
Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD

Daniel de Florian* and Javier Mazzitelli†

Departamento de Fı́sica, FCEyN, Universidad de Buenos Aires, (1428) Pabellón 1, Ciudad Universitaria, Capital Federal, Argentina
(Received 25 September 2013; published 12 November 2013)

We compute the next-to-next-to-leading order QCD corrections for standard model Higgs boson pair

production inclusive cross section at hadron colliders within the large top-mass approximation. We

provide numerical results for the LHC, finding that the corrections are large, resulting in an increase of

Oð20%Þ with respect to the next-to-leading order result at c.m. energy
ffiffiffiffiffiffi
sH

p ¼ 14 TeV. We observe a

substantial reduction in the scale dependence, with overlap between the current and previous order

prediction. All our results are normalized using the full top- and bottom-mass dependence at leading order.

We also provide analytical expressions for the K factors as a function of sH.

DOI: 10.1103/PhysRevLett.111.201801 PACS numbers: 14.80.Bn, 12.38.Bx

Introduction.—The recent discovery of a new boson
[1,2], so far compatiblewith the long sought standardmodel
(SM) Higgs boson [3], at the Large Hadron Collider (LHC)
opens a new stage in the task of understanding the mecha-
nism of electroweak symmetry breaking. In order to deter-
mine the connection between this phenomenon and the new
particle, it is crucial to measure its couplings to gauge
bosons, fermions, and its self-interactions. In particular,
the knowledge of the Higgs self-couplings is the only way
to reconstruct the scalar potential.

Higgs trilinear coupling can be studied via Higgs pair
production. Recently, several papers have analyzed the
possibility of measuring this process at the LHC [4–12].
In general, it has been shown that despite the smallness of
the signal and the large background, its measurement can
be achieved at a luminosity upgraded LHC. For example,
for b �b�� and b �b�þ�� final states, after the application of
proper cuts, the significances obtained are �16 and �9,
respectively, for a c.m. energy of 14 TeVand an integrated
luminosity of 3000 fb�1 [7]. These are, so far, the most
promising final states for the Higgs trilinear coupling
analysis. The sensitivity of these channels can be further
improved by the application of jet substructure techniques,
as was shown in Refs. [5,6,12].

The SM Higgs pair production at hadron colliders is
dominated by the gluon fusion mechanism mediated by a
heavy-quark loop. At leading order (LO) in QCD pertur-
bation theory, this process can occur either through a box
gg ! HH or a triangle gg ! H� ! HH diagram, of
which only the latter is sensitive to the Higgs trilinear
coupling. This cross section has been calculated in
Refs. [13–15]. The QCD next-to-leading order (NLO)
corrections, within the large top-mass (Mt) approximation,
have been computed in Ref. [16], finding an inclusive K
factor close to 2. The size of this correction makes it
essential to reach higher orders to be able to provide
accurate theoretical predictions.

Recently, the two-loop corrections were calculated by
us in Ref. [17], again in the large top-mass limit, and the

next-to-next-to-leading order (NNLO) cross section was
evaluated within the soft-virtual approximation, following
the results of Ref. [18]. We found an increase close to 23%
with respect to the NLO result.
The finite top-mass effects were analyzed at NLO in

Ref. [19], finding that the accuracy of the large top-mass
approximation at NLO is dramatically improved if the
exact top-mass leading order cross section is used to nor-
malize the corrections, achieving a precision of Oð10%Þ.
In this Letter, we present the full NNLO corrections for

the inclusive cross section in the large top-mass limit. We
also provide numerical predictions for the LHC, using the
exact leading order result to normalize the partonic cross
section.
Results.—Within the large top-mass approximation, the

effective single and double-Higgs coupling to gluons is
given by the following Lagrangian

Leff ¼ � 1

4
G��G

��

�
CH

H

v
� CHH

H2

v2

�
; (1)

where G�� stands for the gluonic field strength tensor and

v ’ 246 GeV is the Higgs vacuum expectation value.
While the Oð�3

SÞ of the CH expansion is known [20,21],

the QCD corrections of CHH are only known up to Oð�2
SÞ

[22]. Up to that order, both expansions yield the same
result. Even when this approximation is not reliable at
LO, it is a very accurate mechanism for the computation
of the higher order corrections if the exact LO result is
used, since QCD corrections are dominated by soft con-
tributions which are not affected by the details of the
effective vertex.
To compute the SM Higgs boson pair production cross

section to NNLO accuracy, we need to evaluate the QCD
perturbative expansion up to Oð�4

