputs from the effective 
dynamics we estimate the mean Hubble rate (expansion scalar) and shear scalar for sharply 
peaked states. Along with the directional Hubble rates, these scalars turn out to be bounded.

This manuscript is organized as follows. In section 2 we discuss the main features of the 
quantization of the Bianchi-I spacetime in absence of matter. We will follow the quantization 
methods rigorously outlined in [28, 47], where various properties of the quantum Hamiltonian 
constraint were established and singularity resolution was shown for the first time at the quant um 
level. This section provides a summary of the quantization procedure, and for details the reader 
is referred to above references. In section 3 we discuss various computational challenges, the 
ways to overcome them through Cactus implementation and the performance and scaling of 
our code. Readers who are mainly interested in the quantization and physical implications can 
skip this section and move to section 4 which deals with a detailed discussion of all the results 
from our analysis. We first discuss resolution of classical singularity by bounces in section 4.1, 
where we also discuss the way effective dynamics provides an excellent agreement with the 
quantum dynamics for sharply peaked states. This is followed by a discussion of some of the 
cases which show the departure of effective dynamics from the quantum theory in section 4.2. 
In section 4.3 various quantitative details of this departure are investigated. In section 4.4 we 
estimate the expansion and shear scalars, and deceleration parameter in our analysis. The mean 
Hubble rate (or the expansion scalar) and the shear scalar turn out to be bounded. We summa-
rize our results with a summary and a discussion of open issues in section 5.

2. Loop quantization of Bianchi-I vacuum spacetime

We consider the spatial manifold with a 3-torus topology which allows the quantization pre-
scription put forward in [28, 47] to be successfully carried out6. The 3T  fiducial cell is chosen 
with sides of coordinate length π2 . Due to the underlying homogeneity of the spatial manifold, 

6 If the spatial manifold is chosen as 3R  then the quantization prescription is not independent of the choice of the 
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the matrix valued connection Ai
a and triad variables Ei

a can be written as a homogeneous pair 
c p,i i( ) satisfying π γδ=c p G, 8i

j j
i{ } . Here γ≈ 0.2375 is the Barbero–Immirzi parameter. The 

spacetime metric is given by

= − +s N t a xd d di i
2 2 2 2 2 (2.1)

where directional scale factors ai are kinematically related to the triads as =pi  
π a a a a a4 sgnj k i j k

2 ( ) where ≠ ≠i j k can take values 1..3. On the other hand, connection comp-
onents are related to time derivatives of the scale factors dynamically which can be found from 
the Hamiltonian constraint which is the only non-trivial constraint in this setting due to the 
underlying symmetries. The classical Hamiltonian constraint is given by

γ
= − + + ≈

V
c p c p c p c p c p c p

2
0cl 2

1
1

2
2

2
2

3
3

3
3

1
1

˜ ( )C (2.2)

where V denotes the physical volume of 3T  cell: =| |V p p p1 2 3
1 2/ .

On quantization, the basic kinematical variables in the loop quantization are the holo-
nomies of connection components along the edges of the fiducial cell, and the fluxes of the 
triads which turn out to be proportional to the triads themselves. Elements of holonomies, 

µ=µN cexp i 2i
i( / ), form an algebra of almost periodic functions which forms the configura-

tion algebra whose completion with respect to the inner product µ µ δ| =′ µ µ′i i ,i i
⟨ ⟩  yields the kin-

ematical Hilbert space kinH . The eigenstates of the triad operators are given by µ| i⟩ such that

µ πγ µ µ| = |p l4 .i i i iPl
2ˆ ⟩ ⟩ (2.3)

The action of µN̂  on the eigenstates of triad operators is translational: µ µ µ| =| + ′µ′N i i ii
ˆ ⟩ ⟩. 

Though these elements of holonomies yield a translations which have uniform spacing in triad 
eigenvalues, the same does not hold true when one takes into account holonomies are consid-
ered along physical lengths which have inbuilt triad dependence. In particular, the physical 

length µ | |pi i¯  is determined by the underlying quantum geometry as: µ λ| |=pi i
2 2¯ , where 

λ πγ= l4 32
Pl

2 is the minimum eigenvalue of the area operator computed in lop quantum 

gravity. The above relationship complicates the action of the operator µN
i

ˆ ¯  on triad eigen-
states. Nevertheless changing the representation to (dimensionless) directional volume 

λ= | |−v p2 3i i
3 3 2/ /  results in a uniform translation for holonomies considered over µ̄. That is,

| =| +µN v v 1 .i ii
ˆ ⟩ ⟩¯ (2.4)

Using the action of these operators, one can obtain the quantum Hamiltonian constraint 
corresponding to equation (2.2) which turns out to be non-singular and which has the prop-
erty that the zero volume state is decoupled [28]. Using this property, it turns out to be more 
convenient to work with the densitized quantum Hamiltonian constraint which can be written 
as [28, 47]:

γ
= − Θ Θ +Θ Θ +Θ Θ

2
.

2 1 2 1 3 2 3
ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ )C (2.5)

Here Θi
ˆ  are symmetric operators which act on corresponding basis states |vi⟩ as

λ
Θ | = − | + − | −+ −v f v v f v vi

2 3
2 2 ,i i i i i i

2
ˆ ⟩ ( ( ) ⟩ ( ) ⟩) (2.6)

where
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= ±± ±f v g v s v g v2i i i i( ) ( ) ( ) ( ) (2.7)

with

= ± +±s v v vsgn 2 sgni i i( ) ( ) ( ) (2.8)

and

⎧

⎨
⎪

⎩
⎪

= + − ≠

=

−

g v v v
v

v

1
1

1
1

if 0,

0 if 0.

i i i
i

i

1 3 1 3 1 2

( )

/ / /

 (2.9)

We can see that the action of the operators Θi
ˆ  only connects states with the label vi sepa-

rated by two. Furthermore, the positive and negative regions are also disconnected from each 
other. That is, Θi

ˆ  only connects states with vi in the semi lattices

= ± + =± n n2 , 0, 1, 2, ... ,ii
{ ( ) }εLε (2.10)

where <0 2i ⩽ε . The Hilbert subspaces ±
i

Hε , defined as the Cauchy completions with respect 
to the discrete inner product of the spaces spanned by |vi⟩ with vi in each ±

i
Lε , are left invari-

ant by the action of Θi
ˆ . We can then restrict the study to one particular Hilbert space, say 

⊗ ⊗+ + +
1 2 3

H H Hε ε ε .
The spectrum of the essentially self-adjoint operator Θi

ˆ  is continuous [28]. The eigenstates, 
with eigenvalue denoted by ωi, can be obtained explicitly from the recursive relations:

ω
+ = −

∆ +ω
ω

g g
e 2 i

3 e

2
,i

i i

i i
i

i i
i

( )
( )

( ) ( )
ε

ε

ε ε
ε

ε

 (2.11)

and

( ) ( )
( )

( )
( )

( ) ( )
( )ε

ε
ε

ε
ε

ε ε
ε ε

ε
ω

+ + =
− +
+ +

− + −
∆

+

+ + +
>ω ω

ω
n

g n

g n
n

n

g n g n
ne 2 2

2 2

2 2
e 2 2 i

3 e 2

2 2 2
0 .i

i

i
i

i i

i i
i

i
i

i i
i

 (2.12)
They are thus completely determined by their value at the minimum allowed value. Note that 

these eigenfunctions, which have support in ±
i
Lε , are formed by two components, each with 

support in the four-step lattices, given respectively by:

= ± + =± n n4 , 0, 1, 2, ... ,i
4

i
{ ( ) }( ) εLε (2.13)

and

{ ( ) }( ) εLε = ± + + =+
± n n2 4 , 0, 1, 2, ... .i

4
2i (2.14)

These components are eigenfunctions of Θi
2ˆ  with eigenvalue ωi

2, and have a relative phase of 
π± 2/ . Choosing the initial value ωe ii

i ( )εε  to be positive we obtain a purely real and a purely 
imaginary component. In the numerical computation we choose somehow random posi-
tive values and then eliminate this last degree of freedom by rescaling the eigenfunction. 
The rescaling is chosen such that the asymptotic forms match those of the Wheeler–DeWitt 
eigenfunctions.

States belonging to the physical Hilbert space , ,1 2 3( )H ε ε ε , found using group averaging, can 
be written in terms of eigenfunctions ωe vii

i ( )ε  as:
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∫ ω ω ω ωΨ = Ψ ω ω ω ω ωv v v v v v, , d d , e e e ,1 2 3 2 3 2 3 , 1 2 31 2 3
1

2
2

3
3( ) ˜ ( ) ( ) ( ) ( )( )

ε ε ε
 (2.15)

where ω ωΨ ,2 3˜ ( ) is the wave profile, and we have chosen to write ω1 in terms of ω2 and ω3 as

ω ω ω
ω ω
ω ω

= −
+

, .1 2 3
2 3

2 3
( ) (2.16)

This relationship is essential for the states to satisfy the quantum Hamiltonian constraint 
Ψ = 0Ĉ .

