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The present work proposes the use of total synchronous fluorescence spectroscopy (TSFS) as a discriminationmeth-
odology for fluorescent compounds in edible oils, which are preserved after the transesterification processes in the
biodiesel production. In the sameway, a similar study is presented to identify fluorophores that do not change in ex-
pired vegetal oils, to associate physicochemical parameters to fluorescent measures, as contribution to a fingerprint
for increasing the chemical knowledge of these products. The fluorescent fingerprints were obtained by Tucker3 de-
compositionof a three-way array of the total synchronousfluorescencematrices. This chemometricmethodpresents
the ability for modeling non-bilinear data, as Total Synchronous Fluorescence Spectra data, and consists in the de-
composition of the three way data arrays (samples × Δλ × λ excitation), into four new data matrices: A (scores), B
(profile inΔλmode), C (profile in spectramode) andG (relationships betweenA,B and C). In this study, 50 samples
of oil from soybean, corn and sunflower seeds before and after its expiration time, as well as 50 biodiesel samples
obtained by transesterification of the same oils were measured by TSFS. This study represents an immediate appli-
cation of chemical fingerprint for the discrimination of non-expired and expired edible oils and biodiesel. Thismeth-
od does not require the use of reagents or laborious procedures for the chemical characterization of samples.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Fluorescent fingerprints
Tucker3 model
Biodiesel and edible oils discrimination
Total synchronic fluorescence spectroscopy
1. Introduction

Currently it exist a great interest in the study of chemical composition
from oils and biodiesel, since such information is valuable for the assess-
ment of the quality and therefore, thefinal price of product. The European
Standards (EN) and American Society for Testing and Materials (ASTM)
propose high cost and off-line methodologies to this quality control [1,
2]. Techniques like gas and liquid chromatography are themost common-
ly used for edible oil and biodiesel analysis. Spectroscopic methods pres-
ent some alternatives to the established referencemethods, which can be
applied quickly and inexpensively. Advances in spectroscopy actually en-
able researchers to obtain information about chemical components in dif-
ferent samples at molecular level [3].
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Fluorescence spectroscopy (FS) is one of the most promising
techniques in complex analysis. Among the benefits of fluorescence
spectroscopy, it can include an enhanced selectivity compared to
others spectroscopic methods, a high sensitivity to a wide array of
potential analytes, and to avoid a high consuming of reagents as
else an extensive pretreatment of sample [4]. Due to these advan-
tages there were numerous new methodologies taking advantages
of the FS for biodiesel analysis [5–10]. However, conventional fluo-
rescence techniques, which are based on the measurement of a sin-
gle spectrum in emission or excitation way are often insufficient in
the analysis of complex systems [11,12]. In such cases, Excitation-
Emission Matrices of Fluorescence (EEMF) or Total Synchronous
Fluorescence Spectra (TSFS) can improve the analytic potential of
fluorescence measurements [13,14].

In the absence of Raman scattering, EEMF are bilinear, this means
that, all the fluorophores has a unique profile in excitation and emission
modes that only changes in intensity. The individual EEMmatrices may
be stored in a trilinear three-way structureX(I × J × K) or alternatively can
be used augmented matrix or unfolded structure and modeled with
multi-way methods like Parallel Factor Analysis (PARAFAC),
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Fig. 1. Typical synchronic fluorescence landscape for (a) edible vegetable oil, (b) expired
edible vegetable oil and (c) biodiesel.

Table 1
Factors used in Tucker3 model.

Samples Model complexity ExVar (%)⁎

Mode 1 Mode 2 Mode 3

Oil 3 3 3 99.43
Expired oil 3 3 3 99.34
Biodiesel 2 2 2 98.35

⁎ Explained variance.
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Multivariate Curve Resolution (MCR) and Principal Component Analysis
(PCA), respectively [15,16].

On another hand, TSFS are intrinsically non-bilinear, because the ex-
citation spectrum shape it is not unique to a single fluorophore, it
changes every Δλ value. Consequently, the three-way structure
X(I × J × K) for TSFS do not fulfill with trilinearity [15]. This characteristic
of TSFSmakes a nontrivialmodelingwhen using PARAFAC orMCRand it
can also lead to non-reliable solutions. From a mathematical point of
viewunfolded TSFS can bemodeled by PCA, but the high dimensionality
of the data can make interpretation of the results very difficult [17].
Such drawbacks can be circumvented by using Tucker3 method pro-
posed by L. Tucker [18] that is also known as a generalization of the
PCA for multi-way data.