SÞ. We will separate the

contributions to the squared matrix element into two
classes: (a) those containing two gluon-gluon-Higgs verti-
ces (either ggH or ggHH) and (b) those containing three
or four effective vertices. Then the partonic cross section
will be written as
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Q2 d�̂

dQ2
¼ �̂a þ �̂b; (2)

where Q2 is the squared invariant mass of the Higgs pair
system. For the sake of completeness we also include the
LO and NLO contributions in �̂a and �̂b.

Contributions to �̂a only contain diagrams with one
effective vertex each. Given the similarity between ggH
and ggHH vertices, the corrections are equal to those of
single Higgs production [23–25] up to an overall LO
normalization. Specifically, for each partonic subprocess
ij ! HH þ X we have (for factorization and renormaliza-
tion scales �F ¼ �R ¼ Q)

�̂a
ij ¼ �̂LO

�
�ð0Þ
ij þ

�
�S

2�

�
2�ð1Þ

ij þ
�
�S

2�

�
2
�
4�ð2Þ

ij

þ 8	ig	jg	ð1� xÞReðCLOÞ
jCLOj2

�
Cð2Þ
H � Cð2Þ

HH

��	
; (3)

where

�̂LO ¼
Z tþ

t�
dt

G2
F�

2
S

512ð2�Þ3 fjC4F4 þ ChFhj2 þ jChGhj2g;

(4)

and, for the sake of brevity, we refer the reader to Ref. [24]
for the expressions of �ij and to Ref. [15] for C4, F4, Ch,

Fh, and Gh. The term proportional to 	ig	jg in Eq. (3)

arises from a possible difference between the second order
corrections to the vertices ggH and ggHH, of which the

latter is still unknown (Cð2Þ
HH and Cð2Þ

H are defined as in
Ref. [17]). The exact LO partonic cross section �̂LO

depends on Q2 and t, the latter given by

t ¼ � 1

2
ðQ2 � 2M2

H �Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � 4M2

H

q
cos
1Þ; (5)

where 
1 is the scattering angle in the Higgs pair c.m.
system and the integration limits t� correspond to cos
1 ¼
�1. In the large top mass limit �̂LO takes the following
simple form,

�̂LO ¼
Z tþ

t�
dt

�
�S

2�

�
2
FLOjCLOj2; (6)

where

FLO ¼ G2
F

2304�
; CLO ¼ 3M2

H

Q2 �M2
H þ iMH�H

� 1: (7)

Here �H stands for the Higgs total width, while GF is the
Fermi coupling.

Since each ggH and ggHH vertex is proportional to �S,
contributions to �̂b first appear at NLO, as a tree-level
contribution to the subprocess gg ! HH. Then at NNLO
we have one-loop and single real emission corrections. The
former have been calculated in Ref. [17]. Specifically, they
are all the terms of Eq. (8) of Ref. [17] which are not
proportional to jCLOj2, except for the term proportional to

ðCð2Þ
H � Cð2Þ

HHÞ which we have already moved into �̂a. We

will denote this contribution by �̂ðvÞ.
Finally, the only remaining part of the NNLO contribu-

tion to the cross section arises from the real emission

processes present in �̂b, which we will denote by �̂ðrÞ.
The partonic subprocesses involved are gg ! HHþ g and
qg ! HH þ q (with the corresponding crossings).
Examples of the Feynman diagrams involved in the calcu-
lation are shown in Fig. 1.
To compute this contribution we used the MATHEMATICA

packages FEYNARTS [26] and FEYNCALC [27] in order to
generate the Feynman diagrams and evaluate the corre-
sponding amplitudes. The calculation was performed using
nonphysical polarizations, which we cancelled including
ghosts in the initial and final states. The results for n ¼ 4
dimensions can be found in the SupplementalMaterial [28].
In order to subtract the soft and collinear divergencies, we
used the Frixione, Kunszt, and Signer subtraction method
[29]. Below, we provide the details of the calculation.
Let p1 and p2 be the momenta of the incoming partons,

