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A new methodology involving four-way multivariate calibration with a balanced number of data points in all
modes is presented. The method is based on fluorescence excitation-emission matrices modulated by a double
pH gradient obtained in a flow injection system. This data array was employed for the quantitation of ciproflox-
acin, ofloxacin and norfloxacin in unprocessed urine samples. Due to the presence of potential interfering com-
pounds with overlapping profiles in the analyzed samples, it is required to achieve the second-order
advantage. The four-way arrays obtained were processed by parallel factor analysis (PARAFAC), attaining satis-
factory results with relative errors of prediction (REP%) between 3% and 7.5% in the analyzed samples for all
analytes. The average limit of detection (mg L−1) was 0.035 for norfloxacin and ofloxacin and 0.028 for
ciprofloxacin.
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1. Introduction

Chemical multi-way calibration has gained widespread acceptance
by the analytical community, since it provides better quality of the re-
sults when developing analytical methods to quantify analytes of inter-
est in complex matrices. Nowadays, the research dedicated to the
development and testing of multivariate algorithms applied to progres-
sively more complex chemical systems is very extensive, as can be seen
from the literature in relevant analytical, chemometrics and applied
journal [1,2]. The main reason for this continuing interest is that sec-
ond-order and higher-order data exhibit the so-called “second order ad-
vantage”. This property allows to accurately quantify the calibrated
analytes, even in the presence of interfering compounds not included
in the calibration set [1–3]. Higher-order data might also exhibit other
advantages that could improve the predictive ability. They would pro-
vide richer analytical information, allowing the development of more
stable methods towards concerning interference and matrix effects,
and less prone to minor changes in experimental conditions [4].

A variety of second- and higher-order instrumental data can be pro-
duced usingmodern instrumentation. However, it is interesting to note
thatwhile the use of second-order data iswidespread, only in a few cases
third-order data have been recorded and used to construct quantitative
calibration models and to develop analytical methodologies [1,2].
z).
This may be attributed to the fact that the experimental acquisition of
these data arrays is still difficult to implement. Examples of four-way/
third-order data are bidimensional chromatographic systems equipped
with detection based on time of flight mass spectrometry (TOFMS) or
diode array detection (DAD), leading to GC-GC–TOFMS [5] or LC-LC–
DAD, and LC–DAD as a function of reaction time [6], and more recently
ultra-fast high performance liquid chromatographic data with fluores-
cence excitation-emission detection [7–10]. On the other hand, excita-
tion-emission fluorescence or phosphoresce matrices as a function of
reaction time [11–14] or decay time [15], and also UV spectra-time
reaction-pH data [16], are also some of the examples of the use of
multi-way analysis using third-order data.

In this work we present an innovative form of third-order data
consisting of excitation-emissionmatrices (EEMs)modulated by a dou-
ble pH gradient. A fast scanning spectrofluorimeter allowed recording a
complete EEM in a short time, and flow injection analysis (FIA) was
used to generate the pH mode. Thus excitation-emission-pH third-
order data, with a reasonably balanced number of sensors in all
modes, have been easily measured for each experimental sample and
used to construct a four-way calibrationmodel. This calibrationwas ap-
plied to quantify fluoroquinolones (FQs) in unprocessed urine samples,
which contain other fluorescent compounds with significant overlap-
ping profiles. The fluoroquinolones ciprofloxacin (CIP), ofloxacin
(OFLO) and norfloxacin (NOR)were selected as amodel to show the po-
tentiality of the proposed strategy of third-order data generation and
the corresponding modeling. FQs and other strongly pH-dependent
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compounds have already been determined in urine samples, using pH-
modulated second-order fluorescence signal [17,18].

Several algorithms are available for the convenient processing of
multidimensional data, achieving the second-order advantage. Four-
data arrays have been usually processed by resorting to the well-
known parallel factor analysis algorithm (PARAFAC) [19,20]. The
algorithms based on latent variables, unfolded (U-PLS) and multi-way
partial least-squares (N-PLS), can also be applied, combined with resid-
ual trilinealization (RTL) [7,21,22] in order to achieve the second-order
advantage. Additionally, multivariate curve resolution coupled to alter-
nating least-squares (MCR-ALS) [23] can be used to process these data
by first unfolding them into matrices. The selection of the proper algo-
rithm depends on whether the multidimensional array complies or
not with the so-called multilinearity condition. This may be briefly
defined as the possibility of expressing a multi-way data array for a
set of samples as a linear function of component concentrations and
profiles in the different data modes. Third-order data that meet this
property are called quadrilinear.

