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List of abbreviations 
 

APC: Antigen-presenting cells 

APRIL: A proliferation-inducing ligand 

Auto-Ab: Autoantibodies 

BAFF: B-cell activating factor 

BCR: B-cell receptor 

Bm: mature B cell 

BR3: B-cell activating factor receptor 3 

DC: Dendritic cell 

FDC : follicular dendritic cell 

GC: germinal center 

GWAS: Genome-wide association studies 

HPA: Hypothalamic pituitary-adrenal  

IC: immunocomplex 

IFN-I: Type I interferon 

IL: interleukin 

ILC2: Type 2 innate lymphoid cell 

IL-1Ra: IL-1 receptor antagonist 

iNKT: invariant natural killer T cell  

LF: Lymphocitic Foci 

LT: lymphotoxin 

mAb: Monoclonal antibody 

MZ: Marginal zone B cell 

NK: Natural killer  

NOD : non-obese diabetic mouse 

OAS1: Oligoadenylate synthetase 

PC: Plasma cell 

pDC: plasmacytoid DC 

PRR: Pattern recognition receptor 

RA: Rheumatoid arthritis  
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RCT: Randomized controlled trial 

RF: Rheumatoid factor 

SGEC: Salivary gland epithelial cell 

SSDAI: Sjogren's Syndrome Disease Activity Index 

Sjs: Sjogren Syndrome 

SLE: Systemic lupus erythematosus 

T2: Transitional type 2 B cell 

TACI: calcium modulator and cyclophylin ligand interactor 

TFH: Follicular helper T cell 

TH: helper T cell 

TLR: Toll-like receptor 

Treg: regulatory T cell 

TSLP: Thymic stromal lymphopoietin 
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ABSTRACT 

Primary Sjögren syndrome (SjS) is a systemic autoimmune disease that may affect 1 in 

1000 people (overwhelmingly women) and that can be a serious disease with excess 

mortality due to severe organ-specific involvements and the development of B cell 

lymphoma; systemic involvement clearly marks the disease prognosis, and strongly 

suggests the need for closer follow-up and more robust therapeutic management. 

Therapy is established according to the organ involved and severity. As a rule, the 

management of systemic SjS should be organ-specific, with glucocorticoids and 

immunosuppressive agents limited to potentially-severe involvements; unfortunately, 

the limited evidence available for these drugs, together with the potential 

development of serious adverse events, makes solid therapeutic recommendations 

difficult. The emergence of biological therapies has increased the therapeutic 

armamentarium available to treat primary SjS. Biologics currently used in SjS patients 

are used off-label and are overwhelmingly agents targeting B cells, but the most recent 

studies are moving on into the evaluation of targeting specific cytokines involved in the 

SjS pathogenesis. The most recent etiopathogenic advances in SjS are shedding some 

light in the search for new highly-selective biological therapies without the adverse 

effects of the standard drugs currently used (corticosteroids and immunosuppresants 

drugs). This review summarizes the potential pharmacotherapeutic options targeting 

the main cytokine families involved in the etiopathogenesis of primary SjS and analyzes 

potential insights for developing new therapies. 

 

 

 

KEY WORDS: Sjögren syndrome, cytokines, pathogenesis, therapy, biological agents  
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1. Introduction 

Sjögren syndrome (SjS) is a systemic autoimmune disease in which the exocrine glands 

are the main tissue damaged (1). The histological hallmark of SjS is focal lymphocytic 

infiltration of the glands, which is mainly diagnosed by biopsy of the minor labial 

salivary glands (2). The lymphocytic foci (LF) consist of mainly T cells, a lesser amount 

of B cells and a smaller number of natural killer (NK) and dendritic cells (DC), and are 

often associated with acinar epithelial cell atrophy, progressive fibrosis and the 

presence of adipocytes. Clinically, patients overwhelmingly present with sicca 

symptoms caused by autoimmune exocrine gland involvement, although general 

features (fatigue and chronic pain) and systemic extraglandular involvement (including 

lymphoma) are also frequent (3). Autoantibodies (auto-Ab) are key serological markers 

of autoimmune disease and, in patients with SjS, may be present up to 20 years before 

the disease diagnosis (4): SjS patients may present a broad spectrum of circulating 

auto-Ab, of which antinuclear antibodies are the most frequently detected, anti-Ro/SS-

A the most specific, and cryoglobulins the main prognostic marker. An early diagnosis 

of SjS is especially important in patients in whom systemic manifestations are the 

presenting feature and this requires a multi-step sequential diagnostic process using a 

close multidisciplinary workup (5). 

The treatment of primary SjS is based on the symptomatic management of sicca 

manifestations and the use of immunosuppressive agents for systemic disease, with 

very limited scientific evidence on the balance between efficacy and the side effects 

associated with their use (6). The emergence of biological immunotherapies targeting 

etiopathogenic pathways has increased the armamentarium available to treat primary 

SjS. Currently, they are largely centered on targeting B cells (7), but their use is still 

limited due to the lack of licensing (8). More recently, studies are moving on to the 

evaluation of therapeutic interventions on specific cytokines involved in SjS 

pathogenesis (9). This review summarizes the potential pharmacotherapeutic options 

targeting the main cytokine families involved in the etiopathogenesis of primary SjS 

and discuss their potential for developing new and more effective therapies. 
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2. Etiopathogenesis: a brief overview 

The pathogenesis of SjS remains unclear, as it is a complex, multifactorial disease in 

which many cell types, including DC, T and B lymphocytes, may ultimately participate. 

Recent genome-wide association studies (GWAS) and broad multi-omic analyses have 

led to the identification of novel SjS disease modifiers (10,11). Although different 

components are involved, there is not yet agreement on the contribution of each 

molecule or cell type behind the disease mechanisms and the network connection 

between them (12). The most-widely currently accepted etiopathogenic model of SjS is 

based on the development of autoimmune epitheliitis, characterized by lymphocytic 

infiltration of the exocrine epithelium, as the key pathogenic underlying scenario (1). 

Early stages of this process involve enhanced activation of the type I interferon (IFN-I) 

system, probably induced by external damaging factors (13) such as infections (mainly 

viruses). These pathogenic factors are believed to trigger autoimmunity through 

interaction with pattern recognition receptors (PRRs) such as toll-like receptors (TLR), 

thus allowing the recruitment and activation of DC and lymphocytic cells. The response 

of autoreactive T and B cells to unmodified or altered self-antigens abnormally 

expressed by the epithelium of the exocrine glands (e.g., Ro and La 

ribonucleoproteins) promotes the release of pro-inflammatory cytokines (e.g., IFN-I, 

interleukin (IL)-17 and B-cell activating factor -BAFF-) and chemokines, as well as the 

increased expression of adhesion molecules, apoptosis-related factors, co-stimulatory 

molecules, autoantigens and functional innate immune receptors. This cascade leads 

to chronic inflammatory damage of the exocrine glands and the progressive loss of 

their physiological function (1,14–16) (Figure 1). Within this inflammatory context, 

antigenic presentation, mediated both by professional antigen-presenting cells (APC; 

namely DC) and/or activated epithelial cells, is of particular relevance, since it may 

initiate and/or maintain the autoimmune response.  

Besides autoimmune epitheliitis, other etiopathogenic processes have been proposed, 

such as those related to neuroendocrine mechanisms, which would explain why some 

SjS patients present with severe sicca symptoms and no (or limited) inflammatory 

histopathological features (17–20). In this regard, hypoactivity of the hypothalamic-

pituitary-adrenal (HPA) axis has been associated with either pituitary defects or with 
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adrenal gland dysfunction (17). Inadequate secretory function has been linked to 

neural innervation destruction in the residual gland, the absence of acetylcholine 

receptors on the glandular cells, and the release of inflammatory cytokines by 

lymphocytes and glandular cells (19). Other etiopathogenic factors recently associated 

with sialoadenitis include autophagy, the role of aromatase (also named estrogen 

synthase) and, especially, epigenetic mechanisms (1,21). 

 

3. The main etiopathogenic cellular players 

3.1. Epithelial cells 

The epithelial cells of the exocrine glands play a central role in the etiopathogenesis of 

SjS and various studies have investigated how salivary gland epithelial cells (SGEC) 

work. SGEC constitutively express a plethora of molecules associated with the 

recruitment, homing, activation, differentiation and proliferation of lymphocytes 

(14,22). Accordingly, SGEC can activate CD4+ T cells in vitro and mediate their 

differentiation into follicular-helper T-cells (TFH) (23) which, in turn, enhance B-cell 

survival (14,22). In addition, SGEC may interact directly with B-cells, promoting their 

differentiation into antibody (Ab)-secreting cells (plasma cells; PC) (1,24). 