k1 and k2 the momenta of the Higgs bosons and k the
momentum of the outgoing parton. We define the variables
x and y, where x ¼ Q2=s and y is the cosine of the angle
between p1 and k. In terms of these variables, soft singu-
larities correspond to the limit x ! 1, while collinear
singularities arise when y ! �1. Gluon initiated subpro-
cesses contain the three kinds of singularities while those
processes initiated by quark-gluon are only affected by a
collinear singularity and quark-antiquark ones are finite.
The three-particle phase space (PS) in n ¼ 4� 2�

dimensions is given by

dPS3 ¼ ð4�Þ�2þ� �ð1� �Þ
�ð1� 2�ÞdPS

ðxÞ
2

s1��

2�

� ð1� xÞ1�2�ð1� y2Þ��dy sin�2�
2d
2; (8)

where dPSðxÞ2 is obtained from the two-particle phase space

through the replacement s ! xs, that is

FIG. 1. Example of Feynman diagrams needed for the NNLO
calculation for gg ! HHg (top) and qg ! HHq (bottom) sub-
processes. Other parton subprocesses can be obtained from
crossings.

PRL 111, 201801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 NOVEMBER 2013

201801-2



dPSðxÞ2 ¼ ð16�Þ�1þ�

�ð1� �Þ ðxsÞ��

�
1� 4M2

H

xs

�ð1=2Þ��

� sin�2�
1d cos
1dx: (9)

The variables 
1 and 
2 are the polar and azimuthal angles
of the Higgs boson with momentum k1 in the center of
mass frame of the Higgs pair system, and both of them
range between 0 and �. All the relevant invariants for the
process can be expressed in terms of x, y, 
1, and 
2 (see
the Supplemental Material [28]). For more details about
this parametrization, see, for example, Ref. [30].

We will focus now on the gg ! HH þ g subprocess
since it suffers from all kinds of singularities. In the soft
limit, the squared matrix element has a divergent behavior
proportional to ð1� xÞ�2, while in the collinear limits it
goes like ð1� y2Þ�1. Combining those factors with the
ones coming from the phase space, there is an overall
factor ð1� xÞ�1�2�ð1� y2Þ�1�� which regularizes all the
divergences. The key to isolating the singularities, then, is
to perform the � expansion of that factor in the following
way [30]:

ð1� xÞ�1�2�ð1� y2Þ�1��

¼ � 1

2�
	ð1� xÞð1� y2Þ�1�� � 2�2�

2�
½	ð1� yÞ

þ 	ð1þ yÞ�
��

1

1� x

�
þ
� 2�

�
logð1� xÞ
1� x

�
þ

�

þ 1

2

�
1

1� x

�
þ

��
1

1� y

�
þ
þ

�
1

1þ y

�
þ

�
; (10)

where the plus distributions are defined as

Z 1

0
dxGþðxÞfðxÞ ¼

Z 1

0
dxGðxÞ½fðxÞ � fð1Þ�; (11)

Z 1

�1
dy fðyÞ

�
1

1� y

�
þ
¼

Z 1

�1
dy

fðyÞ � fð�1Þ
1� y

: (12)

The delta functions in the first two terms of the expansion
allow us to simplify considerably the complexity of the
squared matrix element, leading to a much simpler ana-
lytical phase space integration. On the other hand, the last
term in Eq. (10) is finite, and then, the integration can be
performed (numerically) in four dimensions.

We directly present the final results. The gluon-gluon
contribution to �̂b can be split in the following way:

�̂ b
gg ¼ �̂ðrÞ

gg þ �̂ðvÞ ¼ �̂ðsvÞ
gg þ �̂ðcþÞ

gg þ �̂ðc�Þ
gg þ �̂ðfÞ

gg ;

(13)

where the renormalized results (for �F ¼ �R ¼ Q) take
the following form

�̂ðsvÞ
gg ¼ �̂LO

jCLOj2
	ð1� xÞ

��
�S

2�

�
4

3
ReðCLOÞ þ

�
�S

2�

�
2

�
�
ReðCLOÞ

�
8�2

3
þRð2Þ � 8

�
Cð2Þ
H � Cð2Þ

HH

��

þ ImðCLOÞI ð2Þ þV ð2Þ
�	
;