Once the physical Hilbert space is available, our next task is to extract relational dynamics. 
As an example, we can study the behavior of v2 and v3 in terms of v1 or its conjugate variable 
b1 which acts as an internal clock. It turns out that in the quantum theory, the choice of v1 as 
internal time is unsuitable since it does not lead to a unitary evolution [28]. It also turns out 
that v1 is not monotonous in the proper time. On the other hand, unitary evolution can be found 
with b1 as internal time. A physical state in the bi representation can be obtained from the one 
in the vi representation via the following Fourier transformation

∑Ψ = Ψ | |− −b v v e .i
v

i i
v b1 2 i 2

i

i i[ ] ( ) ( ) / ( / )F (2.17)

In the following, we will work with a mixed representation, with wavefunctions depend-
ing on b1, v2 and v3. In this case, the summation in (2.17) should in principle be preformed 
in all of +

1
Lε , with b1 going from 0 to π2 . However, as noted in [28], one can instead apply 

two separate transformations, each acting on one of the sectors +4
1

( )Lε  and +
+4

21
( )Lε , which 

map to b1 in the domain π0,[ ) and π π, 2[ ), respectively. Since all the information about the 
physical state is contained in each sector, we can restrict our analysis to only one of them. 
In what follows we will perform the transformations to b1 space as defined in (2.17), but 
with the summation evaluated in +4

1

( )Lε  and hence with b1 in the domain π0,[ ). To write the 
physical state in the mixed representation, we only need to transform the eigenstates in the 
v1 direction:

∑= =ω ω ω
− −

+
e b b v v: e e e .v b

1 1 1 1
1 2 i 2 i i

1
1

1
1

4
1

1
1˜ ( ) [ ] ( ) ( ) / ( / )

( )
Fε ε ε

Lε
 (2.18)

The physical state in the mixed representation for evolution in b1 can be written as7:

∫χ ω ω χ ω ω= ω ωv v e v e v, d d , ,b b2 3 2 3 2 3 2 31 1 2 3( ) ˜ ( ) ( ) ( ) (2.19)

where

χ ω ω ω ω= Φ ′ωe b, ,b 2 3 2 3 11 1
˜ ( ) ˜ ( ) ˜ ( ) (2.20)

and

=
| |

′ω
ω

ω
e b

e b

e b
.

1

1

1

˜ ( )
˜ ( )
˜ ( ) (2.21)

The physical inner product evaluated at a ‘time’ slice b1 is given by

∑χ χ χ χ| =′ ′v v v v, , .b b
v v

b b
,

2 3 2 31 1
2 3

1 1
⟨ ⟩ ( ) ( ) (2.22)

fiducial cell [17, 29].
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Obtaining the expectation values of the relational observables |̂vln b2 1
( )  and |̂vln b3 1

( )  is 

straightforward, as on a given slice b1 they simply act as multiplication on the eigenstates 
ωe v22( ) and ωe v33( ), respectively. For instance, we have

∫χ ω ω χ ω ω= ω ω̂v v v v e v e vln , d d , ln ,b b b2 2 3 2 3 2 3 2 2 31 2 3( ) ( ) ˜ ( ) [ ( ) ( )] ( ) (2.23)

and with similar expressions for |̂vln b3 1
( )  and their dispersions.

On the other hand, the evaluation of the expectation value of ̂vln b1 1( )  is slightly more com-
plicated, since the eigenstates have to be normalized before acting with vln 1( ) and the normali-
zation is done in b1 space. We hence proceed as follows. After transforming the eigenstates 
to b1 space, as in equation  (2.18), and doing the normalization in that space, as in equa-
tion (2.21), we transform back to v1 space by means of an inverse Fourier transform. Since we 
are then back in v1 space, we can act with vln 1( ) by multiplication,

= ′ω ω
−v v e ve : ln .ln

1 1
1

11 1
( ) ( ) [ ˜ ] ( )F (2.24)

Finally, we apply again the transformation in equation (2.18) to go once more to b1 space and 
obtain

∫χ ω ω χ ω ω= ω̂v v v e vln , d d , ,b b b1 2 3 2 3
ln

2 3 31 1 1 3( ) ( ) ˜ ( ) ( ) (2.25)

where

χ ω ω ω ω= Φ ω b, : , e .b
ln

2 3 2 3
ln

11 1˜ ( ) ˜ ( )[ ]( )F (2.26)

Note that here we departed from the procedure followed in [28], where one acts with vln 1( ) 
before normalizing. The errors introduced with that method can be neglected for semiclassi-
cal states packed at large ωi. However, in this work we are interested in studying more gen-
eral cases. In the following analysis, we set ω ωΦ ,2 3˜ ( ) as a Gaussian distribution centered at 
ω ω= ∗

2 2 and ω ω= ∗
3 3:

ω ω
πσ πσ

Φ =
ω ω
σ β ω

ω ω
σ β ω−

−
−

−∗ ∗

,
1

e e
1

e e .2 3
2

2 i

3

2 i
2 2

2

2
2 2 2

3 3
2

3
2 3 3˜ ( )

( ) ( )
 (2.27)

Note that in principle we can choose more general states, such as squeezed and non-Gaussian 
states instead of above states. However, Gaussian states are desirable phenomenologically as 
they are peaked symmetrically in both of the conjugate phase space variables. In particular, 
the initial Gaussian states considered in our analysis will be such that they are peaked on 
classical trajectories specified by the values of classical phase space variables at initial ‘time’ 
bi in a large macroscopic vacuum Bianchi-I spacetime. The above choice of Gaussian states 
thus allows us to understand the evolution to the quantum regime starting from the classi-
cal Bianchi-I spacetime. As the previous works on isotropic models in LQC have demon-
strated, squeezed and more general states result in added features in the bounce regime due 
to the asymmetric quantum fluctuations of the states [25]. Similar results are being found for 
squeezed and non-Gaussian states for the loop quantization of vacuum Bianchi-I model in an 
independent study [56]. It is to be noted that the main results of bounce and the physics of 
the Planck regime for the latter states share the same features as reported in this manuscript.

The above construction as presented in [28], provides a rigorous framework in the quant um 
theory to understand the detailed aspects of evolution in the loop quantized Bianchi-I spa-
cetime. However, this involves various computational challenges. Before we proceed to 
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understand and address them, let us note that there exists an effective spacetime description 
of the quantum theory in LQC. This description results in an effective Hamiltonian which has 
been derived rigorously in isotropic models for states which are sharply peaked at large vol-
umes [57, 58]. Following the latter results, the effective Hamiltonian constraint corresponding 
to equation (2.5) can be written as

π= − + + ≈C l b v b v b v b v b v b v72 sin sin sin sin sin sin 0.eff Pl
4

1 1 2 2 2 2 3 3 3 3 1 1( ( ) ( ) ( ) ( ) ( ) ( ) )    
 

(2.28)

Using Hamilton’s equations modified dynamics in an effective continuum spacetime can be 
derived, resulting in

π
= +

v

v

l

V
b b v b v

˙ 9
cos sin sin ,1

1

Pl
2

1 2 2 3 3( )( ( ) ( ) ) (2.29)

and similarly for v2, v3 and bi’s.

3. Computational aspects

In this section, we present various details of the computational aspects of our analysis. We start 
with the computational cost estimate to perform simulations for a wide variety of Gaussian 
states. To overcome the associated computational constraints led us to a Cactus [53, 54] 
implementation in our analysis. After explaining this implementation in section 3.2, we sum-
marize the scaling performance of our code on high performance computers used in our simu-
lations in section 3.3.

3.1. Computational cost estimation

In order to obtain the physical solution of the quantum Hamiltonian as described above, we 
first consider a Gaussian peaked at large eigenvalues ω ω∗ ∗,2 3( ). At late times the expectation 
value of the physical observables would be such that the LQC trajectory agrees with the corre-
sponding Wheeler–DeWitt trajectory. The physical wavefunction at any time b1 is given by 
equation 2.19. Note that, the physical state is a 3 dimensional object. However, in the numer-
ical implementation, the state is only stored at a single value of b1 at a time as a two dimen-
sional array of size ×n n2 3, where n2 and n3 respectively are the size of the spatial grid in the 
v2 and v3 directions. In addition the evaluation of the integral in equation 2.19 we also need to 
evaluate additional integrals in order to be able to calculate various analysis quantities, such as 
equations (2.23) and (2.25). Denoting the total number of time-steps at which we need to eval-
uate the state by n, the total number of times these integrals need to be evaluated is × ×n n n2 3.

We numerically compute the integrals using a Gauss–Legendre integration, generally 
within the range of ω σ±∗ 10a a. Here the integral is approximated by a discrete sum with cer-
tain weights over frequency values within the given range of integration. Let us say we choose 
ωn a frequency values in each ωa direction. Then to evaluate the integral at one spatial grid point 

we need to sum over ×ω ωn n2 3 terms. As described in section 3.2 adding the contribution to all 
the integrals at each frequency point requires 44 floating point operations.

Therefore, the total number of floating point operations in the computation of the integrals 
for n values of b1 and all grid points v2 and v3 will be equal to

= × × × × ×ω ωN n n n n n44 .2 3 2 3 (3.1)
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Let us now consider a typical example of a simulation of sharply peaked Gaussian state with 
ω = 10002 , ω = 10002 , σ = 502 , σ = 503 . This would typically require: n  =  1024  =  210, 
= = =n n 4096 22 3

12 and = = =ω ωn n 256 28
2 3 . Then the total number of floating point 

operations would be

= × ≈ ×N 44 2 5 10 flops.50 16 (3.2)

On a modern workstation with a peak performance of 50 GFlops per second, the total compu-
tation time in seconds would be

≈
×

≈ ≈T
N

50 10
10 s 11.5 d.comp 9

6    (3.3)

On the other hand the simulation of a widely spread state would require larger grids in b1, v2 
and v3 which would significantly increase the computation time proportionally. Clearly such 
simulations are not suited for a single workstation. In addition to the long computation time, 
there should be enough memory available at the workstation to store the necessary eigen-
function data. For the grid size considered above one would need approximately 0.5 TB of 
random access memory. This memory requirement is clearly beyond a typical modern work-
station and the need for a parallel implementation suitable for high performance computing 
platforms is clear. In the following section 3.2 we will describe in more detail our parallel 
implementation.

