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High copper concentrations produce genotoxicity and cytotoxicity
in bovine cumulus cells
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Abstract The aim of this study was to investigate the cyto-
toxic and genotoxic effects of high copper (Cu) concentrations
on bovine cumulus cells (CCs) cultured in vitro.We evaluated
the effect of 0, 120, 240, and 360 μg/dL Cu added to in vitro
maturation (IVM) medium on CC viability assessed by the
trypan blue (TB)–fluorescein diacetate (FDA) and 3-(4,5-di-
methyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assays, apoptosis, and DNA damage. Differences in
cell viability assessed by TB–FDAwere not significant among
CC treated with 0, 120, 240, and 360 μg/dL Cu. However,
mitochondrial activity assessed by MTT was lower in CC
cultured with 120, 240, and 360 μg/dL Cu as compared with
the control (p < 0.01). Percentages of apoptotic cells were
higher when CCs were treated with 120, 240, and 360 μg/
dL Cu (p < 0.05) due to higher frequencies of late apoptotic
cells (p < 0.05). The frequency of live cells diminished in a
dose-dependent manner when Cu was added to the culture
medium. Whereas genetic damage index (GDI) increased sig-
nificantly in CC cultured in the presence of 240 and 360 μg/
dL Cu (p ˂ 0.05), DNA damage increased at all Cu

concentrations tested (p ˂ 0.05). These results indicate that
Cu induces cytotoxic and genotoxic effects in bovine CC.
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Introduction

Environmental quality plays an important role in human health.
One quarter of global diseases are associated with environmental
factors such as the presence of heavy metals (Rzymski et al.
2015). Healthy environments can decrease morbidity rate in
humans (WHO 2006). Although several metals, such as chromi-
um, manganese, zinc, and copper (Cu), are essential for living in
small quantities, they are toxic at high concentrations. The
sources of global contamination by heavy metals include indus-
try, transport, waste management, and soil fertilizers (Fenga
2016). In the environment, emission of heavy metals can pollute
the atmosphere by combustion; oceans, rivers and soil by direct
deposition; and thereby crops and other organisms through the
food chain (Fenga 2016). Heavymetals mainly bioconcentrate in
tissues and body fluids (Taupeau et al. 2001; Choi et al. 2007).
They have been detected in follicular fluid (FF) of women
(Younglai et al. 2002; Tolunay et al. 2016), sheep (Bires et al.
1995), and bovine (Picco et al. 2012). In mammals, certain pol-
lutants contribute to the underlying causes of fertility problems
(Kamarianos et al. 2003; Campagna et al. 2009). Exposure to
lead and cadmium produce follicular atresia and early luteiniza-
tion in cattle, and the presence of these metals in cervical mucus
is toxic to spermatozoa (Rob and Dolezalova 1986). Previous
studies have demonstrated that heavy metal exposure during
in vitro maturation (IVM) affects oocyte maturation and causes
chromosomal aberrations in bovine (Rodriguez-Tellez et al.
2005). Moreover, Leoni et al. (2002) found a negative effect of
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heavy metals on oocyte maturation and subsequent fertilization
competence in ovine.

Cu plays an important role inmammalian cells as a cofactor
of metabolic enzymes involved in radical detoxification, iron
metabolism, and other physiological processes (Petris et al.
2000; Steveson et al. 2003; Lutsenko et al. 2007). However,
the same redox properties that make Cu an essential micronu-
trient also contribute to its toxicity. Since Cu is a transition
metal, it can enhance the production of reactive oxygen spe-
cies (ROS) through the Fenton reaction (Lovejoy and
Guillemin 2014). Cu has the capacity to produce oxidative
damage in cells, interfering with essential cellular processes
such as protein synthesis, membrane permeability, DNA
structure, enzyme activities, essential ion functions, and respi-
ration (Yruela 2005; Gratão et al. 2005).

Numerous layers of cumulus cells (CCs) surround the mam-
malian oocytes (Eppig 1991; Gilchrist et al. 2008). Their role in
oocyte maturation, ovulation, and fertilization has been widely
studied (Heller et al. 1981; Herlands and Schultz 1984; Camaioni
et al. 1993; Sutton et al. 2003; Gilchrist et al. 2008; Lonergan and
Fair 2008; Nagyova et al. 2012). CCs are closely related to the
oocyte by gap junctions, providing nutrients and regulatory mol-
ecules. In addition, CCs play a key role in oocyte competence
acquisition for subsequent development (Luciano et al. 2005; Ge
et al. 2008). CC damage produces low fertilization and blastocyst
rates, even in humans (Høst et al. 2002; Seino et al. 2002; Corn
et al. 2005).