Epigenetic changes and/or viral infections may initiate epithelial activation in patients 

with SjS (14,25). A key role for the IFN-I-related pathway has been proposed, based on 

enhanced expression of IFN-I inducible genes (the so-called IFN-I signature) in salivary 

gland tissue and blood from patients with primary SjS (26) (Figure 1). The mechanisms 

involved are still not well understood, but triggers such as viruses or immune 

complexes (IC) (27) may play a role at the beginning of the process. Li et al., (28) have 

recently identified 2'-5'-oligoadenylate synthetase 1 (OAS1) as a risk locus for SjS, 

supporting a genetic pathophysiological background for potential defective viral 

clearance. Activated SGEC overexpress MHC class I and II, TLR and costimulatory 

molecules, and may present self-antigens and produce pro-inflammatory cytokines, 

especially in individuals with a specific gene susceptibility (e.g., carriers of specific risk 

alleles from IRF5 and STAT4) (29). SGEC also secrete IL-7 following TLR engagement, 

with levels correlating with local inflammation and T-cell infiltration (30). In contrast, 

thymic stromal lymphopoietin (TSLP), also produced by SGEC, is reduced in primary SjS 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
10 

 

patients’ salivary glands and inversely correlated with T-cell infiltration and 

inflammation. Apparently, TSLP may promote a protective TH2 milieu at mucosal sites 

and thus mediate tissue homeostasis (31). In addition, under the influence of a high 

IFN glandular milieu and through TLR ligation, BAFF is produced by epithelial cells and, 

together with self-antigen presentation on salivary gland epithelial cells, stimulates the 

adaptive immune system.  

 

3.2. Dendritic cells 

DC are the main professional APC and have been recognized as key regulators of the 

immune responses, integrating both stimulatory and inhibitory effectors (32). The 

mucosal surfaces of the oral cavity contain a unique distribution of DC subsets. In 

addition to tissue-specific properties, mucosal tissue-resident DC are essential for 

transferring immune responses against microbial exposure to regional lymph nodes 

and colonization of the oral cavity (33). 

TLR7 and TLR8 engagement in plasmacytoid DC (pDC) is involved in the earliest phases 

of SjS pathology, as it results in enhanced IFN-I production, making pDC the major 

source of such cytokines (34). In patients with primary SjS, activated pDC are detected 

in minor salivary gland biopsies (35), but are reduced in peripheral blood, possibly due 

to glandular tissue accumulation (36). In addition, pDC are triggered by abnormal 

continuous synthesis of IFN-I by self-antigens from apoptotic cells, and by NK and B 

cells following stimulation by IC (37). Therefore, B-cell-derived auto-Ab stimulate pDC 

to produce IFN-I, thus closing a feed-forward loop that includes both innate and 

adaptive immune cell effectors (38). DC are also essential for the development of 

ectopic/tertiary lymphoid tissue, which consists of periductal clusters of T and B 

lymphocytes, the differentiation of high endothelial venules and networks of stromal 

follicular dendritic cells (FDC) (39). The formation and maintenance of these tertiary 

lymphoid structures is regulated by the ectopic expression of lymphotoxins (LT) and 

lymphotropic chemokines (CXCL12/13 and CCL19/21) (40,41). 
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3.3. B lymphocytes 

B-cells are central in the pathogenesis of primary SjS. B-cell hyperactivity is the 

consequence of the coordinated and integrated action of B-cell receptors (BCR), CD40 

and TLR signals in the presence of appropriate cytokines (42). Like DC and T cells, B 

lymphocytes are detected in certain regions within the ectopic lymphoid structures, 

probably due to increased ectopic chemokine expression (e.g., CXCL13) by SGEC (43). 

The etiopathogenic role of cytokines involved in the homeostasis of B cells, especially 

BAFF and the A proliferation-inducing ligand (APRIL), is now considered essential for B-

cell proliferation and survival from immature B cells to the development of PC and the 

permanence of autoreactive B cells. Accordingly, overexpression of IFN-I and BAFF on 

the one hand, and IL-6 and IL-21 on the other hand, is critically involved in the marked 

presence of PC in primary SjS patients (42). In addition, BAFF induce CD4+ T-cell 

activation and sustain follicular dendritic cell-networks (44), thus impairing B-cell 

tolerance. Moreover, excess BAFF has been related to an abnormal composition of 

circulating mature B (Bm)-cell subsets, and the abnormal accumulation of transitional 

type 2 (T2), marginal zone (MZ) and memory B cells within the exocrine glands. Due to 

the membrane expression of IgD and CD38, Bm may be subdivided into sequential 

stages (from Bm1 to Bm5). Once activated in secondary lymphoid organs, naïve Bm1 

(IgD+CD38−) become Bm2 (IgD+CD38+) and progress to germinal centre (GC) founder 

Bm2′ cells (IgD+CD38++). There, they evolve into Bm3 centroblasts and Bm4 

centrocytes (IgD−CD38+), which differentiate into either PC or early (eBm5) and late 

memory Bm5 (IgD−CD38+ and IgD−CD38−, respectively). In contrast to other rheumatic 

diseases, patients with primary SjS present an increased percentage of Bm2 and Bm2' 

cells, and reduced eBm5 and Bm5 cells, and a ratio of Bm2+Bm2' to eBm5+Bm5 of >5 

is considered a key feature in primary SjS (45). These abnormalities may reflect the 

migration of active memory B cells into the exocrine glands (45). Excess BAFF is also 

associated with B-cell functional abnormalities, such as the internal synthesis of BAFF, 

and a default mechanism that promotes auto-Ab production in ectopic GC (46).  
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3.4. T lymphocytes 

Active CD4+ cells are the main T-cell subset infiltrating the salivary glands (47), and 

contribute to disease pathogenesis by both releasing pro-inflammatory cytokines and 

recruiting B cells. Historically, SjS was thought to be a TH1-driven disease, due to the 

predominance of CD4+ T lymphocytes in focal lymphocytic sialadenitis. In addition, the 

robust link between certain MHC class I and II alleles and SjS pathogenesis strongly 

suggests T cell involvement. Furthermore, IFN-y and IL-17 secreting T cells have been 

associated with tissue damage and found within inflamed salivary glands (30,48). CD4+ 

T cells seem to be responsive to self-antigens from apoptotic cells, such as Ro and La 

antigens or cytoskeletal antigens (α-fodrin). Accordingly, physical injury to ocular 

surfaces may also lead to T-cell mediated responses to self-antigens and perpetuate 

disease. T-cell responsiveness in the salivary glands is further promoted by the 

abnormal capacity of salivary epithelial tissue to provide co-stimulation and enhanced 

antigen presentation. Cytokines are key mediators of the T-cell contribution to SjS 

etiopathogenesis (15). Beyond their role in inducing B-cell hyperactivity and Ab 

secretion, T cells are involved in promoting glandular destruction through Fas- and 

perforin-mediated mechanisms. As previously mentioned, the key histopathological 

marker of the disease (focal lymphocytic sialadenitis) consists of periductal aggregates, 

referred to as LF, which occasionally appear as GC-like structures. An important and 

dynamic role for helper T cells, specifically TH1, TH17 and TFH, has been linked to the 

formation and organization of these LF (49). Over-expressed cytokines (IL-7, IL-17, IL-

21, IL-22, IL-23) contribute to the diversification of T cell and B cell responses and may 

increase the risk of lymphoid neogenesis (13,15,50). TH1 cells (the key main producers 

of IFN-γ and IL-2) together with TH17 cells (secretors of IL-17 and TNF-α) have 

suggested to be key player (51). Recent data have implicated TH17 in the stimulation of 

B cells, mediated by IL-21 produced by TFH cells (52). An elevated ratio of TFH cells and 

increased IL-21 production have been linked to a more severe disease course (53). 

Moreover, TFH cell expansion correlates with serum IgG levels, IC and auto-Ab. A recent 

study has also reported that the main biological therapy currently used in severe cases 

of systemic SjS (B-cell depletion using rituximab) induces a significant decrease in 

circulating TFH cells, together with a reduction in IL-17 and IL-21 serum levels (54). 
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Whereas the role of other cell components involved, such as TH2, which is increased in 

the salivary glands, remains unclear, new evidence seems to implicate the T regulatory 

(Treg)-cell subset in SjS. Interestingly, a recently-described suppressive Treg subset 

(CD4+CD25lowGITR+) is expanded in peripheral blood from patients with primary SjS 

together with reduced CD4+CD25+ T cells (55). The authors suggest that 

CD4+CD25lowGITR+ cells in primary SjS may act as a countermeasure to fight 

autoimmune-driven inflammation and may ultimately become a putative target for 

upcoming therapies. The involvement of Treg in SjS pathophysiology has also been 

recently shown in mice, with RNA-binding self-antigens such as La/SS-B involved in the 

positive selection of Treg during their thymic maturation (56). 