For threeway data arraysX(I × J × K), i.e., themodel could bewrite like
Eq. (1).

xijk ¼ ∑P
p¼1∑

Q
q¼1∑

R
r¼1aipbjqckrgpqr þ eijk ð1Þ

where xijk were the elements of X(I × J × K), a, b e c had the elements as-
sociated to the factors p, q e r. The term gpqr contains the weights of the
relationships between the factors, whilst the term eijk represents the
non-modeled information. Unlike the PARAFAC, the Tucker3 model al-
lows calculation with different number of factors for the different
modes, that is, p ≠ q ≠ r. Another feature that differentiates the Tucker3
to PARAFAC and also fromPCA is that the factors could have interactions
between them. These properties look very attractive from a mathemat-
ical point of view, in especial for the modeling of complex data as the
non-bilinear TSFS matrices.

As well as in the PARAFAC decomposition, in the Tucker3 calcula-
tions some constraints could be applied to obtain mathematical solu-
tions with chemical sense. In brief, the constraints are mechanisms to
make that the loadings model be similar to the pure instrumental pro-
files of the constituents of the sample. In this case, the Tucker3 loadings
must be the pure excitation spectra of the fluorophores present in the
samples. As it does notmake physical sense excitation spectrawith neg-
ative intensity, therefore model solutions also must not contain nega-
tive values. This constrain is known as non-negativity, implemented in
the Tucker3 method via non-negative least squares. Loadings that are
the instrumental profiles of the constituents can then be used for di-
verse purpose like the estimation of fingerprint from complex samples
and to generate discrimination and classification models [19,20].

The increasing awareness of consumers in food and fuel safety and
quality issues has led to the development of new techniques for product
authentication. However, most of these techniques require time consum-
ing, extensive sample preparation, the use of hazardous chemicals, aswell
as skilled and experienced operators. These disadvantages have
prompted for the adoption of new and simpler methods such as the fluo-
rescence spectroscopy. In general, this technique is more frequently used
to followormark a target at onewavelength that corresponds to a known
compound, or to relate statistically the sum of the fluorescent bandswith
the values of certain quality parameters and deducing the origin of the lu-
minescent signal. However, TSFS have been less used to describe fluores-
cent compounds. For this reason, this paper describes the use of the
Tucker3 method that can discriminate compounds which can change or
not during a chemical process in complex samples, such as in the
transesterification or in the degradation of edible oils. This intrinsic
knowledge was used to differentiate between expired and not expired
edible oil and biodiesel.

2. Experimental

2.1. Samples

A total of 50 edible oil (O) samples from different lots and, manufac-
turers and raw material (14 samples of soybean, 20 of corn and 16 of
sunflower) were acquired during a whole year. The transesterification



Fig. 3. Tucker3 decomposition for all samples (a) eigenvalues plots of the. Eigenvalues plot
for (solid blue line) mode 1; (dotted red line) mode 2 and (circle black line) mode 3. (b)
Profiles recovered in the spectral mode: first (solid blue line), second (circle green line)
and third (cross red line) factors.

Fig. 2. Loading profiles in the spectral mode recovered by the Tucker3 method for (a)
factor 1, (b) factor 2 and (c) factor 3. The colors and type of the lines correspond to oil
(solid blue line), expired oil (cross red line) and biodiesel (circle green line).
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of biodiesel (B) samples were carried out by using the methylic route
with KOH as catalyzer, at a temperature of 60 °C with molar ratio of
6:1 (methylicalcohol:oil). The catalyzer/oil ratio was 0.5% w/w. After
1 hour, the glycerin byproductwas separated and the resulting biodiesel
was washed with water and dried. The same 50 samples of edible oils
were stored in the original commercialflaskwithout strict environmen-
tal control for 18months after acquired, and thenweremeasured to ob-
tain the expired oil (EO) samples spectra.

2.2. Spectrum Acquisition

A computer-controlled spectrofluorimeter SLMAminco Bowman se-
ries 2 (Thermo, Madison, USA), equipped with a xenon discharge light
source (150 W), was used to obtain the spectra. Wavelength accuracy
and wavelength repeatability were ±0.5 and ±0.25 nm, respectively.
Excitation and emission slits of 8 nm were used. The scan rate was
5 nm/s.

For each sample, eight synchronous spectra were obtained by scan-
ning bothmonochromators simultaneously at constant wavelength dif-
ferences (Δλ= λemission− λexcitation) of 10, 15, 20, 25, 30, 35, 40, 45 nm.
The excitation range 280–600 nmwas the same for all spectra, whereas
the emission range varied from 285 to 605 nm to 330–650 nm accord-
ing to the wavelength difference (Δλ) employed. All spectra from O, B
and EO were recorded using a standard 600 μl quartz cell. None sample
pretreatment were used to perform the scans.