3.2. Cactus implementation

We have implemented the numerical evaluation of the state equation 2.19 and the additional 
integrals needed for calculating analysis quantities as a thorn in Cactus [53, 54]. At any 
given time b1, the state χ v v,b 2 31

( ) can be stored as a 2-dimensional grid function of size 
×n n2 3 (see left plot in figure 1). The computation of χ v v,b 2 31

( ) is therefore parallelized in 
the v2 and v3 directions. On the other hand the discrete representation of ω ωe e,2 3 and χb1

˜  will 
typically have different sizes and can therefore not be stored as grid functions (grid func-
tions in Cactus all have the same size). In particular χ ω ω,b 2 31

˜ ( ) of size × ×ω ωn n n12 3  has 
to be calculated initially (using numerical fast Fourier transforms (FFTs)) and stored for the 
remainder of the simulation (see right plot in figure 1). This is the largest object considered 
by far. For = =ω ωn n 2562 3  and =n 131 0721 , this single object requires 128 GBytes of stor-
age (this array is double precision complex). We store this object as a vector of grid arrays 
that is distributed among processors in the ω2 and ω3 direction but not in the b1 direction. 
That is, each processor owns a range of ω2 and ω3 values and for each pair of frequencies has 
data for all b1 values. This is illustrated for the case of 4 message passing interface (MPI) 
processes in the right plot in figure 1. This allows us to calculate the FFT’s in parallel by 
calling serial FFT routines for different ω ω,2 3( ) values on different processors. At the time 
when the integral has to be evaluated, each processor (computing a chunk of the v2 and v3 
grid) needs all frequency values (but only for that single =b b i1 1  value). Therefore, before 
each integral evaluation, we need to communicate the b i1  slice of χ ω ω,b 2 31

˜ ( ) to all processors. 
This operation is performed using a special Cactus local array sum reduction. With each 
MPI process owning a local array (the size has to be the same on all MPI processes) this sum 
reduction will, for each element of the array, add up the contribution from all MPI processes 
and place the resulting array on either a single MPI process or alternatively on all MPI pro-
cesses. Thus, on each MPI process, we allocate a local 2-dimensional array of size ×ω ωn n2 3 
and initialize it to zero everywhere except for the chunk of frequency values where the MPI 
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process knows the value of χ ω ω,b 2 31
˜ ( ). With a call to the Cactus local array sum reduction 

we finally make sure that the result of the sum is communicated to all MPI processes. This 
is illustrated in figure 2.

The numerical evaluation of the integral equation (2.19) then consists of looping over all 
grid points (in v2 and v3) and for each grid point we have a double loop over the frequency 
directions (ω2 and ω3). In this loop we need 8 floating point operations to evaluate and add the 
contribution from this frequency pair to the integral equation (2.19). For analysis purposes 
we need to evaluate 2 more integrals of this cost and 5 more at half the cost. The half cost 
integrals are due to the fact that their integrands are given by a real number multiplied one of 
the previously calculated integrands, leading to only 4 floating point operations. Thus each 
loop consists of 44 floating point operations with a perfect mix of 22 multiplications and 22 
additions.

After the state has been calculated, we then have to calculate various expectation values. 
These are given by discrete sums over the state itself as well as the other gridfunctions calcu-
lated in the integration loop. For these we perform local sums over the patch of the grid owned 
by each MPI process and again resort to using the Cactus local array sum reduction. In order 
to reduce the communication overhead and latency, we perform the reduction of these analysis 
quantities at the same time as we prepare the integrands for the next time step as described 
earlier.

In order to be able to use modern high performance computing (HPC) architectures, we 
have ported the integration routine to work on both graphical processing units (GPUs) and 
Intel Xeon Phis (codename Knights Corner). In the first case we use the open accelerators 

Figure 1. Illustration of the processor distribution of χ v v,b 2 31
( ) (left) and of χ ω ω,b 2 31

˜ ( ) 
(right) when using 4 MPI processes. In the left plot, v2 and v3 labels the direction in 
volume space while n2 and n3 denotes the number of grid points in those directions. 
Similarly, in the right plot ω ω,2 3 labels the frequency space directions and b1 labels the 
time direction, while ω ωn n,2 3 and n1 denotes the number of grid points. A slice through 
the data structure corresponding to a single representative b i1  value is illustrated with 
the horizontal plane labeled i.
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(OpenACC) programming paradigm and in the second case open multi-processing (OpenMP) 
with Intel’s offload compiler directives. These programming paradigms are very similar to 
each other in the sense that you use compiler directives to specify when and what data to 
transfer to and from the device and to indicate which loop to run in parallel. In both cases we 
are also able to use the CPUs on the system at the same time. We accomplish this, by splitting 
the loop into two non-overlapping pieces. One piece is run on the CPU (using OpenMP paral-
lelization to ensure that all CPUs are used) while the other is run on the accelerator (either 
GPU or Xeon Phi) simultaneously. Since it is not a priori known what the performance of 
the accelerator is compared to the CPU we have implemented an automatic work distribu-
tion scheme in the Cactus code. We do this by adjusting, at runtime, the work distribution 
between the CPU and the accelerator using the number of outer loop iterations to run on the 
CPU as an optimization parameter. In order to minimize the run time we first need to bracket 
the minimum of runtime as function of the amount of CPU work. We do this by performing 
the integration at the first iteration completely on the accelerator (leaving the CPU idle) and 
measure the time. On the next iteration we do all the work on the CPU (leaving the accelera-
tor idle) and again measure the time. We then do half the work on the CPU and half the work 
on the accelerator (concurrently) and measure the time. If we have not yet bracketed the 
minimum in time, we adjust the workload appropriately until we do and then continue with 
a golden section search [59] for the minimum. This certainly expends a few computational 
resources initially, but guarantees that we will use all computational resources after a few 
(order 10) iterations.

The total number of floating point operations in the main computational kernel can be 
estimated to be

= × × × × ×ω ωN n n n n n44 ,fp 2 3 2 3

where n2 and n3 are the number of grid points in the v2 and v3 directions and ωn 2 and ωn 3 are the 
number of integration points in the frequency domain, n is the number of time steps where we 
actually evaluate the state. The number 44 comes from the number of floating point operations 

Figure 2. Plot showing sum reduction used to communicate all frequency information 
to all MPI processes (for the case of 4 MPI processes). Before the reduction (left side) 
each MPI process only knows a part of the data (indicated by the different hatched 
regions) and copies that to the correct location in a temporary array of full size 
( ×ω ωn n2 3) with zeros everywhere else (indicated by blank regions). After the sum 
reduction (right side) all MPI processes has identical frequency information.
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needed to update all the integrals in the innermost loop. We have also used PAPI (performance 
accessing hardware interface) for accessing hardware counters to measure the actual number 
of floating operations generated by the compiler and find good agreement between the mea-
sured values and the estimated values, indicating that the compiler does not generate superflu-
ous floating point instructions.

In principle we could evaluate the state at all n1 possible b1 values, however this is com-
putationally expensive and not really necessary as long as we have sufficient evaluations to 
resolve the minima in vln 2( ) and vln 3( ). Thus we typically use �n n1 and therefore have some 
freedom in choosing at which of the evenly spaced values of b1 ( π∆ =b n1 1/ ) we want to eval-
uate the state. The easiest choice would be to do the evaluation for every m  =  n1/n values of 
b1 (i.e. uniform distribution in b1). However, sometimes the bounce in either v2 or v3 happens 
over a small range of b1-values near π=b1 . This is illustrated in the left plot of figure 3, which 

shows the expectation values of | ̂vln b1 1
( )  (purple (dark) curve) and | ̂vln b3 1

( )  (green (lighter) 

curve) as functions of b1 for a simulation with m  =  n1/n  =  200. In the main plot, we only show 
every 10 values of b for which the state was evaluated, while in the inset we show all values. 
The inset is a zoom in of the region of b1 near π where the bounce in v3 happens. As can be 
seen, the bounce in v3 is not very well resolved when uniform sampling is used.

We know that the expectation values of all vi diverge near both 0 and π. Therefore, if we use 
a constant spacing in arc-length along the vln 1( ) versus b1 curve we will obtain a non-uniform 
spacing of b1 values with a significantly higher density of points near 0 and π than at the mid-
point of the interval. It turns out that the dependence of vln 1( ) as function of b1 can in general 
be approximated by the function

⎛
⎝
⎜

⎞
⎠
⎟= +g b

b
Cln

1

sin
,1

1
( )

where constant C depends on the physical parameters. As expected, this function has a mini-
mum (corresponding to the bounce in v1) at π=b 21 /  but diverges for b1  =  0 and π=b1 . The 
arc-length distance S b b, f1 0 1( )( ) ( )  along the curve g(b1) between b1 0( ) and b f1( ) is

Figure 3. Both left and right plots show the expectation values of | ̂vln b1 1
( )  (purple 

(dark) curve) and | ̂vln b3 1
( )  (green (light) curve) as functions of b1 for a case where we 

only evaluate the state at 1 in every 200 possible values of b1 and the bounce in v3 occurs 
close to π=b . In both, the main plot only show 1 in every 10 of the b1 values where 
the state is evaluated, while the inset (showing a zoom of the bounce in v3) includes all 
points.
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to give the value of b1 for a point a given arc-length distance, S, away from the starting point 
b1 0( ). We choose our starting point as π=b n1 0 /( )  and then calculate the arc-length distance 
between this point and the mid point, π π=S S n, 2mid ( / / ), of the curve. To setup the evaluation 
points for the first half interval, we set ∆ = −S S n2 1mid/( ) and, for i  =  0, n/2, we define a list 
of desired evaluation points = − ∆b b b i S, 1i1 1 1 0( ( ) )( ) . From the points in our equally spaced 
b1-values we then select the n/2  +  1 points that are closest to the desired evaluation points. 
The remaining points are then found by symmetry. Repeating the simulation shown in the left 
plot of figure 3 with this non-uniform choice of b1 values is shown in the right plot (produced 
in exactly the same way as the left plot) of figure 3. We find that the the bounce in v3 is very 
well resolved.