The IL-7 cytokine has been shown to stimulate effector T cells and induce murine 

sialoadenitis (57). Interestingly, IL-7 is over-expressed in the salivary glands of primary 

SjS patients as a result of DC, endothelial or epithelial cell production (13,30), which 

may be triggered by innate signaling (e.g., TLR-mediated activation).  

 

4. Cytokine-based therapeutic approaches 

Although novel players in the pathophysiology of SjS have recently been identified, the 

key pathogenic mechanism of the disease remains unclear, thus blurring the 

identification of putative therapeutic targets for SjS. Cytokines are a key component 

that seems to contribute to SjS etiopathogenesis by communicating the different cell 

types (epithelial, DC and B/T cells) (Figure 1). Cytokines constitute a complex signaling 

network that modulates cell behavior and homeostasis through their interaction with 

high-affinity cell surface receptors (58). Their main general characteristics are potency, 

pleiotropism, and redundancy, and they may act in autocrine, paracrine and juxtacrine 

ways. There are up to 38 interleukins (ILs) identified so far, grouped into different 

families susceptible to therapeutic targeting. The current evidence on the use of 

cytokine-targeted therapies in primary SjS is summarized in Table 1 (59–67). 

 

4.1. Targeting the TNF family 

The main members of the TNF family of ligands are TNF-α, LT-α/TNF-β, LT-β/TNF-C, 

CD40L, CD27L, CD30L, TRAIL, FasL, APRIL and BAFF. The promising results of TNF-
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targeted therapies in rheumatoid arthritis (RA) led to their testing in patients with 

primary SjS. A prospective open-label study in 16 patients found significant 

improvements in subjective and objective measures after the administration of 

infliximab, although the authors retracted the manuscript 12 years ago (68). In 2004, 

Mariette et al., conducted a randomized controlled trial (RCT) in 103 patients and 

found no significant clinical efficacy of infliximab with respect to symptoms, salivary 

flow rates, ocular tests, quality of life parameters or salivary biopsy results, though 

improvements in fatigue and some analytical parameters were observed compared 

with placebo (59). Two studies using etanercept (one RCT, one prospective) found no 

significant improvements in the main sicca signs and symptoms (60,61), but 

improvement in some analytical parameters. The interest in TNF-α blockade as a 

therapeutic SjS target has gradually decreased in proportion to the growing interest in 

other TNF members closely involved in B cell survival (69). 

The B-cell activating factor axis comprises two ligands (BAFF and APRIL) and three 

receptors (BCMA, TACI, BR3) (70). BAFF (also named BLyS or TNFSF13B) is a critical 

cytokine involved in the survival of circulating B cells (71). Its binding to the 

corresponding receptors inhibits intracellular apoptotic pathways and provides survival 

signals to B cells (15). Quartuccio et al., (72) found higher soluble BAFF levels in 

patients with primary SjS, which was closely associated with the main immunological 

markers, systemic disease activity and lymphoproliferation (monoclonal lymphocytic 

infiltration, myoepithelial sialoadenitis and lymphoma). Other studies have described 

aberrant BAFF expression in B cells infiltrating the salivary glands (20) and have 

reported BAFF as a key component of the formation of ectopic GC in SjS (14). 

Increased levels of BAFF also improve the survival of self-reactive B cells and facilitate 

abnormal tissue infiltration into follicle/marginal zone niches (20). 

Encouraging results have emerged from the BELISS trial (63), an open-label study 

carried out in 30 primary SjS patients with systemic or early-onset disease treated with 

belimumab, a human IgG1λ monoclonal antibody (mAb) binding to soluble BAFF (10 

mg/kg at weeks 0, 2 and 4, and then every 4 weeks until week 24). The primary end-

point (improvement of ≥ 2 of the following items: dryness, fatigue, musculoskeletal 

pain, physician systemic activity and reduction in biomarkers) was evaluated at week 
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28 and was achieved in 18 (60%) patients, with a high rate of response in patients with 

early disease onset (73%) or parotid enlargement (77%). No improvement was 

observed in two patients with low-grade parotid lymphoma. The ESSDAI score 

decreased from 8.8 to 5.6 and the ESSPRI score from 6.4 to 5.6. With respect to 

adverse events, one patient developed pneumococcal meningitis. In an extension of 

the study, 19 patients were followed for 52 weeks after therapy (50). Thirteen (87%) of 

the 15 responders at week 28 maintained the response, the improvement in the 

ESSDAI score (especially in the glandular, lymphadenopathy and articular domains), 

and the decrease in B-cell biomarkers, while diagnostic tests (salivary flow, Schirmer's 

test, focus score) did not change (64). Interestingly, treatment with belimumab 

restored B-cell frequency and subset composition, and normalized BAFF receptor 

expression after 24 weeks of therapy, which was maintained until the end of the 

therapeutic protocol (65). A recent study has reported an increase in the ESSDAI score 

and higher serum levels of rheumatoid factor (RF), IgM and BAFF (66). in the follow-up 

of 13 SjS patients after the end of belimumab treatment. Other anti-BAFF mAbs are 

under investigation, mainly in RA and systemic lupus erythematosus (SLE), including 

the recombinant glycoproteins, atacicept (TACI-Ig) and briobacept (BR3-Fc), blisibimod 

(which binds to both cell membrane-expressed and soluble BAFF) and tabalumab (a 

human IgG4 monoclonal antibody that binds to and neutralizes membrane and soluble 

BAFF) (73). 

The LT pathway has been implicated in the development and maintenance of lymphoid 

structures and some studies in murine models have reported improvement in salivary 

and lachrymal gland function by targeting LT (74,75). St Clair et al. (67) have reported 

the preliminary results of a 24-week RCT using baminercept (a LT-β receptor fusion 

protein). Of 52 eligible subjects, 33 and 19 subjects were randomized to receive 

subcutaneous injections of baminercept (100 mg) or placebo, respectively. 

Baminercept was no more effective than placebo in increasing salivary flow or 

reducing ocular dryness, although patients treated with baminercept showed a 

statistically-significant reduction in the ESSDAI score after 24 weeks of therapy, 

suggesting a potential therapeutic effect on systemic disease. 
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4.2. Targeting the IFN family 

Interferons (IFNs) were recognized 50 years ago as anti-viral proteins. Nevertheless, 

current knowledge suggests they also regulate multiple non-viral biological processes 

(cell proliferation and survival, inflammation and immunity). There are three IFN 

families: the type I IFN (IFN-I) family includes 13 IFN-α subtypes, IFN-β and IFN-ω, -κ, 

and –ε; the type II IFN (IFN-II) family has a sole member (IFN-γ) (76) and the type III 

(IFN-III) encompasses three members in humans (IFN-λ1, -λ2 and -λ3; so-called IL-29, 

IL28A and IL-28B, respectively) (56,57,58). 

In view of the central role of IFN-I in at least the initiation of the pathogenesis of SjS, 

their blockade may be a rational therapeutic approach (80). Genetic studies have 

confirmed the key role of the IFN-I signature in the etiopathogenesis of primary SjS 

(81), thus supporting the therapeutic potential. Moreover, there is a close link 

between IFN-α and BAFF, since BAFF expression is directly induced by IFN-I via IRF1 

and IRF2, whereas IRF4 and IRF8 are negative regulators of BAFF expression, 

suggesting that IFN-I blockade could lead to downregulation of BAFF and, in 

consequence, a reduction in autoreactive B cell clones and auto-Ab (82). Recent 

studies have also focused on the role of IFN-III in SjS pathogenesis. Ha et al., (83) found 

enhanced IFN-λ expression in the salivary glands of primary SjS patients which could be 

involved in glandular inflammation through direct and indirect regulation of the 

expression of BAFF and CXCL10 in salivary gland epithelium, while Coursey et al., (84) 

studied goblet cells (specialized secretory cells that produce mucins and other ocular 

proteins) in the conjunctiva of patients with SjS. These cells are highly sensitive to IFN-

γ, suggesting that therapies targeting IFN-γ could increase the synthesis and ecretion 

of protective goblet cell mucins on the ocular surface. 