2.3. Software

Three-way array decomposition was carried out by Tucker3 using
N-way toolbox [21] available in http://www.models.life.ku.dk/
nwaytoolbox in MatLab® environmental [22].

http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaytoolbox


Table 2
LDA fit parameters.

True class Estimated class

O EO B NER (%)*

O (50 samples) 37 13 0 74
EO (50 samples) 13 36 1 72
B (50 Samples) 0 3 47 94

⁎ NER: non error rate.
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3. Results and Discussion

3.1. Data Set

The data set, used like input for Tucker3 model, consisted in 50 STFS
matrices for each sample group, (edible oil (O), expired edible oil (EO)
and biodiesel (B)) with dimension 8 (Δλ) × 150 (excitation wave-
length). These matrices were arranged in a three-way structure, for all
cases the sizewere (50 × 8× 150). Initially, each sample groupwas sub-
mitted to a Tucker3 decomposition. The results obtained were com-
pared with respect to each other for the fingerprint purpose. In
addition for discrimination use, a new three-way structure, containing
all STFS matrices was used. This approach allows to estimate the indi-
vidual rank of each samples group and full rank of the data. Typical syn-
chronic fluorescence contour plot for are displayed in Fig. 1.

As can see, fluorescence profiles for O, EO and B had similar shape,
being remarkable the change of the fluorescence intensity (more in-
tense in oil samples and less intense in biodiesel samples). These varia-
tions in fluorescence signal may be accessed by chemometric
approaches and used like useful information for purpose of the discrim-
ination between O, EO and B.

3.2. Tucker3 Fingerprint

Tucker3 decompositionwas carried out on data set separately (O, EO
and B). The initial step in Tucker3 modeling, it was to choose the
Fig. 4. LDA results: (a) DF1 × DF2 score plot and (b) Fisher loading plot for DF1.
number of factors in each instrumental mode. In this work was used
the eigenvalues examination approach for the matrices Xa(I × JK),
Xb(J × IK) and Xc(K × IJ) obtained with the frontal plane of the X
(I × J × K). In addition, it was observed the increase in the explained var-
iance with the increasing of the complexity of models. In all cases, it is
preferable to choose the calculated model less complex. The selected
number of factors in each case is summarized in Table 1.

As it can be seen in Table 1, in all cases a high percentage of variance
explained was obtained for the selected factors. The next step was the
evaluation of the loading profiles retrieved by Tucker3 method in spec-
tral mode under non-negativity constraint (see Fig. 2). It is important to
take into account that, profiles displayed in Fig. 2 are normalized. The
contribution of each one vary of the sample to sample, this information
(or be the relative concentration) is stored in matrix A, output of the
Tucker3 model.

Numerous published works have attributed the fluorescence of oil
and biodiesel tomolecules such as tocopherols, free fatty acids, caroten-
oids, and degradation products of chlorophyll a and b [23,24]. In our
case, due all samples proceed from refined oils, carotenoids (fluores-
cence range of 500–650 nm) were not recorded.

The decomposition of unsaturated methyl esters is a similar process
to oxidation of edible oils [25]. The oxidation of these compounds pro-
duces conjugated double bonds carbon = carbon, which could be re-
sponsible of fluorescence signal. As previously described by Magalhães
et al. [26], fluorescence spectra found in this work, suggest that conju-
gated tetraenes could be produced from a previous degradation of un-
saturated triglycerides (edible oil) as well as of unsaturated methyl
esters (biodiesel), which aremore related tomethyl linolenates, justify-
ing the fluorescence spectra in the 350–550 nm.

Comparing Fig. 1 and Fig. 2, it can be notice that the first profile cal-
culated explains thehighestfluorescencewith anexcitationwavelength
of 348, 356, 344 nm(O, EO, B), that correspond to thedienes, trienes and
tetraenes of the carbon chain of triglycerides and esters constituents of
Fig. 5. Bars plot for first Tucker factor in mode 1. The horizontal lines are the average
loading.
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this type of samples. The responsible of the shift is the different viscosity
[27]. The band at 330 nm that appears in biodiesel with high intensity
and in expired oil with lesser signal, corresponds exactly with themax-
imum of excitation wavelength of the tetraenes derived from methyl
linolenate in biodiesel or free linolenic acid in expired oil.