When the pHmode is obtained in a flow system, the obtained four-
data array might not be strictly quadrilinear due to: a) irreproducibility
in the pH gradient generation, as a consequence of the lack of synchro-
nization among samples in theflow system; b) pH evolutionwhilemea-
suring each EEM. In addition, in the presence of a pH gradient a closure
relationship exists between pH-equilibrating species, implying that
theymight bemutually correlated. Correlationsmay complicate the res-
olution of the multi-way array [3].

In this report, the four-way arrays were processed with PARAFAC,
which provided satisfactory predictions in all the analyzed systems.
The results suggest that the pHmode, in the selected experimental con-
ditions, does not produce a breaking of the quadrilinearity of the data.
Furthermore, PARAFAC can handle the presence of different unmodeled
compounds exhibiting significant spectral overlapping signalwith those
for the analytes.

In summary, the proposed experimental system enabled us to ob-
tain, in a simpleway and in a reasonable time, four-way data arrays use-
ful to quantify FQs in urine samples without pretreatment and in the
presence of interferent compounds.

2. Experimental

2.1. Reagents

All experiments were performed with analytical grade chemicals.
The following solutions were employed: acetic acid (HAc)
0.025mol L−1, prepared from commercial HAc (Merck, Darmstadt, Ger-
many); sodium hydrogen carbonate (NaHCO3) 5 × 10−3 mol L−1, pre-
pared from commercial NaHCO3 (Analar, Poole, England). Ultrapure
water provided by a MilliQ purification system was used.

Ofloxacin and norfloxacin were purchased from Sigma (Seelze, Ger-
many) and ciprofloxacin was provided by Fluka (Seelze, Germany). Flu-
oroquinolone stock solutions (all 200 mg L−1) were prepared by
dissolving the exact amount of the corresponding compound in
50 mmol L−1 HAc solution. These solutions were stored at 4 °C and
were stable for at least a month.

Stock solutions of sodium salicylate (Merck, Darmstadt, Germany)
and naproxen (Sigma, Seelze, Germany), both 200 mg L−1, were pre-
pared weighing the required amount of the corresponding compounds
and dissolving them in MilliQ water.

2.2. Apparatus

TwoGilsonMinipuls Evolution peristaltic pumps (Gilson,Middleton,
WI, USA)were consecutively used for the propulsion of the carrier solu-
tion. All sample solutions were manually injected into the carrier sys-
tem using a dual proportional Upchurch injection valve (Upchurch
scientific, Oak Harbor, WA, USA). The flow was injected into a quartz
Hellma flow cell model 176.752-QS, 25 μL inner volume, 1.5 mmoptical
path length (Hellma, Müllheim, Germany).

Fluorescence measurements were done using a fast scanning Varian
Cary Eclipse spectrofluorimeter (Varian Inc., Mulgrave, Victoria, Austra-
lia), equipped with two Czerny-Turner monochromators and a xenon
flash lamp, and connected to a PC microcomputer via an IEEE 488
(GBIP) Serial interface. Excitation-emission fluorescence matrices
were collected under the following conditions: for OFLO, excitation
wavelength range, 275–375 nm, emission wavelength range 425–
540 nm; for CIP, excitation wavelength range, 255–355 nm, emission
wavelength range 370–485 nm and for NOR, excitation wavelength
range, 250–350 nm, emission wavelength range 375–490 nm (in all
cases, excitation ranges each 5.5 nm and emission ranges each
3.6 nm). The slit widths for the excitation and emission monochroma-
tors were fixed at 5 nm, and the detector voltage was set at 850 for
OFLO and CIP, and 800 V for NOR. A wavelength scanning speed of
18,000 nm/min was employed, so that a complete excitation-emission
fluorescence matrix was obtained in few seconds, collecting 45 succes-
sive matrices in 15 min.

The complete data were arranged into a third-order array of size
18 × 32 × 45 data points, saved in ASCII format and transferred to a
PC for subsequent manipulation with the multivariate program.