Fertility problems are an important human health issue
(Evers 2002; Snijder et al. 2012). Bovine is a widely held
experimental model for studying mechanisms and properties
related to ovarian function in humans owing to physiological
and structural similarities between both species biological sys-
tems (Babaei et al. 2012; Santos et al. 2014; Ceko et al. 2015).
The aim of this study was to investigate the effect of high Cu
concentrations on bovine CC cultured in vitro. For this pur-
pose, experiments were designed to evaluate the effect of 0,
120, 240, and 360 μg/dL Cu added to IVM medium on CC
viability, apoptosis, and DNA damage.

Materials and methods

All reagents for media preparation were purchased from
Sigma Chemical Co. (Sigma-Aldrich, St. Louis, MO, USA).
The maturation medium was bicarbonate-buffered TCM-199
supplemented with 10% (v/v) FCS, 0.2 mM sodium pyruvate,
1 mM glutamine, 1 mg/mL FSH, 1 mg/mL 17β-estradiol, and
50 mg/mL kanamycin. Standard aqueous copper sulfate solu-
tion was purchased from Merck (Tokyo, Japan). The Cu con-
centrations used (120, 240, and 360 μg/dL Cu) were higher
than normal plasma Cu concentrations in bovine. Cu status in
cattle is defined as deficient, marginal, and adequate at plasma

Cu concentrations of ˂30, 31–60, and ˃60μg/dL, respectively
(Underwood and Suttle 1999).

COCs

Bovine ovaries were obtained from an abattoir and transported
to the laboratory in sterile NaCl solution (9 g/L) with antibi-
otics (streptomycin and penicillin) at 37 °C within 3 h after
slaughter. Ovaries were pooled, regardless of the estrous cycle
stage of the donor. Cumulus cell-oocyte complexes (COCs)
were aspirated from 3 to 8 mm follicles, using an 18-G needle
connected to a sterile syringe. Only intact COC with evenly
granulated cytoplasm were selected for IVM, using a low
power (×20–×30) stereomicroscope (Nikon, Tokyo, Japan).

IVM and CC samples

COCs were washed twice in TCM-199 buffered with 15 mM
HEPES and IVM medium. Groups of 10 COCs were trans-
ferred into 50 μL of IVM medium under mineral oil (Squibb,
Princeton, NJ, USA) pre-equilibrated in a CO2 incubator.
Incubations were performed at 39 °C in an atmosphere of
5% CO2 in air with saturated humidity for 24 h. At the end
of IVM, CCs from each treatment were obtained from COCs
by repeated pipetting with a narrow-bore glass pipette in
TCM-199 buffered with HEPES, and washed three times in
calcium- and magnesium-free PBS containing 1 mg/mL PVP.

CC viability by the TB–FDA technique

After IVM of COCs, CC viability was evaluated. For this
purpose, CCs were incubated for 10 min at 37 °C in PBS
medium with 2.5 μg/L fluorescein diacetate fluorochrome
and 2.5 g/L trypan blue. Then, CCs were washed in PBS
and observed in a Nikon Optiphot epifluorescence microscope
(Nikon, Tokyo, Japan) equipped with a 330–490 nm excita-
tion filter and 420–520 nm emission filter at ×100 magnifica-
tion. Live CCs were visible in green fluorescence, whereas
dead ones showed a characteristic blue staining under white
light (Hoppe and Bavister 1984).

MTTassay

The MTT assay evaluates the respiratory activity of the mito-
chondrial succinate–tetrazolium reductase system, which con-
verts the yellow tetrazolium salt into a blue formazan dye
(Robb et al. 1990). Since the conversion takes place in living
cells, the amount of formazan produced is directly correlated
with the number of viable cells. The MTT assay was per-
formed following the protocol of Wu et al. (2013). Briefly,
1 × 104 CCs/well was cultured in TCM-199 on 96-well mi-
croplates for 4 days until the cells were nearly confluent.
Afterwards, the culture medium was removed, and CCs were
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treated with 0, 120, 240 and 360 μg/dL Cu dissolved in 100 μl
TCM-199 for further 24 h. Ethanol was used as positive con-
trol. MTT was added to each well at a final concentration of
0.25 mg/mL, and incubated at 37 °C for 3 h. Afterwards,
100 μL dimethyl sulfoxide (DMSO) was added to dissolve
formazan blue crystals. Absorbance at 490 nm was measured
by a microplate spectrophotometer (Biotek Instruments Inc.,
Bedfordshire, UK). Data were normalized to measurements
from control cultures which were considered 100% cell
survival.