�̂ðcþÞ
gg ¼ �̂ðc�Þ

gg ¼ �̂LO

jCLOj2
�
�S

2�

�
2
8½1� ð1� xÞx�2

�
�
2

�
logð1� xÞ
1� x

�
þ
� logx

1� x

�
ReðCLOÞ;

�̂ðfÞ
gg ¼

Z
d cos
1d
2dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� 4M2

H=sÞ
q

1024�4

�
1

1� x

�
þ

�
��

1

1� y

�
þ
þ

�
1

1þ y

�
þ

�
fggðx; y; 
1; 
2Þ: (14)

We have already included, in this expression, the counter-
terms arising from collinear factorization. The expressions

for Rð2Þ, I ð2Þ, and V ð2Þ can be found in Ref. [17]. We

subtracted the term in Rð2Þ proportional to Cð2Þ
H � Cð2Þ

HH

since it has already been included in �̂a
gg. The expression

for fggðx; y; 
1; 
2Þ can be found in the Supplemental

Material [28]. We also included the NLO contribution to

�̂b in the definition of �̂ðsvÞ
gg .

Using a similar procedure we obtain the results for the
qg and gq channels (q stands for any massless quark or
antiquark), which can be split into two contributions,

�̂b
qg ¼ �̂ðrÞ

qg ¼ �̂ðcþÞ
qg þ �̂ðfÞ

qg ;

�̂b
gq ¼ �̂ðrÞ

gq ¼ �̂ðc�Þ
gq þ �̂ðfÞ

gq ;
(15)

which take the following form

�̂ðcþÞ
qg ¼ �̂ðc�Þ

gq ¼ �̂LO

jCLOj2
�
�S

2�

�
2 16

9
f½1þ ð1� xÞ2�

� ½2 logð1� xÞ � logx� þ x2gReðCLOÞ;

�̂ðfÞ
qg ¼

Z
d cos
1d
2dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� 4M2

H=sÞ
q

512�4

�
�

1

1� y

�
þ
fqgðx; y; 
1; 
2Þ;

�̂ðfÞ
gq ¼

Z
d cos
1d
2dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� 4M2

H=sÞ
q

512�4

�
�

1

1þ y

�
þ
fgqðx; y; 
1; 
2Þ:

(16)

Again, we already included the counterterms in the defini-

tion of �̂ðcþÞ
qg and �̂ðc�Þ

gq . Finally, for the quark-antiquark
subprocess we have
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�̂ b
q �q ¼

Z
d cos
1d
2dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx� 4M2

H=sÞ
q

512�4
fq �qðx; y; 
1; 
2Þ:

(17)

The expressions for fqg, fgq, and fq �q can be found in the

Supplemental Material [28].
Summarizing, Eqs. (3), (14), (16), and (17) contain all

the contributions to the partonic cross section up to NNLO
accuracy. We find agreement with Ref. [16] with respect to
the NLO results. (We notice that the exact LO is taken into
account in a slightly different way in Ref. [16]. The nu-
merical effect is, anyway, small.)

Phenomenology.—We present, here, the phenomeno-
logical results for the LHC. In all cases, we use the
MSTW2008 [31] sets of parton distributions and QCD
coupling at each corresponding order. The bands are
obtained by varying independently the factorization and
renormalization scales in the range 0:5Q � �F,�R � 2Q,
with the constraint 0:5 � �F=�R � 2. We recall that we
always normalize our results with the exact top- and
bottom-mass dependence at LO. We use MH ¼
126 GeV, Mt ¼ 173:18 GeV, and Mb ¼ 4:75 GeV.

Given that at one-loop order the corrections to the
effective vertex ggHH are the same as those of ggH, we

will assume for the phenomenological results that Cð2Þ
HH ¼

Cð2Þ
H . We analyzed the impact of this still unknown coeffi-

cient varying its value in the range 0 � Cð2Þ
HH � 2Cð2Þ

H

and found a variation in the total cross section of less
than 2.5%.