3.3. Performance and scaling

The computational kernel is vectorized and performs very efficiently on current CPU archi-
tectures. We have measured the performance and found that the kernel performs at about 60% 
of theoretical peak on a single core and at about 50% of peak on a 16 core shared memory 
node using OpenMP parallelization (there is probably a bit of memory contention as well as 
OpenMP parallelization overhead). The performance on a Nvidia Tesla K20X GPU is about 
25–30% of peak and on the Intel Xeon Phi about 15–20%. The lower performance on the 
Xeon Phi compared to a Intel CPU is caused by a larger number of Level 1 data cache misses. 
This is due to the fact that on the Xeon Phi we get the best performance when running 2 
threads or more per core (at least 2 is required in order to keep the floating point units busy) 
and each physical core has the same level 1 data cache as an Intel CPU core. Thus on the 
CPU, each thread has sole access to the full 32 KB level 1 data cache, while on the Xeon Phi 
multiple threads (in fact we obtain the best performance when using 4 threads per core) share 
the 32 KB level 1 data cache. We have experimented with different schemes for blocking for 
better cache uses, but have not yet found any scheme that leads to improved performance.

In figure 4 we show the strong and weak scaling as measured on the XSEDE resource 
Stampede. Here we used the full nodes (16 CPU cores and 1 Intel Xeon Phi accelerator card).

For the strong scaling results we used representative values = =n n 81922 3  and 
= =ω ωn n 2562 3 . However, =n 16 3841  was chosen to be much smaller than the value that 

would be used in production runs, in order for the job to fit in memory on 3 nodes. The strong 
scaling plot (left plot) obtained at the XSEDE resource Stampede shows the speedup relative 
to the performance on 3 nodes as a function of the number of nodes used divided by 3. The 
timings are based on the total wall time as reported by Cactus timers (including startup, 
initialization and evolution). As the total amount of work is kept constant, ideal scaling is a 
straight line with slope 1. As we increase the number of nodes from 3 to 256 (from 48 cores 
and 3 Xeon Phis to 4096 cores and 256 Xeon Phis) the code runs 68 times faster. Ideal scaling 
would result in a speed up of 85.33. This is very good strong scaling.
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For the weak scaling results, the parameters for the 3 node baseline run were n2  =  1024, 
n3  =  1536, = =ω ωn n 2562 3  and =n 16 3841  (again n was chosen so that the job would fit on 
3 nodes). As the number of nodes was increased the grid size (n2 and n3) was increased propor-
tionally with all other parameters kept the same. Thus in each case, every node got assigned a 
piece of the grid of size ×1024 512 and at 1024 nodes we used =n 16 3842  and =n 32 7683 . 
In this case ideal scaling should result in constant runtime, independent of the number of 
nodes, i.e. a horizontal line with value 1. As can be seen from the right plot in  figure 4, when 
increasing the node count from 3 to 1024 (a factor of 341.33) the code slows down by less than 
10%. The largest weak scaling job used 16 384 CPUs and 1024 Xeon Phis. Users of Stampede 
can only get access to this queue (the normal queue tops out at 256 nodes) after providing 
evidence of being able to run at scale. Thus we are able to run with less than 10% loss of 
efficiency when running on the largest number of nodes available to jobs in a standard queue 
(even larger jobs can run upon special request).

4. Results

Using the Cactus implementation discussed in section 3, more than a hundred simulations 
were performed for different initial conditions corresponding to various choices of ω∗2 and σ2. 
Due to the richness of presence of various dimensions and parameters, a variety of parameters 
can be changed at once. We focused our analysis on keeping all but few parameters fixed. The 
reason for this is tied to the underlying symmetry in the Hamiltonian constraint, where three 
directions are on equivalent footing and only the difference of ωi’s matters. In order to extract 
and understand various physical results in the following the value of ω∗3 was fixed to ω =∗ 10003  
with σ = 403 . The value of ω1 was determined using the Hamiltonian constraint. Further, the 
phases β2 and β3 are fixed to 0.1.

In the following we first demonstrate the resolution of singularity for some states, the 
agreement with the classical theory at large volumes and the way effective dynamics provides 
an excellent approximation for such states. This is followed by discussing the evidence of 

Figure 4. Strong (left plot) and weak (right plot) scaling for the MPI parallelized 
Cactus code based on timings on the XSEDE resource Stampede. Strong scaling is 
shown as the time on 3 nodes divided by the time on x nodes (i.e. speedup relative to 
the performance on 3 nodes) for the same amount of total work. Here the ideal scaling 
is indicated by the line with slope 1 (doubling the number of nodes should halve the 
time). Weak scaling is shown as the time on x nodes divided by the time on 3 nodes 
when the total amount of work per node is kept constant. Here ideal scaling is indicated 
by the horizontal line with value 1 (it should take the same amount of time to do twice 
the amount of work on twice the number of processors).
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departure between the quantum theory and effective dynamics in section 4.2. These departures 
are studied and quantified using different parameters in section 4.3. In section 4.4, we apply 
the results of numerical computation of expectation values to estimate the expansion and shear 
scalars in this spacetime.

4.1. Singularity resolution

For all the simulations carried out in our analysis, classical singularity is found to be resolved 
in the quantum theory. The classical big bang singularity is replaced by non-singular evolution 
of volumes vi in time b1. The approach to singularity in the classical theory for the vacuum 
Bianchi-I spacetime is not point like as in the isotropic models, but is a cigar like. The initial 
conditions in the anisotropic evolution are such that two of the directional scale factors bounce 
and the third undergoes a recollapse. Results from a representative simulation are shown in 
figure  5, where we have plotted relational observables vln 2( ) versus vln 1( ) in the quantum 
theory, effective dynamics and classical theory. Let us first focus on the expectation values 
of quantum operators and compare them to the classical solutions. We find that starting from 
the upper classical branch, where initial conditions for the quantum evolution are given at the 
large volumes the classical and quantum curves agree for a certain period. As the classical 
curve approaches singularity, there is a departure between the classical and quantum theory. 
The classical curve continues evolution to the singularity whereas the quantum dynamics 
results in a non-singular turnaround. After the bounce, when the volume become large in the 
subsequent evolution the quantum curve again approximates a classical solution. The upper 
and lower classical solutions are disjoint and singular, which are bridged by the quantum 
theory.

Figure 5. This plot shows a typical singularity resolution in the relational dynamics 

where the expectation values along with dispersion of | ̂vln b2 1
( )  are plotted versus those 

of | ̂vln b1 1
( ) . The effective dynamics provides a good approximation throughout the 

evolution. For comparison, the singular and disjoint classical solutions are also shown 
to which the quantum expectation values asymptote at small spacetime curvature. The 
state parameters are ω =∗ 1002  with σ = 142 , and ω =∗ 10003  with σ = 403 .
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Now let us analyze the effective dynamics trajectory in relation to the quantum expecta-
tion values for the above simulation. The trajectory obtained from the effective Hamiltonian 
constraint provides a very good approximation to the quantum dynamics. As one can see, the 
effective dynamical trajectory remains close to the mean value obtained from the quantum 
dynamics. (For larger values of ω∗2 the agreement turns out to be far more accurate). Note that 
the anisotropic shear is preserved at very early times and late times in the effective dynamics 
agreeing respectively with the initial and the final value of the anisotropy in the classical solu-
tion. However the behavior of directional scale factors changes after their bounces, while pre-
serving the anisotropic shear. For this reason, the effective dynamics trajectory (and quant um 
dynamics) show an asymmetric bounce in the sense that the classical solution matched to 
quantum dynamics before the bounce is different from after the bounce. Such a behavior has 
been confirmed in various anisotropic spacetimes in LQC [33, 37, 40, 41, 44–47, 60–62]. Let 
us also note that the quantum dispersions remain bounded throughout the evolution and take 
smaller values near the bounce. A sharply peaked state chosen at initial times, retains its fea-
tures throughout the evolution.

Results from another simulation are shown in figure  6. We have plotted the behavior 

of expectation values of relational observables | ̂vln b2 1
( )  and | ̂vln b3 1

( )  in relational time b1. 

Singularity resolution is evident in these plots which show a non-singular bounce for vln 2( ) 
and a smooth evolution for vln 3( ). In comparison to the simulation in figure 5, the effective 
dynamics provides a far more more accurate approximation to the underlying quantum dynam-
ics. In fact, the effective trajectory sits on the mean value of the quantum curve at all the times 
for both the relational observables shown in this figure. For the same simulation, we have 

also plotted the behavior of expectation values of | ̂vln b3 1
( )  versus those of | ̂vln b2 1

( )  in  figure 7. 

The non-singular bounce of vln 3( ) with respect to vln 2( ) can be seen. Not surprisingly, as in 
figure 6, the effective trajectory (shown by the solid curve) agrees with the quantum dynamics 
extremely well at all the scales. The precise agreement between the effective dynamics and 
the quantum theory is found to be true for all sharply peaked initial states with larger values 
of ω∗2 (for the same value of ω∗3). This seems to imply a validity of effective dynamics at least 
for large values of ω∗2 when ω∗3 is fixed to be large. However, does this conclusion change when 
smaller values of ω∗2 are considered? We answer this in the following.