Biological therapies targeting INFs include mAbs binding to IFN-α (sifalimumab, 

rontalizumab), IFN-α receptor (anifrolumab), IFN-α kinoid (inactivated IFN-α molecules 

coupled to the keyhole limpet haemocyanin protein) and IFN-γ (AMG 811). Several 

trials are currently underway in RA and SLE (85).  
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4.3. Targeting the IL-1 family 

The main members of the IL-1 family are IL-1, IL-18, IL-33, IL-36, IL-37 and IL-38. IL-1 

has been implicated in the pathogenesis of primary SjS, since it seems to mediate 

immune responses in the targeted tissues (86). In 2010, Chen et al., reported that IL-1R 

blockade did not attenuate lymphocytic infiltration of the lachrymal gland but 

significantly reduced ocular surface keratinization (87). Norheim et al., carried out the 

first RCT using anakinra (a non-glycosylated recombinant version of the human IL-1 

receptor antagonist, IL-1Ra) in 26 patients with primary SjS who were randomized to 

receive either anakinra or placebo for four weeks and found no significant reduction in 

the primary outcome evaluated (fatigue) (62), although a significantly-higher number 

of patients treated with anakinra reached a post-hoc-defined endpoint (50% reduction 

in fatigue). Anakinra also showed therapeutic benefits as a topical treatment for 

aqueous-deficient dry eye in a mouse model (88). 

IL-18 is produced locally by acinar cells, intraducts and CD68+ macrophages (89,90). 

Several studies have reported raised serum levels of IL-18 in patients with SjS, which 

was associated with IgG1 and IL-17 production (89,91). Chen et al., (92) have linked 

higher levels of IL-18 (both circulating and free forms) with disease activity, while 

another recent study (93) found increased IL-18, IL-18BP and IL-37 serum levels in 

patients with primary SjS, especially in those carrying anti-Ro/SSA and/or anti-La/SSB 

auto-Ab.  

IL-33 was identified in 2005 as the ligand of T1/ST2 (94), an IL-1R expressed on 

different structural cells (epithelial, endothelial and smooth muscle cells), and on TH2, 

mast cells and type 2 innate lymphoid cells (ILC2) (95). IL-33 coordinates tissue 

homeostasis, injury, and repair mechanisms (96), bridging innate and adaptive immune 

responses. Recent studies have described IL-33 as an alarmin cytokine at barrier sites, 

with emerging roles in obesity, viral and tumor immunity (97). In addition, Awada et 

al., (98) reported that serum IL-33 and sST2 levels were increased in primary SjS 

patients, although recent studies have not confirmed these results. IL-33 and its 

soluble receptor ST2 have recently been analyzed in 15 primary SjS patients, in whom 

circulating IL-33 levels were detectable only in two (13%). Nevertheless, significant 

serum hyperexpression of sST2 was found in patients compared with controls, 
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together with a significant correlation between sST2 levels and the SSDAI score (99). 

Riviere et al., (100) have suggested there may be technical pitfalls in detecting IL-33 

with different ELISA kits. 

IL-36α, another IL-1 family member, has also been reported to be significantly over-

expressed in the serum and salivary glands of primary SjS patients, with αβ+ CD3+ and 

CD68+ T cells being the major source of IL-36α in minor salivary glands. A higher 

expression of IL-36α and IL-36R was also demonstrated in γδ T cells isolated from 

primary SjS compared with controls (101). 

The most-recently identified member of the IL-1 family, IL-38, shares structural 

features with IL-1Ra and IL-36Ra. IL-38 binds to IL-36R and acts as a partial receptor 

antagonist of IL-36 (IL-38 and IL-36Ra function as antagonists at high concentrations, 

but inhibit the binding of co-receptors at low concentrations). IL-38 inhibits the 

production of T-cell cytokines, IL-17 and IL-2, as well as IL-8 release induced by IL-36γ, 

and is thus being considered as a potential target for the inhibition of inflammatory 

and immune responses (102). 

 

4.4. Targeting the IL-2 family 

The IL-2 family comprises IL-2, IL-4, IL-9, IL-15 and IL-21. As widely reported, IL-2 is an 

essential regulator of immune response homeostasis as it guarantees Treg cell growth 

and function, but also enhances T and B-cell effector proliferation and survival. 

Moreover, like IL-4, IL-2 enhances BAFF-stimulated cell viability/survival by activating 

Erk1/2 and S6K1 signaling in neoplastic lymphoid B-cells (103). These contrasting roles 

as either immune-suppressor or stimulator may both be exploited therapeutically, as 

low IL-2 doses are beneficial in the context of autoimmunity, whereas high IL-2 doses 

potentiate anti-tumor immune responses (104).  

Administration of low-dose IL-2 therapy may compensate for potential IL-2 deficiency 

and thus restores the physiological role of Treg and its ability to efficiently counteract 

autoimmunity. This therapeutic approach has been tested in patients with type 1 

diabetes mellitus (105) but also in patients with systemic autoimmune diseases, 

including SLE (106) and HCV-related cryoglobulinemia (107). On the other hand, newly-

developed IL-2-based therapies include immune complexes of IL-2, non-blocking anti-
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IL-2 mAb (which allows the use of lower IL-2 doses with a longer half-life) and 

molecular IL-2 variants (so-called muteins) that selectively enhance the stimulatory 

(but not the inhibitory) IL-2 function (108).  

Recent studies have focused on another member of the IL-2 family, IL-15. Sisto et al., 

(109,110) reported a higher expression of IL-15 in SGEC from patients with primary SjS, 

with strong expression in both the acinar and ductal epithelial cells, and with TLR2 

activation being involved in promoting IL-15 SGEC expression through activation of the 

NF-kB intracellular pathway. 

The other IL-2 member that has been implicated in the pathogenesis of primary SjS is 

IL-21, due to its pleiotropic effects on the INF-I signaling pathway, the generation of TFH 

and TH17 cells, and the differentiation of PC (111). A recent study in 30 patients with 

primary SjS reported significantly-higher levels of IL-21 and IL-21 gene expression in 

the tears of SjS patients compared with controls. Moreover, IL-21 levels correlated 

significantly with ocular surface stain scores and Schirmer test results (112). Papp et 

al.,(113) reported increased IL21-R expression on CD19+CD5+ B cells and a higher 

expression of IL-21 on invariant natural killer T cells (iNKT) from patients with primary 

SjS, suggesting a potential role of IL-21 in regulating B cell functions. 

 

4.5. Targeting the IL-6/IL-12 family 

The members of the IL-6/IL-12 family are IL-6, IL-11, IL-12, IL-23, IL-27, and IL-35. IL-6 

blockade is now considered a promising therapeutic option, since IL-6 induces the 

polarization of TFH cells and participates in IL-21 induction (1). Zhou et al., reported 

that a neutralizing anti-IL-6 mAb inhibits the apoptosis of exocrine gland tissues and 

exerts a tissue-protective effect in a murine model of SjS (114). In addition, tocilizumab 

(a humanized mAb targeting both the soluble and membrane-bound forms of IL-6 

receptor α , IL-Rα) has shown successful results in two SjS patients: one with refractory 

organizing pneumonia (115), and another with neuromyelitis optica spectrum disorder 

refractory to corticosteroids, plasma exchange and cyclophosphamide (116) (Table 2) 

(115–121). Currently, a phase III RCT is actively recruiting patients (NCT01782235). 

IL-27 is another member of this family with both pro- and ant-inflammatory 

properties: it favors TH1 responses and inhibits TH17 responses. The latter ability could 
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then be exploited to reduce the severity of TH17-mediated autoimmune disorders. 

Accordingly, exogenous administration of IL-27 has proven efficacious in a mouse 

model of SjS (122), thus supporting its potential therapeutic value. 

 

4.6. Targeting the IL-10 family 

The members of the IL-10 family are IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. At the 

beginning of this Century, several studies suggested a key role of IL-10 in the 

etiopathogenesis of primary SjS, including a higher frequency of circulating B cells 

secreting IL-10 (123) and the association of some genetic polymorphisms with both 

susceptibility and clinical expression (124–129). Several trials have been carried in both 

systemic and organ-specific autoimmune diseases, although some authors suggest that 

the therapeutic target of the IL-10 response should be considered with caution due to 

its role of key switcher of immunity responses (130,131). 