Apoptosis detection by annexin V-affinity assay

Apoptosis was evaluated by membrane redistribution of
phosphatidylserine with the Annexin V-FLUOS Staining Kit
(cat no. 11-858-777-001; Roche Diagnostics GmbH, Roche
Applied Science, Penzberg, Germany). The assay involves si-
multaneous staining with both Annexin V-FLUOS (green) and
the DNA stain propidium iodide (PI, red). Intact cells exclude PI
and Annexin V-FLUOS. CCs were classified following the
criteria reported by Pläsier et al. (1999) as live (annexin V
negative/PI negative), early-apoptotic (annexin V positive/PI
negative), late-apoptotic (annexin V positive/PI positive), and
necrotic (annexin V negative/PI positive) cells. Briefly, at the
end of IVM, CCs were washed twice with PBS and centrifuged
at 200×g for 5 min. Then, the pellet was resuspended in 100 μL
of annexin V-FLUOS labeling solution and incubated in the dark
for 10–15 min at 15–25 °C. Cells were analyzed under a fluo-
rescence microscope (Nikon, Tokyo, Japan).

Comet assay

CC samples were processed by single cell gel electrophoresis
(SCGE) using the alkaline version described by Singh et al.
(1988)withmodifications (Tice and Strauss 1995). Briefly, slides
were covered with a layer of 180 μL of 0.5% normal agarose
(Carlsbad, CA, USA). Then, 75 μL of 0.5% low melting point
agarose (Carlsbad) was mixed with cells and layered onto the
slides, which were immediately covered with cover slips. After
agarose solidification at 48 °C for 10 min, cover slips were re-
moved and slides were immersed overnight at 48 °C in fresh
lysis solution. The slides were equilibrated in alkaline solution
for 20 min. Electrophoresis was done for 30 min at 25 V and
300 mA (1.25 V/cm). Thereafter, slides were neutralized by
washing (5 min each) three times with TRIS buffer (pH 7.5),
and then with distilled water. Slides were stained with 1/1000
SYBR Green I (Molecular Probes, Eugene, OR, USA) solution
(Olive et al. 1999). Scoring was made at ×400 magnification
using a fluorescence microscope (Olympus BX40) equipped
with a 515- to 560-nm excitation filter. Based on the extent of
strand breakage, cells were classified according to their tail length
into five categories, ranging fromgrade 0 (no visible tail), grade 1
(comets with tiny tail), grade 2 (comets with a dim tail), grade 3

(comets with a clear tail), to grade 4 (comets with a clear decrease
in the diameter of the head and a clear tail). DNA damage
expressed as arbitrary units was established according to
Collins (2004). Results are expressed as the mean number of
damaged nucleoids (sum of grades II, III, and IV) and the mean
comet score for each treatment. The genetic damage index (GDI)
of each treatment was obtained using the formula GDI = [(I) +
2(II) + 3(III) + 4(IV)]/N(0–IV), where 0–IV represent the nucle-
oid type, and N0–NIV represent the total number of nucleoids
scored (Pitarque et al. 1999).

Statistical analyses

The SCGE data were compared by applying one-way
ANOVA using Statgraphics 5.1 Plus software. Variables were
tested for normality with the Kolmogorov–Smirnov test, and
homogeneity of variances between groups was verified by the
Levene’s test. Pairwise comparisons between the different
groups were made using the post hoc least significant differ-
ence test (LSD). Differences in GDI, viability, and apoptosis
in treated and control cells were evaluated byχ2 test. The two-
tailed Student’s t test was used to compare MTT data between
treated and control groups. The chosen level of significance
was p < 0.05 unless indicated otherwise.

Experimental design

Assessment of CC viability with different Cu
concentrations by the TB–FDA technique

In Experiment 1, CC viability after 24 h IVMwith 0, 120, 240,
and 360 μg/dL Cu was evaluated as described above (BCC
viability by the TB–FDA technique^ section). For this pur-
pose, 243 COCs were matured in three replicates (a separate
batch of ovaries for each day). Each batch of COCs was proc-
essed for preparing slides to analyze at least 400 single CCs
per treatment.