The second and third factors show the profiles of the fluorescent
compounds with a maximum in 362 nm, corresponding to conjugated
carbon-carbon double bonds. The overlapped signals from 310 to
340 nm are product of isomers of tocopherol, butylated hydroxyanisole
(BHA) and ter-butylhidroquinone (TBHQ) that are commonly added to
edible oils to prevent the rancidity, but they diminish with the increas-
ing of the degradation time. The 310 nm band that appears in the third
factor corresponds to α-tocopherol, a form of vitamin E. Different per-
centages of tocopherol isomers are present according to the diverse
sources of edible oils: α-tocopherol in sunflower oilsor γ-tocopherol
in soybean and corn oils [28]. Finally, the band at 393 nm corresponds
to conjugate dienes.
3.3. Discrimination Based on Tucker3

In order to evaluate the discrimination power of fluorescence syn-
chronic matrices, Tucker3 decomposition was simultaneously carried
out on data set (×150 × 8 × 150) of the three types of samples (O, EO
and B). Again, the number of factors was determined by the procedure
described above. The eigenvalues plot for full data is showed in Fig. 3.

As can be seen in Fig. 3a, after the third factor, in all modes no signif-
icant changes were observed. In addition, the rank suggested by the ei-
genvalues for all samples were in agreement with the value rank of
those observed when samples are modeled by Tucker separately (see
Table 1). The loading profiles recovered by Tucker3 (Fig. 3b)were joint-
ly for all samples identical to those obtained when analyzing samples
separately.

The loading matrix in mode 1 of Tucker3 model was used as input
data for linear discriminant analysis (LDA) to evaluate the discriminat-
ing power of the STFS. As can be seen in the Fisher score plot for LDA
displayed in Fig. 4a, the discrimination of oil, expired oil and biodiesel
samples was obtained along the first discriminant function (DF1).

On the other hand, in general, oil samples had higher absolute score
values, while biodiesel samples had the lower ones. Expired oils sam-
ples presented intermediate values between oil and biodiesel samples.
This behavior was similar to the fluorescence intensities observed in
Fig. 1. In Table 2 is presented a summary of the LDA fit.

Based on the results of Table 2, it can notice that samples of oil and
biodiesel were better discriminated with success rates of 74% and 94%,
respectively, but the expired oil showed an overlapping with oil and
biodiesel samples. In the plot of Fisher loadings (Fig. 4b) for DF1, it
could be seen remarkable influences in the first variable, that is, the
first factor of Tucker3 model. On the other hand, the contribution of
the third factor was bigger than the second one, but negligible in com-
parison with first one. In other words, this means that the firstTucker3
factor in mode 1 had the most discriminant information.

The significant score elements (gmnl) for m = 1 were g(111) and
g(113). This means that the first and third loading profiles in spectral
mode were related to the discrimination of edible oil, expired oil and
biodiesel samples (see Fig. 3b). The first factor (blue solid line in Fig.
3b) corresponds to the fluorophores that were present in all samples
and were related to the discrimination of edible and expired oil. The
third factor (red solid line in Fig. 3b) corresponds to the fluorophores
that could be discriminated in oil/expired oil and biodiesel. As was
showed in Fig. 2c, the third factor was absent in biodiesel samples.
This justify why B samples were better discriminated than O and EO.

The first factor in mode 1 had significant interactions with the fac-
tors 1 and 2 in spectral mode. This suggests that score values for the
first factor in mode 1were the sum of the concentrations of the
fluorophores corresponding to 1 and 3 in the loading profile retrieved
by Tucker3 method in mode 3. In Fig. 5 is shown the loading values of
Tucker3 model for the first factor in mode 1.

It can see that these values change for the different type of samples.
However, it can be noted that these changes were more pronounced
among oils (O and EO) and biodiesel (B). This fact can be attributed to
the presence of fluorophores corresponding to the third profile recov-
ered by the method Tucker3, which were absent in the biodiesel sam-
ples. The blue, red and green horizontal dotted lines represent the
mean scores of values for each type of samples. Notice that all biodiesel
samples are below of the oils average scores.

4. Conclusions

This work showed the reduction of antioxidants levels and the in-
creasing of fluorescence signal due the conjugated diens, triens and
tetraens in edible and expired oils. Biodiesel samples were easily dis-
criminated from O and EO due the presence of conjugated double
bounds associate to methyl esters. In addition, it is important to remark
that it was not necessary sample pretreatment, reducing time consum-
ing analysis. On the other hand, the total absence of reagents, include to
this method into the green chemistry principles. The biodiesel samples
could be successfully discriminated from edible and expired oil samples.
Tucker3 was able to find spectral fingerprints using three-way data and
second order analysis of non bilinear matrices, reaching chemical infor-
mation from the retrieved loadings. Therefore, the combination of fluo-
rescence (TSFS) and chemometrics (Tucker3) may be useful to assess
the transesterification or degradation process for quality control of bio-
diesel and edible oils, with the additional advantage that it is not de-
structive method and can be used in modes in-line or on-line.
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