Figure 6. Evolution of expectation values of | ̂vln b2 1
( )  and | ̂vln b3 1

( )  versus b1 is shown. 

Parameters are ω =∗ 2502  with σ = 452 , and ω =∗ 10003  with σ = 403 . As can be seen, the 
effective dynamics is in excellent agreement with the quantum dynamics.
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4.2. Evidence of departure of effective dynamics from quantum theory

It is evident from figures 5 and 6 that decreasing ω∗2 for the same value of ω∗3 causes a slight 
departure between the quantum theory and the effective dynamics. The effective trajectory 
for ω =∗ 1002  case is such that it predicts bounce at a smaller value of vln 2( ) and vln 1( ) in 

Figure 7. This plot shows the relational observables corresponding to vln 3( ) and vln 2( ) 
in the quantum theory and their behavior in effective dynamics (shown by the solid 
curve). Parameters are same as in figure 6. Dispersions for both the observables are 
shown.

Figure 8. The plot shows the case of ω =∗ 1002  with σ = 112 , for ω =∗ 10003  with 
σ = 403 . The agreement of the effective dynamics with quantum theory is good, but not 
as good as in figure 7. For a better visual distinction from the effective theory, quantum 
expectation values are denoted by thick (red) points. The dispersion in expectation 

values of | ̂vln b3 1
( )  is divided by 10 to fit in the figure.
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comparison to the one for ω =∗ 2502 . The same can be seen to be true if we plot vln 3( ) versus 
vln 2( ). In figure  8, a slight departure between the quantum dynamics and effective trajec-

tory (shown by the solid curve) is clearly visible, which is absent for the case of figure 7. 
Comparing these two figures, we find that the effective theory predicts smaller bounce volume 
than the mean value obtained from the quantum dynamics for smaller ω∗2. It is to be noted that 
the slight departure from the quantum theory is more significant in the bounce regime. Away 
from the bounce regime, the agreement of the effective theory with the quantum dynamics is 
excellent for the simulation in figure 8 as is the case for the simulation in figure 7.

To understand the above trend, we performed various simulations for the smaller values of 
ω∗2 keeping rest of the parameters fixed. An example of such a simulation is shown in figure 9 
for ω =∗ 502 . In comparison to the simulations in figures 7 and 8, the quantum state probes 

deeper Planck regime. This plot of expectation values of | ̂vln b3 1
( )  and | ̂vln b2 1

( )  clearly shows 

that there is an increased departure of the effective dynamics from the quantum dynamics in 
this case. Though the effective curve is still within the dispersions of the relational observa-
bles, it underestimates the bounce volume in the quantum theory significantly. This implies 
that bounce in the quantum theory occurs at smaller spacetime curvature than is estimated 
from the effective dynamics. Two things are notable in this simulation. First that even though 
for the effective dynamics there are departures from the quantum theory in the bounce regime, 
away from the bounce regime effective dynamics is an excellent agreement with the quantum 
theory. Further, for this particular state, fluctuations are quite high. (As in the figure 8, in this 

figure the dispersion in | ̂vln b3 1
( )  is divided by 10 for a better visualization). This simulation 

confirms that the bounce occurs for states which are not necessarily sharply peaked. As in the 
previous cases, fluctuations remain bounded throughout the evolution and become smaller in 
the bounce regime.

Let us now consider the case of one of the extreme cases studied in our analysis, shown 
in figure 10. In this one of most computationally expensive simulation, we have considered 
ω =∗ 302 . This state probes the deepest possible quantum regime in our analysis, and confirms 

Figure 9. The expectation values for the relational observables for vln 3( ) and vln 2( ) are 
compared with the effective trajectory (solid curve). The parameters are ω =∗ 502  with 
σ = 42 , and other parameters remaining same as in figure 8.
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the expectations from figure 9. The effective dynamics has a significant departure from the 
mean values in the quantum theory in the bounce regime. Away from the bounce regime, 
the effective dynamics again provides a good approximation to the quantum dynamics. The 
fluctuations for this simulation are quite high, and the dispersions in the expectation value of 

| ̂vln b3 1
( )  are divided by 50 to fit in the figure. Nevertheless, effective trajectory always lies 

within the dispersions of the observables. As in the case of the other simulations showing 
departures from quantum dynamics, effective theory underestimates the volume at the bounce. 
For the same simulation, we have plotted in figure 11 the behavior of expectation values of 

| ̂vln b2 1
( )  and | ̂vln b3 1

( )  in time b1. Various features become clear from this plot which shows a 

non-singular evolution of the above relational observables in time. In contrast to the simula-
tion for ω =∗ 2502  in figure 6, there is a significant departure of effective dynamical trajectory 
from the quantum theory for the relational observable vln 2( ). In case of the vln 3( ) the results do 
not change and there is little departure between the quantum theory and effective dynamics. 
This is not surprising because the difference between the two simulations is only in the values 
of ω∗2. As we can see, the effective trajectory is almost at the values of maximum dispersion for 

| ̂vln b2 1
( )  in the bounce regime. Further, the bounce time in the case of effective and quant um 

dynamics is visibly different in this simulation, which is not the case for the simulation in 
figure 6.

These simulations indicate that states with different ω∗2 which have same value of ω∗3, the 
departure between quantum theory and effective dynamics increases as ω∗2 is decreased. Of 
course with limited simulations discussed so far, it is difficult to find any subtle features in this 
relationship. However, somethings become concretely clear. States which probe deep Planck 
regime bounce at volumes greater than those predicted by the effective theory. Such states also 
have larger fluctuations. And in a way these fluctuations help in quantum repulsiveness caus-
ing bounces to occur at smaller spacetime curvature than one would expect from the effective 

Figure 10. This plot shows the results from the simulation for ω =∗ 302  with σ = 42  
(right plot). In contrast to simulations in figure 8, effective dynamics (solid black curve) 
is not a good approximation to the quantum dynamics (thick red dots), especially in the 
bounce regime.
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dynamics. The situation is in harmony to the results earlier obtained for the isotropic model 
in LQC [24, 25]. There it was shown that states which bounce closer to the classical big bang 
singularity provide largest departures between quantum theory and effective dynamics. As 
in the present analysis, the effective dynamics overestimates the spacetime curvature at the 
quantum bounce.

Thus, we have so far established that irrespective of the value of ω∗2, singularity resolu-
tion occurs. For states with very small ω∗2 there are departures between quantum theory and 
effective dynamics. For reasonable values of ω∗2, effective dynamics provides an excellent 
approximation to the quantum theory. In the following we quantify the departure between the 
quantum theory and effective dynamics for various simulations performed in our analysis.

4.3. Departure of effective dynamics from quantum theory: quantitative aspects

For the simulations discussed so far we have found that as ω∗2 is decreased keeping ω∗3 fixed 
then the departure between the effective dynamics and quantum theory seems to increase. 
This departure appears to be maximum near the bounce. In order to understand the way this 
departure depends on various parameters, we focus on just one relational observable which 

is expectation values of | ̂vln b2 1
( ) . To extract the departure we find the difference between the 

the expectation value of this observable at the bounce in the quantum theory and its analog 
value in the effective dynamics. This difference, for sharply peaked states, is a measure of 
the relative difference in the bounce volume in the quantum theory and effective dynamics. 
We understand the dependence of this departure on the following parameters: (i) the value 
of ω∗2 for different values of absolute fluctuation σ2, (ii) the value of σ2 for various values of 
ω∗2, (iii) the relative fluctuation in ω∗2, given by σ ω∗2 2/ , and (iv) the dispersion in the relational 

observable | ̂vln b2 1
( ) .

Continuing with our findings in section  4.2, let us analyze the departure between the 
quant um theory and the effective dynamics by studying the way it changes when ω∗2 is changed. 
We keep the absolute fluctuation σ2 and all other parameters including ω∗3 fixed. Note that for 

Figure 11. The behavior of expectation values of relational observables | ̂vln b2 1
( )  and 

| ̂vln b3 1
( )  is shown for ω =∗ 302  with σ = 42 . Here ω =∗ 10002  with σ = 402 . In contrast 

to the simulation in figure 6, we see significant departures between the effective and 
the quantum trajectories. Other parameter values are same as in figure  6. Effective 
dynamics predicts smaller bounce volumes than the mean values of the observables in 
the quantum theory.
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any given value of σ2, it is possible to explore only a limited range of ω∗2. In figure 12, we have 
shown the variation of this difference for the case of σ = 42 . In this range of simulations from 
ω =∗ 302  till ω =∗ 802  for ω =∗ 10003 , we find that the departure between the quantum theory 
and effective theory slowly increases as ω∗2 is decreased till ω =∗ 502 , but the departure quickly 
increases at around ω =∗ 402  and becomes much larger at ω =∗ 302 . Another set of simulations, 
this time for σ = 52  are shown in figure 13. The range of ω∗2 in these simulations is similar. 
We find that for the values greater than or equal to ω =∗ 502 , the departure between the effec-
tive theory and quantum dynamics approximately increases slowly. For smaller values of ω∗2 

Figure 12. The plot shows the difference in the value of relational observable 
corresponding to vln 2( ) at the bounce in the quantum theory and the same in the effective 
dynamics as a function of ω2 for σ = 42 .

Figure 13. Difference between the expectation values of | ̂vln b2 1
( ) , and vln 2( ) in effective 

theory at the bounce is shown for different values of ω2 for σ = 52 .
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there is a rapid increase with the largest value of departure at the smaller ω∗2 probed in this set 
of simulations. Figures 12 and 13 thus show that the largest departure between the effective 
dynamics and quantum theory appears at smallest value of ω∗2. For other values of ω∗2, both sets 
of simulations show an almost monotonic increase in the value of departure as ω∗2 is decreased.