In Fig. 2, we show the hadronic cross section for the
LHC as a function of the Higgs pair invariant mass, for a
c.m. energy Ec:m: ¼ ffiffiffiffiffiffi

sH
p ¼ 14 TeV, at LO, NLO, and

NNLO accuracy. We can observe that it is only at this
order that the first sign of convergence of the perturbative
series appears, finding a nonzero overlap between the NLO
and NNLO bands. Second order corrections are sizeable,

this is noticeable already at the level of the total inclusive
cross sections

�LO ¼ 17:8þ5:3
�3:8 fb; �NLO ¼ 33:2þ5:9

�4:9 fb;

�NNLO ¼ 40:2þ3:2
�3:5 fb; (18)

where the uncertainty arises from the scale variation. The
increase with respect to the NLO result is then of Oð20%Þ,
and the K factor with respect to the LO prediction is about
KNNLO ¼ 2:3. The scale dependence is clearly reduced at
this order, resulting in a variation of about �8% around
the central value, compared to a total variation of
Oð�20%Þ at NLO.
In Fig. 3, we present the total cross section as a function

of the c.m. energy Ec:m:, in the range from 8 to 100 TeV.We
can observe that the size of the perturbative corrections is
smaller as the c.m. energy increases. Again, in the whole
range of energies the scale dependence is substantially
reduced when we consider the second order corrections.
In Table I, we show the value of the NNLO cross section

for Ec:m: ¼ 8, 14, 33, and 100 TeV. We considered three
different sources of theoretical uncertainties: missing
higher orders in the QCD perturbative expansion, which
are estimated by the scale variation as indicated before,
uncertainties in the determination of the parton distribu-
tions, and strong coupling. To estimate the parton flux and
coupling constant uncertainties, we used the MSTW2008
90% C.L. error PDF sets [32], which are known to provide
very close results to the PDF4LHC working group recom-
mendation for the envelope prescription [33]. We observe
that nonperturbative and perturbative uncertainties are of
the same order.
The ratio between NNLO and NLO predictions as a

function of the c.m. energy is quite flat. In order to ease
the use of our NNLO results, we provide the following
approximated analytic expression for the K factor, valid in
the range 8 TeV � Ec:m: � 100 TeV

300 400 500 600 700
0.00

0.05

0.10

0.15

0.20

Q GeV

d
dQ

fb
G

eV

LO

NLO

NNLO

FIG. 2 (color online). Higgs pair invariant mass distribution at
LO (dotted blue), NLO (dashed red), and NNLO (solid black) for
the LHC at c.m. energy Ec:m: ¼ 14 TeV. The bands are obtained
by varying �F and �R in the range 0:5Q � �F, �R � 2Q with
the constraint 0:5 � �F=�R � 2.
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20 40 60 80 100
0.5
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K

LO

NLO

NNLO

FIG. 3 (color online). Total cross section as a function of the
c.m. energy Ec:m: for the LO (dotted blue), NLO (dashed red),
and NNLO (solid black) prediction. The bands are obtained by
varying �F and �R as indicated in the main text. The inset plot
shows the corresponding K factors.

PRL 111, 201801 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

15 NOVEMBER 2013

201801-4



�NNLO

�NLO

¼ 1:149� 0:326

�
Ec:m:

1 TeV

��1

þ 0:327

�
Ec:m:

1 TeV

��1=2
; (19)

which runs from 1.22 at 8 TeV to 1.18 at 100 TeV. On the
other hand, the ratio between NNLO and LO runs from
2.39 to 1.74 in the same range of energies, and can be
parametrized by the following expression:

�NNLO

�LO
¼ 1:242� 7:17

�
Ec:m:

1 TeV

��1 þ 5:77

�
Ec:m:

1 TeV

��1=2
:

(20)

Finally, the total scale variation at NNLO is approximately
given by �pðEc:m:Þ%, with

pðEc:m:Þ ¼ 4:07� 9:8

�
Ec:m:

1 TeV

��1 þ 18:6

�
Ec:m:

1 TeV

��1=2
:

(21)

In this case, we have�9:4% and�5:8% at 8 and 100 TeV,
respectively.

It is worth noticing that the soft-virtual approximation
presented in [17] gives an extremely accurate prediction for
the NNLO cross section, overestimating for example the
Ec:m: ¼ 14 TeV result by less than 2%. As expected, this
approximation works even better than for single Higgs
production, due to the larger invariantmass of the final state.
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