2.3. Calibration and validation samples

Three different calibration sets were prepared, one for each fluoro-
quinolone, having six duplicate concentration levels, equally spaced in
the range 0.00 to 1.00 mg L−1, which was established on the analysis
of the linear fluorescence-concentration range for each analyte. In
order to obtain the desired concentrations, appropriate aliquots of stan-
dard solutionsweremeasured and placed in 20.00mL volumetric flasks,
completing to themark with HAc 0.025mol L−1 to be employed as car-
rier, or with NaHCO3 5 × 10−3 mol L−1 to be injected into the flow sys-
tem. In order to test the method performance, a validation set was
prepared for each analyte, employing different concentrations than
those used for calibration and following a random design, i.e., choosing
the validation concentrations by generating random numbers, equally
distributed within the analyte calibration ranges.

Since test urine sampleswere diluted 1/200 (see below), the calibra-
tion concentration range, once converted to urine concentrations,
covers the therapeutic ranges of the analytes in the urine samples of pa-
tients administered with the three studied drugs. All samples were
measured in random order.

2.4. Urine samples

With the purpose of evaluating the feasibility of themethod to quan-
tify FQs in complex samples, sets of urine were prepared, one for each
analyte, spiked at concentrations given by random numbers in the
range of 0–200 mg L−1 (therapeutic range).

Besides, for OFLO a set of spiked urine samples containing the ana-
lyte was prepared with the addition of salicylate (SA) as interferent.
For NOR, as well as for CIP, different sets of spiked urine samples were
prepared containing the corresponding FQ, with the addition of SA or
naproxen (NX) as interferent. Both analyte and interferent concentra-
tions in all cases were in the range of 0–200mg L−1. These test samples
are intended to mimic truly unknown samples composed of uncalibrat-
ed substances, where a responsive backgroundmay occur. The inclusion
of known chemical components in these samples has the purpose of
checking whether the multivariate algorithm is able to successfully re-
trieve their corresponding profiles, and accurately quantify the analytes.
All spiked samples were diluted 1/200 with HAc 0.025 mol L−1 to be
employed as carriers, or with NaHCO3 5 × 10−3 mol L−1 to be injected
into the flow stream as calibration and validation sets, and measured in
random order.
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2.5. Flow injection methodology

In order to generate the double pH gradient inside the flow stream,
the alkaline sample was injected into the acid sample used as carrier.
Each of the studied samples was diluted with HAc 0.025 mol L−1 and
used as the carrier stream. The composition of the injected sample
was identical to that of the carrier, except that the dilution was carried
out with NaHCO3 5 × 10−3 mol L−1. This mode of generating the pH
gradient has already been employed [17,18], preventing changes in
total analyte concentrations in the flow stream and achieving higher
sensitivity. As shown in Fig. 1, two peristaltic pumps were used consec-
utively for the propulsion of the carrier solution, in order to change the
flow rate during the experiment as follows: from the injection to the
first sevenminutes, the flow rate was 0.23mLmin−1 and then changed
to 0.17 mLmin−1, using a switching valve. The acid sample used as car-
rier was sent through a tube (1.02 mm i.d.). After the alkaline sample
(1.00 mL) was injected, the flow was sent to the spectrofluorimeter
flow cell, passing first through a Teflon tube mixer (14 cm length,
1.5 mm i.d.) and then, through a Teflon reactor (total length 5 m,
0.5 mm i.d.). Spectral measurements were done 5 min after the sample
injection, collecting excitation-emission fluorescence matrices under
the conditions detailed in Section 2.2. The total experimental time for
a given sample was 20 min.

3. Theory

3.1. PARAFAC

For third-order EEMs-pH data processing with PARAFAC algorithm,
a set of Ical calibration samples Xi,cal (each of them as a J × K × L
array, where J,K and L are the number of data points in each mode)
are joined with the unknown sample data matrix Xu into a four-way
data array X, whose dimensions are [(Ical + 1) × J × K × L]. Provided X
follows a quadrilinear PARAFAC model, it can be written in terms of
four vectors for each responsive component, designated as an, bn, cn
and dn and collecting the relative concentrations [(Ical + 1) × 1] for
component n, and the profiles in the three data modes (J × 1, K × 1
and L × 1, respectively). The specific expression for a given element of
X is [24]:

Xijkl ¼ ∑
N

i¼1
ain bjn ckn dln þ eijkl ð1Þ

where N is the total number of responsive components, ain is the score
of relative concentration of component n in the ith sample, and bjn, ckn
and dln are the fluorescence intensities at the emissionwavelength j, ex-
citationwavelength k and pH l, respectively. The values of eijkl are the el-
ements of the array E, which is a residual error term of the same
dimensions as X. The column vectors an, bn, cn and dn are collected
into the corresponding loadingmatrices A, B, C andD (the instrumental
vectors bn, cn and dn for each mode are usually normalized to unit
length). A successful decomposition of X, usually accomplished through
an alternating least-squares minimization scheme [25,26], gives access
to the emission spectral profiles (B), excitation spectral profiles (C)
Fig. 1. Flow injection analysis assembly: (A) carrier, (B1) and (B2) peristaltic pumps, (C)
switching valve, (D) injector, (E) mixer, (F) reactor, (G) spectrofluorimeter.
and pH profiles (D), as well as relative concentrations (A) of individual
components in the (Ical + 1) mixtures, whether they are chemically
known or not, providing the basis of the second-order advantage.

There are some significant topics for the application of the PARAFAC
model to the calibration of four-way data array: (1) initializing the algo-
rithm, (2) applying restrictions to the least-squares fit, (3) establishing
the number of responsive components, (4) identifying specific compo-
nents from the information provided by the model and (5) calibrating
the model in order to obtain absolute concentrations for a particular
component in an unknown sample.

Initialization can be done using several options implemented in the
PARAFAC package [27]: (1) singular value decomposition (SVD) vectors,
(2) randomorthogonalized values and (3) the best-fittingmodel of sev-
eral models fitted using a few iterations. The first of these alternatives
was employed in the present work.

Constraints during the PARAFACfitmight be employed for retrieving
physically recognizable profiles in the different modes. However, in the
present case such restrictions were not necessary.

The number of responsive components (N) can be estimated by sev-
eral techniques, such as CORCONDIA, a diagnostic tool considering the
PARAFAC internal parameter known as core consistency [28,29]. Anoth-
er useful technique is the consideration of the PARAFAC residual error
(SSE), i.e., the sumof the squared elements of the array E in Eq. (1) [25]:

SSE ¼ ∑
Icalþ1

i¼1
∑
J

j¼1
∑
K

k¼1
∑
L

l¼1
eijkl
� �2 ð2Þ

Usually this parameter decreaseswith increasingN, until it stabilizes
at a value corresponding to the optimumnumber of components. In the
presently studied case, the progression of residual fits wasmore reliable
than the CONCORDIA test.

Identification of the chemical constituents under investigation is
done with the aid of the estimated profiles, mainly the emission and
Fig. 2. Fluoroquinolone structures: cationic, zwitterionic and anionic species.
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excitation spectra, and comparing them with those for a standard solu-
tion of the analyte of interest. This is required since the components ob-
tained by decomposition of X are sorted according to their contribution
to the overall spectral variance, and this order is not necessarily main-
tained when the unknown sample is changed.

Absolute analyte concentrations are obtained after calibration, be-
cause the four-way array decomposition only provides relative values
(A). Calibration is done bymeans of the set of standardswith known an-
alyte concentrations (contained in an Ical × 1 vector ycal), and regression
of the first Ical elements of column an (provided by the calibration sam-
ples) against ycal:

k ¼ ycal
þ � an 1…Icalð Þ ð3Þ

where ‘+’ implies taking the pseudo-inverse. Conversion of relative to
absolute concentration of component n in the unknown proceeds by di-
vision of the last element of column an by the slope of the calibration
graph k:

yu ¼ an Ical þ 1ð Þ=k ð4Þ

the above procedure is repeated for each new test sample analyzed.
It is noteworthy that even when there are several species in equilib-

rium for a given analyte (in the present work, acid-base species), the
values contained in the vector ycal are total analyte concentrations. On
the contrary, the scores an are specific for a given analyte species. There-
fore, several pseudo-univariate graphs can in principle be obtained, by
regressing the scores for each analyte species against the nominal ana-
lyte concentrations. The most sensitive of these graphs is chosen to
Fig. 3. Contour plots of the EEMs third-order data for: (A) OFLO 0.50 mg L−1 and a typical ur
Excitation and emission wavelengths are indicated in each case. Each contour plots correspond
predict the analyte concentration, i.e., the one with largest value of the
slope k in Eq. (3).