IL-22 is a pleiotropic cytokine involved in both adaptive and innate immune responses, 

and has a dual role as a protective or a pro-inflammatory cytokine. At mucosal sites, IL-

22 is mainly produced by CD4+ T cells and a subset of NK cells expressing the activating 

NKp44 receptor (132). A prominent role of pro-inflammatory events has been 

proposed in SjS, which would contribute to the early etiopathogenic stages and 

facilitate self-perpetuation of autoimmune damage (133). Ciccia et al., reported that 

IL-22 (together with IL-23 and IL-17) were significantly increased, at both the protein 

and mRNA levels, in salivary glands of patients with primary SjS (132). Higher IL-22 

serum levels have been associated with hyposalivation, anti-Ro/La auto-Ab, 

hypergammaglobulinemia and RF in patients with SjS (134). Levels of IL-17 and IL-22 

were significantly increased in tears of patients with SjS and positively correlated with 

questionnaire and keratopathy scores but negatively correlated with tear film break-

up time and Schirmer test (135).  

Functional in vitro studies in human salivary gland cells treated exogenously with IL-22, 

reported a direct effect on cell cycling by activating STAT3 and, therefore, specifically 

reducing cell proliferation in the G2-M phase (136). Moreover, as exhibited in a virus-

induced autoimmune murine model (137), IL-22 also regulated lymphoid chemokine 

production and the assembly of tertiary lymphoid structures, thus providing an 
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etiopathogenic link between mucosal infection, B-cell recruitment, and humoral 

autoimmunity. The same authors reported that IL-22 receptor engagement promotes 

the differential expression of CXCL12/SDF-1 (stromal derived factor 1) and 

CXCL13/BCA-1 (B cell-attracting chemokine 1) in epithelial and fibroblast stromal cells 

which, in turn, are pivotal for B-cell recruitment and the organization of tertiary 

lymphoid structures (137). The role of IL-22 in SjS is supported by observations on cells 

of hematopoietic origin from patients with primary SjS, in which IL-18-dependent 

aberrant expression of IL-22R1 has been reported (138). Therefore, blockade of the 

aberrant IL-18/IL-22 pathway may be a useful therapeutic strategy in primary SjS. 

 

4.7. Targeting the IL-17 family 

TH17 cells have been implicated in many autoimmune diseases, including SjS, although 

the ultimate role played by TH17 in SjS pathogenesis remains ill-defined. Previous 

studies stated that IL-17 impaired the blood-brain and blood-testis barriers by down-

regulating occluding and disrupted the intestinal barrier through up-regulation of 

claudin-1 and -2 (139–141) . A recent study in non-obese diabetic (NOD) mice (142) 

found that IL-17 derived from infiltrating lymphocytes impairs the integrity of tight 

junctions. Moreover, mice showing greater changes in tight junctions seemed to have 

lower saliva production, which may indicate that IL-17 ultimately contributes to 

salivary gland dysfunction. Significantly-elevated IL-17 has been found in tears (143) 

and serum (144) and Alunno et al., (145) detected increased serum IL-17 levels in 

15/50 (30%) primary SjS patients. In addition, IL-17 protein expression progressively 

increases with higher salivary biopsy focus scores, and double negative (CD4-CD8-) T 

cells are major producers of IL-17 in salivary glands and are expanded in peripheral 

blood (146). These double negative T cells co-express surface CD20 and, though in vitro 

resistant to the effects of corticosteroids, are sensitive to rituximab (145,146). 

In an attempt to unravel the TH17 contribution in SjS, Lin et al., (147) induced an 

experimental mouse model of SjS by immunization with salivary gland proteins. 

Whereas IL-17A-deficient mice were resistant to this immunization and showed no 

evidence of disease symptoms, wild-type mice had reduced saliva secretion, elevated 

serum auto-Ab production, and tissue destruction with lymphocytic infiltration in the 
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submandibular gland. In addition, adoptively transferred TH17 cells reverted the 

phenotype observed in immunized IL-17A-deficient mice, resulting in enhanced 

glandular inflammation and auto-Ab production (147).  

With respect to therapeutic approaches, several anti-IL17A mAbs (secukinumab, 

ixekizumab, brodalumab, ustekinumab) are currently being evaluated in the treatment 

of RA, inflammatory bowel disease and psoriasis (148).  

 
5. Future prospects 

The therapeutic management of SjS is centered on the control of the main symptoms, 

sicca features, using substitutive and oral muscarinic agents. However, systemic 

involvement clearly marks the disease prognosis, and strongly suggests the need for 

closer follow-up and more robust therapeutic management. As a rule, the 

management of systemic SjS should be organ-specific, with glucocorticoids and 

immunosuppressive/biological agents limited to potentially-severe involvements and, 

due to their off-label use, always with a reasonable assessment of the risk of serious 

adverse events versus the benefits of treatment (149). 

The most recent etiopathogenic advances in SjS are shedding some light in the search 

for new highly-selective biological therapies without the adverse effects of the 

standard drugs currently used (corticosteroids and immunosuppresants). The drugs 

tested in ongoing trials in SjS included in the clinicaltrials.gov database (accessed July 

24, 2017) are heterogeneous (Figure 2): of the 35 therapeutic trials not labeled as 

“completed”, 13 tested topical/local interventions and the remaining 22 systemic 

drugs that targeted cytokines (n=6), intracellular pathways (n=5), T-cells (n=4), pDC 

(n=1), and miscellaneous (n=6). Surprisingly, no current trial is testing direct B-cell 

depletion, which is the main biological approach used now in daily practice, and only 

one ongoing trial is testing a combination of rituximab and belimumab. Five trials 

testing biologics (efalizumab, antiBAFF-R, lulizumab, baminercept and abatacept) are 

labeled as terminated or withdrawn. 
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5.1. Current data and ongoing cytokine-based trials 

Current evidence on the use of cytokine-targeted therapies in primary SjS remains 

limited and includes seven isolated case reports (patients with severe, refractory 

systemic involvement) (Table 2), two prospective studies (with three additional 

extension studies) and four RCTs (Table 1). After discarding the three studies with 

negative results using TNF-targeted therapies, there remains only one RCT testing 

anakinra, one RCT testing baminercept and one prospective study using belimumab 

(with three additional extension studies): all studies analyzed a small number of 

patients, ranging from 26 to 52. No solid conclusions can be drawn from these data, 

and therefore the promising results obtained in the belimumab studies should be 

confirmed by future RCTs. From a safety point of view, the use of anakinra was mainly 

related to local injection site reactions, belimumab with infections, and baminercept 

with liver toxicity (Table 3).  

Regarding ongoing trials, the main interest is centered on the BAFF pathway, with 

three studies investigating the effect of mAbs targeting BAFF-R, and one testing the 

association between B-cell depletion and BAFF inhibition. Recently, de Vita et al.,(64) 

have reported the successful use of sequential therapy with belimumab followed by 

rituximab in a patient with severe, refractory parotid low-grade B-cell MALT lymphoma 

and cryoglobulinemic vasculitis, while Cornec et al., (150) have reported that nearly 

half of the 45 SjS patients who received a single course of rituximab displayed intense 

BAFF-driven B-cell activation that correlated with a lack of response to B-cell depletion, 

suggesting a potential role for BAFF-targeted therapies in rituximab-refractory 

patients. Out of the BAFF pathway, two ongoing trials are testing the use of other 

cytokine-based therapies including tocilizumab and human recombinant Il-2.  

The other point of interest in the ongoing trials is the targeting of intracellular 

pathways. Three ongoing trials are exploring the PI3K/Akt/mTOR pathway, which has 

been considered a feasible therapy in solid cancers (151) and is being investigated in 

some hematological neoplasias (152). However, the first clinical trials with PI3K 

inhibitors in monotherapy have been disappointing in solid cancers, and current trials 

in this area are investigating co-treatments with intra-/extracellular signaling 

molecules, nuclear hormone receptors, DNA damage repair enzymes, and immune 
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modulators. Indeed, combination strategies targeting different etiopathogenic 

pathways are currently the gold standard approach in trials in hematological and solid 

cancers, and this approach may well arrive soon in the field of systemic autoimmune 

diseases. It may be anticipated, however, that these strategies would increase the risk 

of adverse events, as recently reported in patients with melanoma (153).  

 

5.2. Personalized molecular-based therapeutic approach 

The clinical and immunological heterogeneity of systemic autoimmune diseases such 

as SLE, vasculitis and SjS may be one of the most important explanations of the 

negative results often obtained in RCTs not including large number of patients. In SLE, 

the positive results reported for the use of belimumab were obtained from two trials 

including nearly 1,000 patients each. In primary SjS, published RCTs have included 

between 100 and 150 patients per study, a relatively small number of patients that 

could contribute to the non-significant results for the primary outcomes in these trials.  