The above monotonic behavior is not found to hold for simulations with a larger range 
of ω∗2 which allow a larger value of σ2. One such set of simulations is shown in figure 14, 
where ω∗2 ranges from 60 till 1500. Some distinguishing features are evident in comparison to 
 figures 12 and 13. Unlike the simulations in the latter figures, for the larger values of ω∗2 there 
is no slight increase in departure between quantum and effective dynamics as ω∗2 is decreased. 
Rather, we find the departure to increase and then decrease. Interestingly, the departure rapidly 
decreases below ω =∗ 2502 , becomes minimum at ω =∗ 1002 , and then very rapidly increases 
monotonically. Such an overall non-monotonic behavior which is in striking contrast to simu-
lations for σ = 42  and σ = 52  was also seen for other simulations in a similar range of ω∗2 for 
different values of σ2. Nevertheless, in agreement with above sets of simulations we always 
found that irrespective of the choice of σ2, the departure between the quantum and effective 
dynamics increases when ω∗2 is decreased for smaller values of ω∗2. These simulations show 
that it is not guaranteed that an increase in the value of ω∗2, increases the agreement between 
the quantum theory and effective dynamics.

Though the departure between the quantum theory and effective dynamics does not show 
a monotonic variation for all values of ω∗2, interestingly a monotonic variation is found for the 
dependence on the fluctuation σ2. In figure 15, we plot the departure between the quantum and 
effective dynamics at the bounce versus σ2 for all values of ω∗2. For larger values of σ2, there 
is a little variation in the difference between the quantum and effective dynamics as σ2 is var-
ied. Between σ = 502  till σ = 2502  there is only a little increase as ω∗2 is decreased. For large 
values of σ2, the difference between the quantum and effective dynamics vanishes. For very 

large value of σ2 we find some evidence that the bounce volume for | ̂vln b2 1
( )  in the quantum 

theory is smaller than the one in the effective theory. On the other hand, we find that for σ2 

Figure 14. The expectation values of | ̂vln b2 1
( )  at bounce are compared with their 

counterpart in the effective theory. The value of σ = 102  is chosen for different values 
of ω2.
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smaller than 15 there is a significantly large increase in departure between the values of vln 2( ) 
at the bounce in quantum and effective dynamics. As the absolute fluctuation in ω∗2 decreases 
to small values, the departure becomes very large. Thus, the agreement between the effective 
dynamics with the quantum theory is not sensitive to the value of σ2 for large values of σ2, it is 
extremely sensitive for small values of σ2.

The variation of the difference between the predicted bounce volume in the effective 
dynamics and the expectation value in the quantum theory is again found to be monotonic 
when plotted with respect to the relative fluctuation in ω∗2. In figure 16 we show results from 

Figure 15. Variation of the difference between the expectation values of | ̂vln b2 1
( )  

and corresponding values in the effective theory at the bounce is plotted versus σ2 for 
various values of ω2.

Figure 16. Variation of the departure of the effective dynamics from quantum theory 
versus relative dispersion in ω2 is shown for vln 2( ) at the bounce. Various simulations 
for ω∗ 2502 ⩾  are shown.
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various simulations for all the ω∗ 2502 ⩾ . We find that as relative dispersion σ ω∗2 2/  increases, the 
effective dynamics becomes a less accurate approximation of the quantum theory. For larger 
values of ω∗2, for small relative fluctuations there is a significant increase in the departure 
between the bounce volumes in quantum theory and effective dynamics. For smaller values of 
ω∗2 the change in variation of the difference between quantum and effective dynamics results is 
not so sharp. As the value of σ ω∗2 2/  becomes very large, the departure between the quantum and 
effective theory vanishes. In the same regime, curves corresponding to different values of ω∗2 
intersect each other. As in the case of figure 15, we find that difference between the logarithm 
of the directional volume v2 at the bounce in quantum theory with the one in the effective 
theory becomes negative for some simulations in the regime of very large dispersions. Hence 
for almost all the simulations, effective theory underestimates the directional volume at the 
bounce but for a few simulations the situation is reversed.

In figure 17, various simulations for the smaller values of ω∗2 are plotted versus σ ω∗2 2/ . The 
behavior of the difference between the value at the bounce of the relational observable for 

vln 2( ) in the quantum theory and its analog in the effective dynamics follows the trend we 
found for states with larger ω∗2. At larger values of σ ω∗2 2/ , the departure is smaller irrespective 
of the value of ω∗2. As the value of relative fluctuation decreases, the difference between the 
quantum and effective dynamics increases. This increase is rapid for smaller values of σ ω∗2 2/ . 
Due to the large spreads associated with these states, it is difficult to explore a much wider 
range of parameter space. For this reason the intersection of the curves as seen for the case of 
larger ω∗2 is not yet visible in the plot. Note that in comparison to the simulations for larger ω∗2, 
the difference between quantum and effective dynamics is already more significant even for 
this range of parameters. We expect this difference to further increase substantially for further 
smaller values of relative fluctuations in ω∗2.

Another useful parameter to understand the departure between the quantum theory and 
the effective dynamics is the relative difference in the value of observable vln 2( ). In figure 18, 
we plot this difference with respect to the relative fluctuation σ ω∗2 2/  for all the values of the 
ω∗2. For larger values of ω∗2 we find that the relative difference in bounce volume is smaller 

Figure 17. Difference between the values of vln 2( ) in effective theory at the bounce 

and the value determined from the expectation values of ̂vln b2 1( )  in LQC are shown 
with respect to σ ω

∗
2 2/ . Various simulations for lower values of ω∗2 (ω

∗ 1002 ⩽ ) are shown.
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and approaches zero quickly as the relative fluctuation σ ω∗2 2/  increases. On the other hand, 
for simulations with ω∗ 1002� , the relative difference is significantly larger. It decreases as 
the relative fluctuation in ω∗2 increases but can remain substantial even for the largest studied 
relative fluctuation σ ω∗2 2/  in our simulations. For the simulation corresponding to ω =∗ 302 , 
the relative difference is approximately 50% at the largest studied val;ue of relative fluctua-
tion. This plot suggests that for different values of ω∗2 there is some sort of attractor behavior. 
For larger values of relative fluctuation in ω∗2, the relative difference in logairthm of bounce 
volume vanishes. One can similarly study behavior of the latter parameter when versus the 
fluctuations σ2. However, such a plot results in a very similar curve as in figure 15 whose 
implications are already discussed above.

So far we have investigated the relationship between the departure of effective dynamics 
from quantum theory for the bounce volume in vln 2( ) in terms of ω∗2 and its fluctuations. We 
now study the way this departure depends on the fluctuations in the expectation values of 

| ̂vln b2 1
( ) . This is a measure of the relative fluctuation in the corresponding volume observable. 

In figure 19, we have plotted results from various simulations for ω∗ 2502 ⩾ . We find an inter-
esting behavior that the departure of the effective theory from quantum dynamics decreases 

as the dispersion in ̂vln b2 1( )  decreases but this trend stops below a certain value of dispersion 
which is determined by the value of ω∗2. This corresponds to a turnaround in the behavior of 
the departure between the quantum and effective dynamics. Below this turnaround, the depar-
ture from quantum dynamics only decreases on increasing the dispersion ∆ vln b2 1( )  of the 
state. Note that the part of the curves at the top right of the turnaround correspond to smaller 
values of fluctuations in ω∗2, where as the bottom right part corresponds to larger fluctuations 
in ω∗2. Noting this, the above behavior can then be restated as follows. As the dispersion in the 
relational observable corresponding to vln 2( ) decreases to a certain value, the departure of the 
effective dynamics from quantum dynamics can increase or decrease depending on whether 
the state corresponds to data points approaching the turnaround in curves in figure 19 from 
bottom (larger dispersions in ω∗2) or from top (smaller dispersions in ω∗2). We find that for 
any given value of ω∗2 there is a minimum allowed value of ∆ vln b2 1( ) . This non-monotonic 
behavior is found for all value of ω∗2. The turnaround point in the behavior of the difference 

Figure 18. Variation of the relative difference in vln 2( ) at the bounce for the quantum 
theory and effective dynamics is plotted versus the relative dispersion in ω2.
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between quantum and effective dynamics occurs follows an inverse relationship between the 
value of ω∗2 and ∆ vln b2 1( ) . For larger values of ω∗2, the turnaround of the behavior of difference 
occurs at smaller values of dispersion. Finally, let us note that as in the case figures 15 and 
16, we find that for some simulations the difference between bounce volume in quantum and 
effective theory becomes negative. This occurs in the regime where different curves converge 
and intersect.

In figure  20 we study the dependence of the departure between quantum and effective 

dynamics on dispersion in expectation values of | ̂vln b2 1
( )  for smaller values of ω∗2. The behav-

ior of the curves captures the characteristics of the curves at the top right part in figure 19. 
It is to be noted that the simulations on the bottom right part of the curves in figure 19 are 
computationally most demanding, especially for smaller values of ω∗2. Only for this reason, 
the non-monotonic behavior in the difference of quantum and effective dynamics in relation to 
dispersion in volume is not visible in figure 20. Given the extraordinary similarity of the prop-
erties of curves in this figure for smallest values of departures between quantum and effective 
dynamics, and the behavior near turnaround in figure  19 we expect that a non-monotonic 
behavior also exists for small values of ω∗2.