Assessment of CCmitochondrial activity with different Cu
concentrations by the MTT assay

In Experiment 2, CC mitochondrial activity after 24 h of in-
cubation with 0, 120, 240, and 360 μg/dL Cu was evaluated
(BMTT assay^ section). For this purpose, CCs were cultured
in three independent replicates (a separate batch of ovaries for
each day).

Assessment of CC apoptosis with different Cu
concentrations

In Experiment 3, CC apoptosis after 24 h IVM with 0, 120,
240, and 360 μg/dL Cu was determined as described above
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(BApoptosis detection by annexin V-affinity assay^ section).
For this purpose, 246 COCs were matured in three replicates
(a separate batch of ovaries for each day). At least 300 CCs
were analyzed per treatment in each replicate.

Assessment of CC DNA damage with different Cu
concentrations

In Experiment 4, DNA damage of CC following the addition
of 0, 120, 240, or 360 μg/dL Cu to the IVM medium was
measured by the comet assay. CCs were matured for 24 h
(as described above) and, thereafter, DNA damage was mea-
sured. For this purpose, a total of 240 COCs in three replicates
obtained on different days were matured in vitro. Each batch
of COCs was processed for preparing slides to analyze at least
200 single CCs per treatment in each replicate.

Results

Effect of Cu concentrations on CC viability by TB–FDA

In Experiment 1, CC viability did not show significant differ-
ences among CCs treated with 0, 120, 240, and 360 μg/dL Cu
concentrations during IVM (89.8 ± 0.31, 87.1 ± 0.34,
88.0 ± 0.33, and 89.2 ± 0.31%, respectively; p ˃ 0.05).

Effect of Cu concentrations on CC mitochondrial activity

In Experiment 2, the results demonstrated a significant depres-
sion in mitochondrial activity in ethanol-treated cultures (pos-
itive control, 52.91 ± 6.68%) as compared with the control
(p < 0.001; Fig. 1). Mitochondrial activity was significantly
lower in CC cultured with Cu as compared with the control
(100 ± 0, 92.83 ± 1.09, 91.75 ± 0.90, 89.74 ± 1.05% for CC
exposed to 0, 120, 240, and 360 μg/dL Cu, respectively;
p < 0.01). No differences were found in CC mitochondrial
activity when comparing Cu concentrations (Fig. 1).

Effect of Cu concentrations on CC apoptosis

Data for apoptosis in CC cultured for 24 h showed significant
differences when comparing the percentages of apoptotic cells
of control vs. positive control (p < 0.001; Table 1). The fre-
quency of live cells diminished in a dose-dependent manner
when Cu was added to culture medium (Table 1). Percentages
of apoptotic cells were higher when CCs were treated with
120, 240, and 360 μg/dL Cu (p < 0.05) due to higher frequen-
cies of late apoptotic cells (p < 0.05). Moreover, the addition
of 240 and 360 μg/dL Cu increased the frequency of necrotic
cells (p < 0.05).

Effect of Cu concentrations on CC DNA damage

In Experiment 4, 1 μg/mL bleomycin (positive control) in-
duced an increase in damaged cell frequency and GDI as
compared with the control (p < 0.01). GDI increased signifi-
cantly in CC cultured in the presence of 240 and 360 μg/dL
Cu during IVM (p ˂ 0.05; Table 2). DNA damage (grades II,
III, and IV) increased with all Cu concentrations (p ˂ 0.05;
Table 2). We observed that such increase was due to the exis-
tence of higher type III and IV cells (p ˂ 0.05).

Discussion

In the present study, we evaluated the effect of high Cu con-
centrations during bovine COC maturation. CC viability was
assessed by the TB–FDA and MTT assays; apoptosis and
comet assay results were used to determine whether treatment
with high Cu concentrations could induce cytotoxicity and
genotoxicity. Our study demonstrated that Cu supplementa-
tion to IVM medium (I) did not modify cell viability by the
TB–FDA technique, (II) decreased mitochondrial activity,
(III) increased apoptosis, and (IV) increased DNA damage
in bovine CC. These results indicate that exposure of bovine
CC to high Cu concentrations during COC IVM generates
genotoxic and cytotoxic effects.