3.2. Software

All calculations were done using MATLAB 7.0, using different rou-
tines and graphical interfaces: MVC3 (Multivariate Calibration for
third-order) [30], an integratedMATLAB toolbox for third-order calibra-
tion, freely available on the Internet [31].

4. Results and discussion

4.1. General considerations

As previously mentioned, FQs are compounds which exhibit pH-de-
pendentfluorescence. The studied FQs present a carboxylic group at po-
sition 3 and a basic piperazinyl group at position 7. Therefore, in
aqueous solution 7-piperazinylquinolones show three different species,
which are cationic, zwitterionic and anionic (Fig. 2). The reported pKa
values for these FQs fall in the ranges of 5.5–6.6 and 7.2–8.9 for pKa1
and pKa2, respectively [32]. In order to optimize the composition of
the carrier and injection solutions, the pH behavior of the different
FQs was previously evaluated in batch. According to the results, we
have set the pH values of the carrier (HAc 0.025 mol L−1, pH about 3)
and the injection solution (NaHCO3 5 × 10−3 mol L−1, pH about 7) so
that the dominating species in our experiments are: the protonated spe-
cies occurring below pH ≅ 6, and the neutral form (mainly zwitterionic)
above this pH value (from here on, we will refer as acid and alkaline
forms, respectively). These selected species exhibit a higher fluorescent
ine sample diluted 1/200, (B) CIP 0.50 mg L−1 and a typical urine sample diluted 1/200.
to a FIA point in the pH dimension, representing the evolution along the sample injection.



Fig. 4. Contour plots of FQs and interferents: (A) OFLO and SA (B); CIP and SA; (C) CIP and
NX. FQs alkaline form, (solid line, blue); FQs acid form, (dashed line, red); SA and NX
(dotted line, green). FQs and interferents at 1.00 mg L−1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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signal and a better spectral discrimination in comparison with the an-
ionic form. In addition, isofluorescent points are found when plotting
the emission spectra at different pH values, in accordancewith the pres-
ence of two species in each case: 470 nm for OFLO, and 440 for CIP and
NOR, as discussed in previous works [17].

Different FIA experimental conditions were tested (i.e. reactor
lengths, injection loops and flow rate) in order to obtain a gradual pH
variation, leading to suitable pH profiles. A high scanning rate and a
very slow flow (0.17 mL min−1) during the data collection were
employed with the purpose of minimizing changes in the concentra-
tions of the constituents as recording a complete EEM (about 20 s),
while the pH evolves in the flow stream. The initial flow value
(0.23 mL min−1) described in Section 2.5 aims to reduce the analyses
time.

When typical experimental samples are injected into the flow
stream and EEMs are collected, third-order data are obtained whose
contour plots are shown in Fig. 3. According to a previous report [17],
FQs exhibit a shift to shorterwavelengths and a decrease in the intensity
when pH changes from acid to alkaline values, related to the conversion
from the cationic into the zwitterionic form (see plots on the left of
Fig. 3A and B). In addition, the emission wavelengths of OFLO (both in
protonated and neutral form) are longer than those corresponding to
CIP. The pH-spectral behavior of NOR is similar to CIP, hence it is not
shown. Finally, urine contour plots display no shifts in fluorescent emis-
sion as the pH changes (see plots on the right of Fig. 3A and B).However,
the urine background is significantly overlapped with the excitation
mode of both forms of CIP and NOR, and to a lesser extent with OFLO.

As has already been stated in the experimental section, the analyzed
urine samples also present other compounds, SA and NX, unmodeled
during the calibration step. Fig. 4A shows that for OFLO, the excitation
mode presents the most significant overlapping, mainly for both alka-
line and acid forms with SA at 300 nm. For CIP and NOR, which have
similar spectral behavior, the emission mode of the alkaline form is af-
fected by the presence of SA (Fig. 4B) whereas the excitation mode of
both FQs forms is largely overlapped with NX (Fig. 4C). In conclusion,
all the unmodeled compounds exhibit different degrees of overlapping
with the analytes in the spectral modes, posing different challenges
for the algorithms.