Therapeutic research in SjS should probably be reconsidered in order to search for a 

more personalized therapeutic approach based on genetic, clinical, immunological 

and/or histopathological characteristics. Patients with sicca-limited disease are totally 

different from those with systemic disease, as are immunonegative patients from 

those carrying Ro autoantibodies or cryoglobulins. Immunopositive patients seem to 

have different genetic and epigenetic etiopathogenic profiles, as suggested by a recent 

study that reported that methylation alterations in B cells were more frequent in 

patients carrying Ro/La autoantibodies (154). In addition, recent etiopathogenic 

studies are beginning to divide SjS patients according to the genetic profile between 

those with or without a predominant IFN-I gene expression signature (155,156). 

Sensitivity analyses searching for a differentiated response to therapies in these 

subsets of patients (sicca-limited vs. systemic; Ro+ vs. Ro-; positive vs. negative salivary 

gland biopsy; positive vs. negative IFN-I signature) could be useful in better delineating 

the therapeutic effect of a drug tested in primary SjS, although this would require a 

greater number of randomized patients than those included in past trials. Finally, the 

potential role of circulating anti-cytokine Ab (157) in patients with primary SjS (a 
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disease especially characterized by a wide spectrum of circulating auto-Ab) would 

need further evaluation in trials testing anticytokine therapies. 

 

6. Conclusions 

The advent of cytokine-targeted therapies has been a pioneer in the management of 

inflammatory rheumatic, digestive and dermatological diseases, offering robust 

confirmation of the pathogenic role played by cytokines (148). The history of the use 

of biological agents in SjS started with cytokine-targeted therapies at the beginning of 

the current century. Nevertheless, the results were disappointing and, in this context, 

the interest in investigating the therapeutic potential of cytokines in SjS vanished.  

Recent research centered on elucidating the etiopathogenic role of the complex 

cytokine network in SjS (158,159) has reawakened interest in the usefulness of anti-

cytokine therapies. The current scenario, as shown by the clinicaltrials.gov webpage, is 

that the biologic therapeutic approach overwhelmingly used in SjS until now (targeting 

B-cell depletion) has shifted towards the evaluation of biologics targeting cytokines, T-

cells and intracellular signaling pathways. Better knowledge of cytokine activities in 

SjS, which may be pivotal to sustaining chronic autoimmune damage in glandular and 

extraglandular tissues, together with the elucidation of the cytokine redundancies that 

may exist in the blood and targeted tissues, could aid the optimization of the choice of 

cytokines as molecular targets for future drug developments in this complex systemic 

autoimmune disease. 
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Figure 1. Etiopathogenesis of primary SjS: intercellular networks and main cytokines 
involved. External/internal factors inducing activation, stress and/or death of epithelial 
cells from exocrine glands promote presentation and/or release of self (Ro, La, α-
fodrin, DNA) and/or foreign (e.g., viral) antigens and their further recognition by PRRs 
(e.g., TLRs) from innate cells (epithelial, DC, pDC, MØ) or clonotypic receptors (e.g., 
TCR, adn BCR) from self-reactive adaptive (T, B) immune cells. Activated epithelium 
initiates the release of pro-inflammatory cytokines (e.g., IFN-I, IL-7 and BAFF) and 
chemokines (e.g., CXCL13/BCA-1 and CXCL12/SDF-1) and the expression of adhesion 
molecules, apoptosis-related factors, and co-stimulatory molecules allowing the 
recruitment and further activation of DC, pDC, self-reactive T and B lymphocytes and 
macrophages (MØ). The pro-inflammatory cytokine milieu enhances differentiation of 
naïve T cells (mainly to TH1, TH17 and TFH) and B cells (to PC), thus promoting the 

formation of ectopic lymphoid tissue and amplifying the activation cascade, as well as 
the production of cell-death mediators (e.g., perforin and FasL) and autoantibodies 
(auto-Ab). The ultimate consequence of this altered context is direct damage to the 
exocrine gland epithelium which, in turn, feeds and perpetuates the inflammatory 
response. Colored dots represent the main cytokines involved, each color belonging to 
a different family. CTL, Cytotoxic T lymphocyte; GC, Germinal Center; IC, Immune-
complexes; PC, plasma cell; pDC, plasmacytoid dendritic cell; RLR, RIG-like receptor; 
TSLP, thymic stromal lymphopoietin. 
 
Figure 2. Drugs tested in the ongoing trials in SjS included in the clinicaltrials.gov 
database (accessed July 24, 2017). ID = immunodepressant agents; IM: 
immunomodulatory agents; pDCs: plasmacytoid dendritic cell. 
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TABLE 1. Main studies targeting cytokines in patients with primary SjS* 
Author (year) N 

(female) 
Mean age 
(yrs.) 

Study design 
(duration) 

Drug 
(number of patients) 

Main results (p value) 

Mariette et al 
(2004) 

103 
(ND) 

54 RCT-d 
22w 

Infliximab infusions (5 mg/kg) (n=54) 
Placebo (n=49) 
Weeks 0, 2, 6 

Primary endpoint (NS) 
Decreased IgM mg/dl (0.001) 

Sankar et al 
(2004)  

28 
(26) 

55 RCT-d 
12w 

Etanercept 25 mg  
Placebo (n=14) 
Twice-weekly (n=14) 

Primary endpoint (NS) 
 

Zandbelt et al 
(2004) 

15 
(14) 

48 Prospective  
12 w 

Etanercept 25 mg twice per week 
(n=15) 

Primary endpoint (NS) 
Reduction fatigue VAS at week 8 (<0.05) 
Reduction CRP at week 12 (0.05) 

Norheim et al 
(2012) 

26 
(19) 

55 RCT-d 
4w 

Anakinra 100 mg/day w0, w4 (n=13) 
Placebo (n=13) 

Primary endpoint (NS) 
Post-hoc 50% reduction in fatigue VAS (0.03) 

Mariette et al 
(2015) 

30 
(30) 

49.5 Prospective 
24 w 

Belimumab, 10 mg/kg, Week 0, 2, 4 and then every 4 weeks 
to W24 (n=30)  
 

Dryness VAS (p=0.0021) 
ESSDAI (p=0.0015)  
ESSPRI (p=0.0174) 

De Vita et al 
(2015) 

19 
(19) 

40 Prospective 
52 w (extension study, Mariette 
2015) 

Belimumab, 10 mg/kg, Week 0, 2, 4 and then every 4 weeks 
to W52 (n=19)  
 

ESSDAI 28w vs 52 w (p=<0.0001)  
ESSPRI (p=0.01) 

Pontarini et al 
(2015) 

10 
(10) 

49 Phase II open-label  
52 w (extension study, Mariette 
2015) 

Belimumab, 10 mg/kg, Week 0, 2, 4 and then every 4 weeks 
to W52 (n=10)  

Significant reduction in transitional and naive B cell subsets to 
levels similar to those observed in healthy donors.  
Normalized BAFF-R expression in all B subsets comprised within 
the memory compartment.  
Decreased serum levels of Ig, RF, and ANA; increased of C4 
complement factor 

Quartuccio et 
al 
(2016) 

13 
(13) 

54 Phase II open-label  
52 w (extension study, Mariette 
2015) 

Belimumab, 10 mg/kg, Week 0, 2, 4 and then every 4 weeks 
to W52 (n=13) 

Increased at month 12 after the end of the trial: 
- ESSDAI (p=0.003) 
- RF level (p=0.008) 
- IgM level (p=0.04) 
- Serum BLyS levels (p=0.04) 

St.Clair et al 
(2015) 

52 
(ND) 

ND RCT-d 
24 w 

Baminercept 100 mg weekly (SC) (n=33) 
Placebo (n=19) 

SWSF, UWSF, Schirmer-I-test, ocular staining, fatigue, joint pain, 
and overall dryness (NS) 
ESSDAI (p=0.043) 
Lymphocyte numbers (p < 0.0001) 
Serum levels of CXCL13, LIGHT, IP10, and BAFF (NS) 