Cu is an essential trace element and an integral part of many
intracellular and extracellular Cu-dependent enzymes and struc-
tural proteins (Jazvinšćak Jembrek et al. 2014; Roychoudhury
et al. 2014). Cu is involved in a number of biochemical and
physiological functions (Jazvinšćak Jembrek et al. 2014;
Roychoudhury et al. 2014) such as cellular respiration, iron ox-
idation, pigment production, neurotransmitter biosynthesis, anti-
oxidant defense, and collagen synthesis (Nevitt et al. 2012;
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Fig. 1 Mitochondrial activity evaluated byMTT in bovine cumulus cells
exposed to high copper concentrations for 24 h. Bars with different letters
statistically differ (p < 0.01). Cultures were incubated for 3 h with MTT
after 24 h of Cu treatments. Results are expressed as the mean
percentage ± SEM of cell growth inhibition from three independent
experiments. Five percent ethanol-treated cells were used as positive
controls
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Tchounwou et al. 2012; Jazvinšćak Jembrek et al. 2014). Cu is
necessary for living organisms in small quantities, but toxic at
higher concentrations (Nevitt et al. 2012). In physiological con-
ditions, there are mechanisms that ensure adequate supplies of
Cu ions preventing toxic effects (Rae et al. 1999; Kaplan and
Lutsenko 2009). However, acute and chronic Cu excess can
provoke cellular damage (Jazvinšćak Jembrek et al. 2014). Cu
is present in natural ecosystems (Spatari et al. 2002). In addition,
Cu-containing substances are extensively used in industry, agri-
culture, medical, and home products, representing a growing
biological hazard (Wang et al. 2013). The main artificial sources
of Cu are non-ferrous metal mining, metal ore smelting, galva-
nization, oil and gasoline combustion, waste incineration, and
excessive use of certain plant protectants (Georgopoulos et al.
2001; Miska-Schramm et al. 2014; Zhang et al. 2015).

Even though the negative effects of overexposure to Cu on
different organs such as the lung, spleen, liver, kidney, and intes-
tine are well known, there exists scarce information about the
effects of Cu toxicities on female genital organs and their cells

(Minervino et al. 2009; Babaei et al. 2012; Tolunay et al. 2016).
Our current observations reveal that Cu was able to induce an
increase in the frequency of apoptotic bovine CC after 24 h of
treatment by increasing late apoptotic cell percentages.
Moreover, 240 and 360 μg/dL Cu induced a strong increase in
necrotic cell rates. Previous studies reported that Cu was one of
the most potent metals in apoptosis cell induction (Formigari
et al. 2013). It has been demonstrated that apoptosis rates are
correlatedwith Cu excess in different cell types such as liver cells
(Oe et al. 2016), mouse fibroblasts (Cao et al. 2012), osteoblasts
(Cortizo et al. 2004), PC-3 human prostate cancer cells (Wang
et al. 2014), and P19 neurons (Jazvinšćak Jembrek et al. 2014).
This effect was observed in both in vivo and in vitro systems
(Handy 2003; Lu et al. 2006; Yu et al. 2008; Wang et al. 2014;
Zhong et al. 2015; Pramanik et al. 2016). However, molecular
and cellular mechanisms that link Cu to programmed cell death
remain largely unknown (Jazvinšćak Jembrek et al. 2014). Cu
apoptotic potential is associated with its capacity to generate
ROS through participation in the Haber–Weiss redox cycling

Table 2 Analysis of DNA damage by the comet assay in bovine cumulus cells after in vitro culture with different copper concentrations

Treatment Proportion of damaged nucleoids (%) DNA damage (%) GDI

0 I II III IV (II + III + IV)

Control 82.52 ± 0.37a 7.36 ± 0.26a 6.86 ± 0.24a 2.37 ± 0.14a 0.87 ± 0.09a 10.11 ± 0.3a 0.32 ± 0.08a

120 μg/dL Cu 78.02 ± 0.41b 5.55 ± 0.22a 8.02 ± 0.27a 4.44 ± 0.20b 3.95 ± 0.20b 16.62 ± 0.3b 0.51 ± 0.07a

240 μg/dL Cu 74.18 ± 0.44bc 5.98 ± 0.24a 9.1 ± 0.29a 6.98 ± 0.26c 3.74 ± 0.19b 19.82 ± 0.4b 0.60 ± 0.09b

360 μg/dL Cu 73.25 ± 0.44c 7.87 ± 0.27a 7.75 ± 0.27a 7.12 ± 0.26c 4.00 ± 0.20b 18.85 ± 0.3b 0.61 ± 0.08b