4.4. Hubble rates, deceleration parameter and shear scalar

Some important quantities which capture the approach to classical singularities are the mean 
Hubble rate, expansion (θ) and the shear σ2( ) scalars8. For the Bianchi-I spacetime these can 
be expressed in terms of the directional Hubble rates Hi as,

θ = = + +H H H H3 1 2 3 (4.1)

where H is the mean Hubble rate, and

Figure 19. The plot shows the way the difference of the bounce volume in quantum 
and effective dynamics changes with respect to ω∗2. A turnaround and a non-monotonic 
behavior is present for each value of ω∗2.

7 To simplify the notation from now on we will drop the the supra-index iε .
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Another interesting parameter is the deceleration parameter defined as
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(4.4)

Note that the above definitions of the directional Hubble rates, mean Hubble rate, expan-
sion and shear scalar and the decelration parameter are valid in classical theory as well as 
LQC. Using the effective Hamiltonian constraint, in LQC the directional Hubble rates can be 
obtained using equation (2.29) and the corresponding equations for v v˙2 2/  and v v˙3 3/ .

To estimate the mean Hubble rate (or equivalently the expansion scalar), shear scalar and 
deceleration parameter in the quantum theory, we assume that the states are sharply peaked 

such that terms of the type ̂b Vcos 1⟨ ( )/ ⟩ in the operator version of (2.29) can be approximated 
as �̂b Vcos 1⟨ ( )⟩/⟨ ⟩. This approximation allows us to compute expectation values of mean Hubble 
rate (expansion scalar), shear scalar and the deceleration parameter in the quantum theory. It 
is important to note that this computation is different from all the other results shown in this 
section. In the previous results all the computed quantities were without such an approx-
imation, and hence they were valid for all types of states. On the other hand, the results for 

Figure 20. Departure between the expectation values of | ̂vln b2 1
( )  and corresponding 

values in the effective theory at the bounce is plotted versus absolute dispersion of the 
former. Various simulations for ω∗2 between 30 and 100 are shown.
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the mean Hubble rate (or the expansion scalar), the shear scalar and the decelration parameter 
require the above assumption, and usage of expectation values of the relevant operators in the 
definitions of mean Hubble rate (expansion scalar), shear scalar, and deceleration parameter 
(equations (4.1)–(4.3)), with directional Hubble rates given by (4.4). Unlike the results so far 
in this manuscript, the effective Hamiltonian constraint is used along with quantum expecta-
tion values to estimate the behavior of above quantities.

The resulting behavior of the directional Hubble rates is shown in figure 21. We have plot-
ted the directional Hubble rates for a simulation for a Gaussian initial state peaked at ω =∗ 7502  
with σ =∗ 702 , with the values of ω∗3 and σ3 same as in all other simulations. The evolution of the 
Hubble rates confirm the anisotropic evolution. In this particular simulation, two directional 
Hubble rates H2 and H3 start with positive values and turn around to become negative at differ-
ent times in b1. The third Hubble rate H1 start with a negative value and turns around to become 
positive. It is important to note that unlike the classical theory, Hubble rates remain bounded 
throughout the evolution. For a different choices of initial data, we obtain a similar behavior. 
Note that on changing the values of ω∗2 and ω∗3 in the initial state, the turnaround behavior and 
the maxima and minima of the directional Hubble rates changes. It should be further noted 
that at no value of internal time b1 do the different Hubble rates ever coincide in an anisotropic 
evolution. This result is the consequence of Hamiltonian constraint (2.28) whose satisfaction at 
all times rules out all of the directional Hubble rates ever becoming equal9. For the anisotropic 
evolution at least two of the directional Hubble rates would have to be different. If all the direc-
tional Hubble rates become equal then it will imply that the anisotropic shear is identically zero 
at a finite time which is not possible for the vacuum Bianchi-I spacetime.

The mean Hubble rate H for the above simulation, along with two more cases is shown in 
figure 22. (This behavior equivalently captures the expansion scalar θ). It remains bounded in 
the entire evolution with a turnaround from positive to negative values. The vanishing of the 
expansion scalar or the mean Hubble rate provides us a value of bounce time b1 for the mean 
volume of this Bianchi-I spacetime. The behavior of the mean Hubble rate is similar for all 

Figure 21. The behavior of directional Hubble rates (in Planck units) for a typical 
simulation is shown. For this simulation ω =∗ 7502  with ω =∗ 10003 .

8 For a recent phenomenological discussion of these parameters in Bianchi-I spacetime, see [68].
9 A straightforward way to see this that the quantum constraint at large scales is a sum of terms + +H H H H H H1 2 2 3 3 1 
which should vanish. In an anisotropic evolution, the directional Hubble rates thus can;t be equal.
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the simulations shown in figure 22, albeit with a notable difference that for a fixed value of ω∗3, 
smaller values of ω∗2 yield larger absolute values of the mean Hubble rate. For different simula-
tions, we obtain similar results with an observation that there is no universal bound on the mean 
Hubble rate for different initial data. It is to be noted that the behavior of the expansion scalar 
confirms the expectations from an earlier result [17]. In the latter work it was shown that due to 
a specific form of a polymerization in the Hamiltonian constraint, the expansion scalar has no 
universal bound unlike the alternative loop quantization of Bianchi-I spacetime [17, 29]. The 
effective theory predicts that for states which probe the classical big bang singularity extremely 
closely such that vi almost vanish, the value of expansion scalar can be very high [17]. The 
same is true for the directional Hubble rates and the shear scalar, which are also not bounded 
universally in this quantization. To verify this, we would need initial data with much smaller 
values of ωi’s than what we were able to consider in this manuscript. Such states would result 
in extremely large computational requirements. Nevertheless, we found that as ω∗2 is decreased, 
the maximum value of | |H  increases. For one of our simulations probing deep Planck regime 
corresponding to ω =∗ 402  if we assume the validity of effective Hamiltonian approach to obtain 
above estimate, then the maximum value of θ| | increases to about five in Planck units.

The deceleration parameters for the simulations discussed in equation (4.1) are plotted in fig-
ure 23. The deceleration parameter starts from negative values and its absolute value increases 
towards the bounce of the mean scale factor. It’s value reaches negative infinity when the mean 
Hubble rate vanishes. After the bounce of the mean scale factor, deceleration parameter sharply 
increases though remains negative in the entire evolution. The behavior of the deceleration param-
eter turns out to be qualitatively similar for different values of ω∗2 as is evident from the above figure.

In figure 24 we show the variation of shear scalar (σ2) in time b1 for three simulations 
corre sponding to ω =∗ 2502 , ω =∗ 5002  and ω =∗ 7502 . For these simulations, the shear scalar is 
bounded throughout the evolution. The same is true for all the simulations which we carried 
out in our analysis. This is in contrast to the classical theory where the shear scalar diverges 
signaling geodesic incompleteness and divergence in spacetime curvature. As in the case of 
the expansion scalar, we find that smaller values of ω∗2 for a fixed ω∗3 result in a larger value of 
shear scalar. There is no universal bound, and for very small values of ω∗2, such as ω =∗ 402 , we 

Figure 22. The mean Hubble rate H (equal to θ/3) in Planck units is plotted versus b1 
for different values of ω∗2 with ω =∗ 10003 .
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found that shear scalar can become larger than 30 in Planck units. Note that this is under the 
same assumptions of the validity of effective Hamiltonian which is found to be less reliable 
for small values of ω∗2.

5. Discussion

Let us begin with a summary of the main objectives and results of our analysis. In the last 
decade, loop quantization of various isotropic and anisotropic models has been performed. 
But only for the isotropic models, a robust picture of the singularity resolution and Planck 

Figure 23. The deceleration parameter q is plotted versus b1 for different values of ω∗2 
with ω =∗ 10003 .

Figure 24. The behavior of the shear scalar (in Planck units) is shown in b1 for various 
values of ω∗2 with a fixed value of ω =∗ 10003 .
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scale physics was so far available. In the seminal work of [28, 47], analytical understanding 
of a loop quantization of vacuum Bianchi-I spacetime and singularity resolution using numer-
ical methods was demonstrated. However, robustness of bounce and the associated physics 
for states with a wide variety of quantum fluctuations and the regime of validity of effec-
tive dynamics were not investigated so far. As we discussed in section 3, the computational 
complexity and costs involved in performing simulations of anisotropic quantum spacetimes 
are enormously high in comparison to the isotropic models. To extract above physics an effi-
cient parallelization of the codes and using HPC becomes essential. This constitutes the first 
main result of our paper. We have implemented the vacuum Bianchi-I spacetime in LQC in 
the Cactus framework which allows us to use conventional numerical relativity tools to 
perform numerical simulations of loop quantized spacetimes on HPC. The performance and 
efficiency of our implementation has been tested which shows excellent results. This technical 
feat allows us to extract the physics of the deep quantum regime of loop quantized vacuum 
Bianchi-I spacetime.

With over a hundred simulations performed for sharply peaked and widely spread Gaussian 
states we confirm that singularities are always resolved. Classical big bang singularity is 
replaced by the bounce(s) of directional volumes vi. Each quantum state is characterized by 
ω2 and ω3 (along with their dispersions) which capture the anisotropy of the spacetime. We 
worked with the mixed representation with b1 as relational time, and understood in detail the 

quantum expectation values of relational observables such as | ̂vln b2 1
( ) . Keeping ω3 to be fixed, 

we varied ω2 to parameterize different initial states. In principle, one can vary both but what 
matters in the anisotropic evolution is how one changes with respect to another. Varying just 
one of the two keeps dependence of results on the changes in ωi transparent. We find that for 
states which are peaked at large values of ω2, the effective dynamics is an excellent approx-
imation to the underlying quantum dynamics. We find evidence of departure between the two 
as ω2 is decreased which also corresponds to bounce in directional volumes occurring at the 
lower values. The departure turns out to be most significant in the bounce regime and is thus 
measured as the difference between the logarithm of bounce volumes in v2 in the quantum and 
effective dynamics.