 
RCT: randomized controlled trial; -d: double-blind; pSjS: primary Sjögren syndrome; m: months; n: number; w: weeks; yrs.: years; IV: intravenous; SC: subcutaneous; NS: no significant differences; ND: not detailed; mg: 
miligrams; Kg: kilogram; rd: third; th: sixth; VAS: visual analogue scale; TBUT: break-up time; UWSF: unstimulated whole salivary flow; SWSF: Stimulated whole salivary flow; CRP: C-reactive protein; ESSPRI: European 
League Against Rheumatism (EULAR) Sjögren’s Syndrome Patient Reported Index; ESSDAI: EULAR Sjögren’s Syndrome Disease Activity Index; OSDI: Ocular Surface Disease Index; CXCL13: C-X-C motif chemokine ligand 
13; LIGHT: Lymphotoxin; IP 10: Interferon-γ-inducible protein 10; BAFF; B cell activating factor; R: receptor; Ig: Immunoglobulins; RF: rheumatoid factor; ANA: Anti-nuclear antibodies: C: complement; BLyS: anti-B 
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lymphocyte Stimulator.*Two small open-label studies reporting therapeutic benefits of the use of infliximab in primary SjS patients published in 2001 and 2002 were retracted by the authors in 
2013. 
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TABLE 2. Case reports targeting cytokines in patients with primary SjS 
 
Author (year) N 

(female) 
Study design 

 
Age Drug 

 
Treatment indication Adverse events Outcomes 

Caroyer et al  
(2002) 

1 
 (F) 

Case report 68 yrs.. Infliximab 3 mg/kg at weeks 0, 2, 6, 
and every 12 weeks thereafter 

Severe sensory 
neuronopathy 

None Recovered. 
At week 12, sensory examination was 
normal and tendon reflexes were 
2/4. Romberg sign and gait were 
normal. Nerve conduction studies 
showed reappearance of sensory 
potentials. 

Pessler et al (2006) 1 (F) Case report 11 yrs. Infliximab 3 mg/kg every 4 weeks 
 
Etanercept 25 mg SC twice weekly 

Refractory arthritis to 
MTX 
Refractory arthritis to 
Infliximab 

Severe hypokalemic 
renal tubular acidosis 
None 

Failed. SjS flare. 
 
Arthritis improved from 6/10 to 1/10 
Patient’s xerostomia, uveitis and 
bicarbonate and potassium 
supplementation for the RTA have 
remained unchanged.  
Her vision remains limited to 
detection of hand motion. 

Haridas et al 
(2017) 

1 (F) Case report 43 yrs. Etanercept  
Topical treatment of etanercept: 10 
drops of etanercept were put on the 
whole ulcerated area (dose: 1 mg/2 x 
2 cm area) 

Pyoderma gangrenosum None 
 

At 2 months the wound size was 
reduced by more than 70%. 

Tursi et al (2012) 1 (F) Case report 48 yrs. Adalimumab 160 mg at week 0 and 80 
mg at week 2, followed by 40 mg 
every 2 weeks 

Active ileal Crohn's 
disease 

None Clinical remission of both Crohn's 
disease and SjS. 

De Vita et al (2014) 1 (F) Case report 48 yrs. Belimumab 10 mg/ kg at day 0, +14, 
+28 and then every month. 

Parotid low-grade B-cell 
MALT lymphoma and 
cryoglobulinaemic 
vasculitis 

None Failed. 
Skin ulcer worsened 
No decrease in parotid swelling. 
Serum cryoglobulins (-), RF and BAFF 
decreased  
C4 remained unchanged 

Komai et al (2013) 1 (F) Case report 38 yrs. Tocilizumab 8mg/kg day 60, 90, and 
120, then every month. 

Neuromyelitis optica 
Longitudinal extensive 
transverse myelitis 

None Gradual amelioration of her 
neurological symptoms. 
Motor disability and sensory deficits 
were gradually improved.  
No relapse was observed during the 
clinical course. 

Justet et al (2015) 1 (F) Case report 55 yrs. Tocilizumab 8 mg/kg, 785 mg/month Refractory organizing None Significantly improved. 
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pneumonia Cs tapered to 5 mg/day.  
ESSDAI was stable at 4.  
CTscan and pulmonary function tests 
were normalised. 

 
 mg: milligram; kg: kilograms; n: number; w: weeks; yrs.: years; cm: centimeters; F: female; AEs: adverse events; Cs: Corticosteroids; SjS: Sjögren syndrome; ESSDAI: EULAR Sjögren’s Syndrome 
Disease Activity Index; CTscan: Tomography computerized; MALT: Marginal Zone Lymphoma; BAFF; B cell activating factor; C: complement; RF: rheumatoid factor; SC: subcutaneously; RTA: 
renal tubular acidosis. 
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Table 3. Adverse events reported in controlled and uncontrolled studies using cytokine-targeted therapies in patients with primary SjS. 
 
Author (year) Study design 

Drug 
Related to infusion Infection Cancer Autoimmune-related Others 

Mariette et al  
(2004) 

RCT-d 
Infliximab 

Infusion related (n=2)  
Isolated cutaneous facial 
eruption (n=1) 

Pneumococcal septicemia (n=1) Breast cancer (n=1) Autoimmune hepatitis 
(n=1) 

- 

Sankar et al (2004) RCT-d 
Etanercept 

Injection-site reaction (n=2) 
 

- - - - 

Zandbelt et al 
(2004) 

Prospective 
Etanercept 

- - - - - 

Norheim et al 
(2012) 

RCT-d 
Anakinra 

Severe injection site reaction 
(n=1) (Discontinued) 
Mild injection site reactions 
(n=7) 

Gastroenteritis (n=1) - - Neutropenia (n=1) 

Mariette et al 
(2015) 

Prospective 
Belimumab 

- Pneumococcal meningitis (n=1) 
Pneumonia (n=1) 
Sinusitis (n=1) 
Rhinitis/pharyngitis (n=7) 
Bronchitis (n=1) 
Herpes labialis (n=1) 
Urinary tract infection (n=2) 
Gastroenteritis/diarrhea (n=2) 

Breast cancer (n=1) Scleroderma (n=1) 
Oral aphtosis (n=1) 

Headache (n=9) 
Neutropenia (n=5) 
 

De Vita et al 
(2015) 

Prospective 
Belimumab 

- Rhinopharingitis (n=2) 
Gastroenteritis (n=1) 
Urinary tract infection (n=1) 
Pneumonia (n=1) 
Vaginal fungal infection (n=1) 
Non-complicated cutaneous 
infection (n=1) 

- - Headache at the end of the 
infusion (n=1) 
Mild transient neutropenia (n=2) 

Quartuccio et al 
(2016) 

Phase II open-
label  
Belimumab 

- - Development of B-
cell lymphoma from 
non-neoplastic 
parotid 
sialadenitis (n=2) two 
years after the end 
of the trial.  
Progression of 
lymphoma after 
belimumab 
suspension (n=1) 

- - 

St.Clair et al (2015) Prospective - - - - Grade 3 hepatic injury without 
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Baminercept sequelae (n=2) 
Transaminase abnormalities 
(>ULN) (n=10 subjects [30%], 15 
events) 

 
RCT: randomized controlled trial; -d: double-blind; n: number; ULN: upper limit of normal. 
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TABLE 4. Ongoing trials in patients with primary SjS targeting cytokines included in the web ClinicalTrials.gov (last accessed 23/APRIL/2017) 
Drug 

 
Cytokine 
targeted 

Sponsor 
(year) 

ClinicalTrials.
gov 

Identifier: 

Status Study 
design 

 

Arms Inclusion Criteria Primary outcome 
 

SC 
Belimumab 
+ IV RTX co-
administrati
on 

Anti-CD20 
(RTX) and 

BAFF 
blockade 

(Belimuma
b) 

GlaxoSmith
Kline (April 

2017) 

NCT02631538 Recruiting RCT-d 
Phase 2 
 

Placebo Comparator: Placebo 
Subjects will receive belimumab 
placebo weekly SC injections to 
w52 and RTX placebo infusions at 
W 8 and 10. 
Experimental: Belimumab 
monotherapy 
Subjects will receive 200 mg 
weekly SC injections of 
belimumab to w 52 and placebo 
RTX infusions at w 8 and 10. 
Experimental: Belimumab and 
RTX co-administration therapy 
Subjects will receive belimumab 
200 mg SC weekly for 24 w 
followed by weekly placebo 
belimumab injections to w 52 
with RTX 1000 mg IV at w 8 and 
10. 
Active Comparator: RTX 
monotherapy 
Subjects will receive 1000 mg IV 
RTX infusions at w 8 and 10 and 
weekly SC injections of placebo 
belimumab to w 52. 

Age >=18 years 
Documented pSjS by AECG criteria 
including: either anti-SS-A or anti-SS-
B positive. 
Baseline UWF >0.0 mL/min or 
evidence of glandular reserve 
function. 
Symptomatic oral dryness (>=5/10 on 
subject completed numeric response 
scale). 
ESSDAI >=5 points.  