Positive control 48.54 ± 0.42d 23.74 ± 0.21b 18.14 ± 0.29b 5.64 ± 0.19b 3.78 ± 0.19b 27.71 ± 0.2c 0.92 ± 0.02c

Values with different lowercase letters within each column differ (p < 0.05). Bovine COCs were incubated in IVMmedium alone (control); IVM + 120,
240 and 360 μg/dL Cu, and IVM + 1 μg/mL bleomycin (positive control) during 24 h. DNA damage in CC was evaluated by SCGE in four replicates.
The extent of DNA damage was quantified by the length of DNAmigration (comet), which was visually determined in 200 randomly selected and non-
overlapping cells per replicate. DNA damage was classified into four classes: 0-I (undamaged), II (minimum damage), III (medium damage), and V
(maximum damage). Results are expressed as mean comet score for each treatment group and mean damaged nucleoids (sum of classes II, III, and IV).
Genetic damage index (GDI) of each treatment was determined with the formula GDI = [(I) + 2(II) + 3(III) + 4(IV)]/N(0–IV), where 0–IV represent the
nucleoid type, and N0–NIV the total number of nucleoids scored. Results are presented as mean ± SEM

Table 1 Analysis of apoptosis in
bovine cumulus cells exposed to
high copper concentrations for
24 h

Copper concentration No. Percentage of cells (%)

Alive Early apoptotic Late apoptotic Necrotic

Control 1022 60.86 ± 0.49a 1.56 ± 0.12a 5.38 ± 0.22a 12.62 ± 0.32a

120 μg/dL 1001 55.24 ± 0.50b 2.59 ± 0.16a 9.69 ± 0.29b 12.48 ± 0.32a

240 μg/dL 1041 46.01 ± 0.50c 2.20 ± 0.15a 10.08 ± 0.30b 22.47 ± 0.41b

360 μg/dL 1035 41.64 ± 0.50d 2.12 ± 0.14a 8.79 ± 0.27b 28.11 ± 0.45c

Positive control 1003 17.13 ± 0.40e 9.6 ± 0.18b 55.7 ± 0.61c 18.30 ± 0.47b

Values with different lowercase letters within each column differ (p < 0.05). Bovine COCswere incubated in IVM
medium alone (control); IVM + 120, 240, and 360 μg/dL Cu; and IVM + 5% ETOH (positive control) during
24 h. COCs were denuded and CC suspensions were exposed to annexin V-FITC-propidium iodide (PI). CCs
were classified as live (annexin V negative/PI negative), early-apoptotic (annexin V positive/PI negative), late-
apoptotic (annexin V positive/PI positive), and necrotic (annexin V negative/PI positive). Each experiment was
repeated three times and samples were performed in duplicate for each experimental point. Results are presented
as mean ± SEM
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as well as the inhibition of complex I of the electron transport
chain, the main source of intracellular ROS (Pourahmad and
O’Brien 2000; Formigari et al. 2013). Previous studies using
peripheral blood lymphocytes provide evidence that Cu produces
apoptosis by H2O2 and hydroxyl radical generation, resulting in
mitochondrial depolarization, caspase-3 activation, and nuclear
fragmentation (Jiménez Del Río and Vélez-Pardo 2004;
Formigari et al. 2013). Intracellular ROS production activates
andmodulates apoptosis by regulating p53 activity in certain cell
types (Narayanan et al. 2001; VanLandingham et al. 2002), but
not in others (JiménezDel Río andVélez-Pardo 2004). Although
Cu cell overexposure induces ROS formation, ROS do not ap-
pear to cause all Cu-mediated DNA damage because Cu is mu-
tagenic (Formigari et al. 2013).

Even though, we previously demonstrated that Badequate^
(60 μg/dL) Cu concentration added to IVM medium de-
creased DNA damage and apoptosis in bovine cumulus cells
(Rosa et al. 2016), we observed an increase of necrotic cell
percentages when Cu was added at high concentrations to the
culture medium in concordance with other authors (Aston
et al. 2000; Krumschnabel et al. 2005). Cu excess might in-
teract in a non-specific manner with several macromolecules
either by modifying their conformation or by causing site-
specific damage that result in a disruption of vital cellular
processes which further lead to apoptotic and necrotic cell
death (Didenko et al. 2003; Krumschnabel et al. 2005; Rana
2008; Cao et al. 2012; Kuku et al. 2016; Philipp et al. 2016).