We quantified the departure of the effective dynamics from quantum dynamics in detail by 
studying its dependence on the values of ω2 where the initial state is peaked, dispersions σ2, 
relative dispersions of ω2 and finally the dispersions in the logarithm of the directional volume 
v2. We find that keeping the dispersion in ω2 and other parameters fixed, if we decrease ω2 to 
smaller values then the departure of the effective dynamics from the quantum theory always 
increases at smallest values. However, for certain values of dispersion this behavior is not 
monotonic. For simulations corresponding to a large range of ω2, we found non-monotonicity 
before the above increase in departure occurs. This behavior is also captured if we study the 
dependence of departure between effective dynamics and quantum theory on dispersions in 
ω2. It shows that as the dispersion in ω2 decreases, the departures first grow slowly but then 
increase very rapidly. Similar behavior is seen when dependence of the deviation between the 
effective and quantum dynamics is studied with respect to the relative dispersion in ω2. We 
find that there is a slow growth in departure for larger relative fluctuations which becomes 
very strong for smaller relative fluctuations. Larger values of ω2 result in pushing the phase 
of rapid increase to lower values in relative dispersion. The behavior of above departure with 
respect to dispersions in logarithm of directional volume v2 brings forth an interesting non-
monotonic behavior. The departure is largest as well as smallest for the large dispersions. 
There is a minimum allowed dispersion in ω2 and in logarithm of directional volume for any 
given value of ω2 on which an initial state is peaked. The difference between the quantum 
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expectation value of the logarithm of directional volume v2 and its counterpart computed at 
bounce is almost always positive. This implies that effective dynamics, in general underes-
timates the bounce volume an effect which becomes more pronounced for states with large 
dispersions in logarithm of volume (keeping other state parameters fixed). The same effect 
was earlier found in the numerical simulations of the homogeneous and isotropic models 
in LQC [24, 25]. However, we also find that for some simulations, corresponding to large 
dispersions in both directional volume and ω2, the above difference becomes negative. This 
means that at least in some cases, effective dynamics overestimates the bounce volume. It 
should be emphasized that these cases correspond to the computationally most involved and 
costly simulations and further work is needed to gain insights on this result. In summary, the 
behavior of the departure of effective dynamics from quantum theory shows an intricate and 
subtle relationship with the state parameters. Though these results establish the usefulness of 
effective dynamics for a large range of parameters, care must always be taken to generalize the 
results of effective dynamics arbitrarily. Especially the role of fluctuations is quite non-trivial 
and needs to be understood in detail analytically.

In the classical theory, the approach to singularity is characterized by the divergences in 
the directional Hubble rates, and expansion and shear scalars becoming infinite. We found 
their behavior for the sharply peaked states. For these states the effective Hamiltonian cap-
tures the quantum dynamics quite faithfully. This computation used elements both from the 
quantum expectation values and the expressions of the above physical quantities found using 
effective Hamiltonian constraint. The behavior of directional Hubble rates, expansion and 
shear scalars turns out to be bounded throughout the evolution. However, it is not universally 
bounded by a particular value, as for example predicted in the effective dynamics of alterna-
tive loop quantization of Bianchi-I spacetime [17]. We found that for certain simulations the 
expansion and shear scalars can be quite large than Planckian values. We also studied the 
behavior of the deceleration parameter in this spacetime. Since this parameter is inversely 
proportional to the square of the mean Hubble rate, it diverges at the bounce of the mean vol-
ume and remains finite in the other regime. We note that given the lack of matter fields in our 
fully quantized model, one can not use the construction as is for phenomenological studies 
and investigate other phenomenologically interesting parameters and effects of matter content 
such as dark energy at late times. In the classical theory, various such studies have been per-
formed (see for e.g. [68]). For the latter kind of a study, it will be important to include matter 
in the Hamiltonian constraint at the quantum level, and perform numerical simulations with 
additional grids in the matter phase space variables. This inevitably increases the numerical 
demand of resources used in the simulations and is beyond the scope of the present analysis. 
This exercise, along with study of phenomenologically interesting parameters in relation to 
cosmological models will be performed else where. We emphasize that even for such matter 
models the approach to singularity is captured by Bianchi-I vacuum spacetime which has been 
quantized and rigorously studied numerically in the present manuscript. Thus, our analysis 
provides insights on the fate of singularities to various matter models in Bianchi-I spacetime 
using techniques of loop quantum gravity.

Let us comment on two interesting issues. The first one deals with the genericity of singu-
larity resolution and bounce in this model. And the second one on how different or similar is 
the physics across the bounce. An important step to prove the first statement has been carried 
out in this work. Our results from this analysis show that the singularity resolution and bounce 
occur for a wide variety of Gaussian states. In an upcoming work this conclusion is extended to 
the squeezed and non-Gaussian states [56]. Using the properties of the quantum Hamiltonian 
constraint, it can be shown that the state corresponding to the zero volume, where the clas-
sical singularity occurs, does not lie in the physcial Hilbert space in the loop quanti zation of 

P Diener et alClass. Quantum Grav. 34 (2017) 094004



35

this spacetime [28]. In addition, it has been shown using the effective spacetime description 
of the Bianchi-I spacetime that bounce always occurs within the limit of validity of effective 
dynamics [35]. Our current analysis strongly validates the applicability of effective dynamics 
and hence these results. All these results point to a strong evidence that singularity resolution 
always occurs in this particular model in LQC and bounce is a generic phenomena for a wide 
class of states. Now let us visit the second issue. Once we have the evidence of genericness 
of bounce in what sense the spacetime before and after the bounce is similar and different? 
The answer depends on the what features and variables we are interested in to extract physics. 
It turns out that the shear scalar though varies a lot during the bounce phase, takes the same 
value at very early times before the bounce of the mean volume and at very late times after the 
bounce [41]. This is confirmed from figure 24 by comparing values of the shear scalar near 
b1  =  0 (late times after the bounce) and π=b1  (early times before the bounce). This implies 
that the anisotropic shear is preserved across the bounce. On the other hand the geometrical 
structure of spacetime as the classical singularity is approached can be quite different before 
and after the bounce, esepcially if matter is present [44]. In the present case of the Bianchi-I 
vacuum spacetime, this structure is cigar type before and after the bounce (as is evident from 
figure 21). From the behavior of different variables we studied in our analysis, the physics of 
the loop quantized Bianchi-I vacuum spacetime turns out to be similar before and after the 
bounce. This can though change in matter models for this spacetime, for example in the pres-
ence of inflation in loop quantum Bianchi-I spacetime [45].

Results obtained in this manuscript open a new avenue to understand the detailed nature of 
anisotropic spacetimes in LQC in the full quantum theory. With the tools we have introduced, 
numerical simulations of Bianchi-II and Bianchi-IX spacetimes as well as Kantowski–Sachs 
model can become feasible. Apart from these, an important step in this direction will be to 
perform numerical simulations for the other loop quantization of Bianchi-I spacetime as pro-
posed in [27, 30], and compare with the results in the current analysis. Recall that this quanti-
zation prescription does not require to restrict the spatial manifold to be a 3-torus. In fact, 
using effective dynamics for this quantization generic resolution of all the strong singularities 
is predicted [35]. As we mentioned earlier, a better analytical understanding of the physi-
cal Hilbert space is needed to perform numerical analysis for this quantization. Some of the 
properties of the quantum Hamiltonian constraint were understood in [63], and recently some 
other analytical challenges to understand the physical Hilbert space have been overcome [64]. 
Despite this progress, numerical analysis faces a further complexity because the quantum dif-
ference equation for the quantization in [27, 29] has an additional non-locality. Perhaps using 
methods proposed in [65] in synergy with techniques used in this paper would allow numer-
ical simulations for the alternative loop quantization of the Bianchi-I spacetime.

We now comment on some of the questions in the present quantization of Bianchi-I model 
which can be answered in future works using techniques built in this analysis. Our work dealt 
with the study of sharply peaked as well as widely spread Gaussian states. While this has 
given useful insights on the robustness of singularity resolution and the validity of effective 
dynamics, it is nevertheless important to extend these results to more general states such as 
squeezed and non-Gaussian states. Such a study will provide answers to whether singularity 
resolution in anisotropic spacetime occurs for arbitrary states. Computationally this would 
bring additional challenges and generalization of the Chimera scheme [23] to anisotropic spa-
cetimes would be essential. Another direction which is essential to be explored is understand-
ing bounds on growth of fluctuations through bounces. In all the simulations considered in our 
analysis, we found that fluctuations of the initial states never grew unbounded in the evolution. 
Rather these fluctuations are seemingly preserved across the bounce. The situation mimics the 
case of isotropic models where analytical [63, 66, 67] and numerical results [6, 7, 10, 24, 25] 
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on constraints on the growth of fluctuations in LQC are available. Though, analytical results 
are available for the alternate prescription of loop quantization of Bianchi-I spacetime [63], 
they need to be extended to include the present quantization. Numerical analysis presented 
in this manuscript can be used to understand constraints on the growth of the fluctuations 
through anisotropic bounces. Finally, it is crucial to employ new tools for a better visualization 
and extraction of the multi-variate data from simulations. The limitation with conventional 
ways is apparent by noting that one can only view and analyze only a few correlations at 
once. While this does not pose an issue if one is interested in understanding the behavior of 
a few relational observables, the richness of anisotropic models can not be fully appreciated. 
Addressing this issue will allow understanding correlations and dependence of many physical 
quantities at once, giving deeper insights in to the physics of quantum anisotropic and black 
hole spacetimes.
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