Number of participants with SAEs [Time 
Frame: 104 w] 
Number of participants with AESIs [Time 
Frame: 104 w] 

VAY736 
 

human 
IgG1/κ anti-

BAFF-R 
mAb 

Novartis 
(March 
2017) 

NCT02149420 
 

Active, not 
recruiting 

RCT-d 
Phase 2 

Experimental: VAY736 dose 1  
Experimental: VAY736 dose 2  
Placebo Comparator: Placebo 

Fulfilled revised European US 
consensus criteria for pSjS 
18 to 75 yrs.  
ESSDAI value ≥ 6 
ANA (≥ 1:160) 
Seropositive for anti-SSA and/or anti-
SSB antibodies 
SWSF rate of > 0 mL/min. 

Change in ESSDAI between baseline and w 
12. 
The effect of VAY736 on clinical disease 
activity will be measured by the change in 
ESSDAI between baseline and w 12.  

VAY736 human 
IgG1/κ anti-

BAFF-R 
mAb 

Novartis 
Pharmaceu
ticals (April 

2017) 

NCT02962895 Not yet 
open for 

participant 
recruitmen

t 

RCT-d 
Phase 2 
 

Experimental: VAY736 dose 1 
VAY736 low 
Experimental: VAY736 dose 2 
VAY736 medium 
Experimental: VAY736 dose 3 

8 to 75 yrs.  
Fulfilled revised European US 
consensus criteria for pSjS 
Seropositive at screening for anti-
Ro/SSA antibodies 

Dose response [Time Frame: 24 w] 
Dose response measured by change multi-
dimensional disease activity as assessed by 
the physician. 
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VAY736 high 
Placebo Comparator: Placebo 
Placebo control 

Documented salivary/lacrimal gland 
biopsy result confirming pSjS 
diagnosis prior to the baseline visit 
 

Tocilizumab IL-6 
receptor 
blockade 

University 
Hospital, 

Strasbourg, 
France 
(March 
2014) 

NCT01782235 Unknown RCT-d 
Phase 2 
Phase 3 

Experimental: Tocilizumab arm 
Tocilizumab arm will receive 
tocilizumab. 
Placebo Comparator: Placebo 
arm 
Placebo arm will receive placebo. 

18 to 80 yrs. 
pSjS according to the AECG criteria. 
Presence of anti-SSA or of anti-SSA 
and anti-SSB antibodies 
ESSDAI score ≥ 5.  

Improvement in ESSDAI score ≥ 3 points 
compared with enrollment. [Time Frame: 
24 w] 
Improvement in ESSDAI score ≥ 3 points 
compared with enrollment, with no new 
domain with high activity of the ESSDAI 
compared with enrollment, and no clinical 
worsening according to the clinician (no 
worsening compared with enrollment > 1 
point of the Systemic Activity 0-10 VAS 
according to the physician. 

Recombinan
t Human IL-2 

Human 
recombina

nt IL-2 

Peking 
University 
People's 
Hospital 

(June 2015) 

NCT02464319 Recruiting RCT-d 
Phase 2 

Active Comparator: 
Experimental: hrIL-2 active 
Intervention: Add hrIL-2 
according to the protocol to 
original treatment. HrIL-2 active: 
1 million U doses of hrIL-2 SC 
injection. 
Placebo Comparator: hrIL-2 
placebo 1 million U doses of 
placebo SC injection 
 

Diagnosis of pSjS 
18 to 75 yrs.  
ESSDAI score ≥ 6 
Liver values above 1.5 ULN 

Stable low dose systemic use of Cs（
<=7.5mg) in the last 4 w before begin 
with study medication. 
 

Examination of the therapeutic effects 
(improvement in ESSDAI) of low dose IL-2 
in patients with pSjS [Time Frame: 24 w] 

CDZ173 selective 
PI3K δ 
inhibitor 

 

Novartis 
(February 

2017) 

NCT02775916 
 

Recruiting RCT-d 
Phase 2 

Experimental: CDZ173 
Capsule 
Placebo Comparator: Placebo 
Capsule matching Placebo 

Diagnosis of pSjS 
18 to 75 yrs.  
ESSDAI score ≥ 6 
 

ESSPRI change from baseline to 12 w 

UCB5857  
 

PI3K 
inhibitor 

UCB 
Celltech 

(April 2017) 

NCT02610543 Recruiting RCT-d 
Phase 2 

Experimental: UCB5857 
UCB5857 once daily for 12 w 
Placebo Comparator: Placebo 
Placebo once daily for 12 w 

18 to 75 yrs..  
Women of childbearing potential 
must agree to use a highly effective 
method of birth control during the 
study  
Subject must meet the 2002 AECG 
criteria for pSjS. 
Subject must have a serum test 
positive for anti-SSA/Ro (Ro-52 and 
Ro-60) and/or anti SSB/La 
autoantibodies. 

Change from baseline to w 12 in the 
ESSDAI 

LY3090106 PI3K δ 
inhibitor 

Eli Lilly and 
Company 

NCT02614716 Recruiting RCT-d 
Phase 1 

Experimental: LY3090106 
LY3090106 given SC in escalating 

18 yrs. to 65 yrs. 
AECG criteria with active disease (at 

Number of participants with one or more 
AE (s) considered by the investigator to be 
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(December 
2016) 

 dose cohorts once every 2 or 4 w 
for 16 w. 
Placebo Comparator: Placebo 
Placebo given SC once every 2 or 
4 w for 16 w. 

any level), as per judgment of the 
investigator 
Seropositive for auto-antibodies 
associated with SjS (anti-SSA or anti-
SSB) 
 

related to study drug administration [Time 
Frame: Baseline through Study Completion 
(Day 197)] 

Iguratimod 
(T-614)  
 

Inhibition 
of NF-κB 

activation 
and 

transcriptio
n of pro-

inflammato
ry 

cytokines 

Peking 
Union 

Medical 
College 
Hospital 
(January 

2017) 

NCT03023592 Recruiting Single-
center, 
self-
control, 
open-
label 
study 
Phase 1 
and 2 

Experimental: Iguratimod 
patients treated with Iguratimod 
25 mg twice a day for 24 w. 

A diagnosis of pSjS according to the 
revised AECG criteria 
18 to 75 yrs.  
Positive dry eyes and (or) dry mouth 
symptoms 
Hyperglobulinemia 

ESSDAI improvement [Time Frame: w 24] 
ESSPRI improvement [Time Frame: w 24] 
 

RO5459072 Cathepsin S 
inhibitor 

Hoffmann-
La Roche 

(November 
2016) 

NCT02701985 Recruiting RCT-d 
Phase 2 

Placebo Comparator: Placebo 
200 mg daily, for up to 12 w 
Experimental: RO5459072 200 
mg daily, for up to 12 w 

A diagnosis of pSjS according to the 
revised AECG criteria 
18 to 75 yrs.  
ESSDAI score >=5 
ESSPRI score >=5 
Elevated serum titers of anti-SSA 
and/or anti-SSB antibodies 

Percentage of participants with a clinically 
relevant decrease in ESSDAI score [Time 
Frame: 12 w] 

 
RCT: randomized controlled trial; -d: double-blind; mg: milligrams; n: number; g: gram; L: liter; U: unit; IL: Interleukin; kg: kilograms; ml: milliliters; min: minute; w: weeks; yrs.: years; SC: 
subcutaneous; IV: intravenous; Ig: immunoglobulins; BAFF; B cell activating factor; NF-kB, nuclear factor kappa B; mAb: monoclonal antibody; US: United States; ANA: Antinuclear antibodies; 
SWSF: Stimulated whole salivary flow; VAS: visual analogue scale; EULAR: European League Against Rheumatism; ESSPRI: European League Against Rheumatism (EULAR) Sjögren’s Syndrome 
Patient Reported Index; ESSDAI: EULAR Sjögren’s Syndrome Disease Activity Index; pSjS: primary Sjögren's syndrome; Cs: corticosteroid; RTX: rituximab; UWS, unstimulated whole salivary flow 
rate; hrIL: Human recombinant interleukin; RF: Rheumatoid Factor; AECG: American-European Consensus Group; anti-SSA: anti-Sjögren’s-syndrome-related antigen A; anti-SSB: anti-Sjögren’s-
syndrome-related antigen B; MSG: minor salivary glands; ULN: upper limit of normal; ACR: American College of Rheumatology; AE: adverse event; SAE: serious adverse event; AESI: Adverse 
event of special interest; PI3K: Phosphoinositide 3-kinase. 
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Fig. 1 
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Fig. 2 