DNA damage can be an end-product of the apoptosis phe-
nomenon or one of the factors for its progress (Wang 2001;
Rana 2008). Recently, it has been reported that Cu accumula-
t ion causes apoptosis mediated by DNA damage
(Roychoudhury et al. 2014). In the present study, the comet
assay was used to analyze DNA damage in CCs incubated
with Cu. We demonstrated that Cu had a detrimental effect
on DNA integrity of CC after 24 h of treatment with 120, 240,
and 360 μg/dL Cu. These findings are in agreement with the
genotoxic profile shown in other cellular systems. Addition of
Cu to culture media produced DNA damage in C6 cells
(Jazvinšćak Jembrek et al. 2014), neurons (Lévay et al.
1997; Nzengue et al. 2012), human peripheral blood mononu-
clear cells (Singh et al. 2006), HepG-2 cells (Liu et al. 2016),
HeLa cells (Liu et al. 2016), and WIL2-NS human B
lymphoblastoid cells (Alimba et al. 2016). The affinity of Cu
for specific sites on double-stranded DNA is higher than that
of other metals (Formigari et al. 2013). It is suggested that Cu
bound to DNA reacts with H2O2 to generate hydroxyl radi-
cals, which then attack the DNA bases in a site-specific man-
ner (Aruoma et al. 1991). Therefore, Cu might be capable of
inducing DNA strand breaks and oxidation of DNA bases
(Gaetke and Chow 2003).

In the present study, CCs incubated with Cu concentrations
resulted in a reduction of mitochondrial activity. The cytotox-
icity analyzed by theMTTmethodwas higher whenCCs were

cultured with 120, 240, and 360 μg/dL Cu. Our results are in
agreement with those presented by Cao et al. (2012). Using
the MTTassay, these authors found that supplementation with
Cu (10, 50, 100, 500, 1000, 2500, 4000, 5000 and 10,000 μg/
dL) resulted in a significant decrease in L929 fibroblast via-
bility. Also, the accumulation of Cu oxide nanoparticles
(CuO-NPs) in C6 glioma cells produces a severe loss in cell
viability (assessed by MTT reduction and cellular lactate de-
hydrogenase activity) and cell membrane integrity (Joshi et al.
2016). Similar results have been observed when Cu chloride
was used (Nzengue et al. 2012); also, HepG2 cell exposure to
10, 200, and 500 μM Cu sulfate for 8 or 24 h reduced the
viability as compared with untreated cells (Liu et al. 2014). In
the present study, loss in cellular MTT reduction capacity was
observed for all Cu conditions, suggesting that the MTTassay
is a more sensitive indicator of Cu-induced cellular viability
decrease than the TB–FDA assay.

To our knowledge, we have conducted the first genotoxic and
cytotoxic evaluation of high Cu concentrations in bovine CC
during COC IVM. As stated previously, our results revealed that
Cu was able to induce genotoxicity and cytotoxicity in bovine
female reproductive cells. Bovine ovary is a popular experimen-
tal model for studying mechanisms and properties related to
ovarian function in humans (Babaei et al. 2012; Santos et al.
2014; Ceko et al. 2015). COC is the structural and functional
unit present in mammalian antral follicles (Camaioni et al. 1993).
COCs are embedded in FF, which is a type of blood plasma
ultrafiltrate containing secretion from the ovarian follicle cells
(Tolunay et al. 2016). Any change in FF may potentially affect
CC. It is interesting to point out that the lowest Cu concentration
used in this study (120μg/dL) is very close to that found in FF of
bovine (59.9–110.8 μg/dL) (Picco et al. 2012) and women
(65.8–123.8 μg/dL, Cavallini et al. 2016; and 33–177 μg/dL,
Tolunay et al. 2016). CCs surround the oocyte during the matu-
ration process within the follicle and protect the developing oo-
cyte providing nutrients through gap junctions (Tatemoto et al.
2000; Fatehi et al. 2002). Any alteration or damage of these cells
can impair the oocyte developmental capacity (Ikeda et al. 2003).
In conclusion, the present study indicates that Cu induces a
genotoxic and cytotoxic effect on bovine CC. In addition, our
findings support the view that CCmight be a sensitive cell model
for the study of Cu-induced genotoxicity and cytotoxicity.
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