Finally, the EEM-pH data arrays obtained for the different sets of the
studied FQs were analyzed using PARAFAC, considering that the exper-
imental design was conducted to avoid the loss of multilinearity in the
data array, a requirement for a successful PARAFAC decomposition. In
addition, this algorithm allows attaining the second-order advantage,
which is required taking into account the composition of the analyzed
samples.

4.2. PARAFAC analysis

When PARAFAC analysis of the different experimental data sets was
performed, the first step was the estimation of the number of respon-
sive components. This can in principle be assessed using either the diag-
nostic tool known as the core consistency test or the consideration of
the residual fit of the PARAFAC model, as the number of components
is increased. For validation samples containing only FQ, the progression
of residual fits, as well as the core consistency values indicates the stabi-
lization at two components, in agreementwith the expected responsive
components: the fluorescent acidic and alkaline forms.When analyzing
urine samples, either in the presence or absence of other interfering
compounds (SA andNX), the consideration of the residual fit ismore re-
liable than the CONCORDIA test: whereas the progression of the core
consistency values (100, 48.5, 5.04 and negative value for 1–4 compo-
nents) suggests two components, the changes in fitting residuals (24,
13, 11 and 11 from 1 to 4 components, respectively) indicate stabiliza-
tion at three components, as expected: both FQ forms and at least one
interferent. The fitting residual (11–16 units) is comparable to the esti-
mated level of instrumental noise. In conclusion, for all FQs in urine
samples, three components were enough to explain the variability of
the four-data array.

PARAFAC was initialized using SVD, without constrains during the
least-squares fit. It is noteworthy that uniqueness is preserved for a
four-way data array, even in the presence of correlation between com-
ponents in one mode, i.e. when a conjugate acid-base pair is present
[33]. Furthermore, the best performancewas obtained using a restricted
pH range, from sensor 1 to 25 for OFLO andNOR, and from sensor 1 to 30
for CIP. As shown in Fig. 5, PARAFAC was able to satisfactorily retrieve
the spectral profiles of the calibrated components. The retrieved pHpro-
files of FQs are consistent with their acid-basic behaviour, as previously



Fig. 5. Experimental and retrievedprofileswhen PARAFACwas applied for FQs determination. Profiles can be identified as: retrieved (dashed line, red) and experimental (dashed line, dark
yellow) acid analyte form; retrieved (solid line, blue) and experimental (solid line, cyan) alkaline analyte form; interferents (dotted line, green), for urine samples spiked with (A) OFLO
0.10mg L−1, (B) CIP 0.25mgL−1 and SA 0.80mg L−1 (C)NOR0.30mg L−1 andNX0.70mgL−1. All profileswere normalized to unit length. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Table 2
Predicted concentrations for OFLO in urine samples.
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described. In general, the unmodeled compounds in the calibration step
were recovered as a single component (urine, urine and SA or NX).
PARAFAC was not able to discern between the profiles of each foreign
constituent, retrieving the interference as a single unexpected constitu-
ent. However, this fact did not preclude the obtainment of good analyt-
ical results in these samples.

Once the analyte profiles were identified, prediction proceeded by
the usual interpolation into the pseudo-univariate calibration graph,
built with the scores for the species of the analytewhich provided better
sensitivity, in this case the acid form, as has already been stated in the
PARAFAC theory Section 4.1.

In a first stage, validation samples for the three analytes were ana-
lyzed, providing the following results in termsof relative error of predic-
tion (REP), expressed in % with respect to the mean calibration
concentration: 4.6, 3.6 and 4.9 for OFLO, CIP and NOR, respectively
(see Table 1). Afterward, the test urine samples were evaluated and
the recovered root mean square errors (RMSE) and REP values are
Table 1
Predicted concentrations for FQs in validation samples.

OFLO CIP NOR

Nominala Predicteda Nominala Predicteda Nominala Predicteda

0.20 0.23 0.15 0.16 0.15 0.13
0.30 0.31 0.30 0.33 0.30 0.29
0.50 0.51 0.50 0.52 0.50 0.51
0.66 0.62 0.60 0.61 0.70 0.75
0.75 0.77 0.75 0.73 0.85 0.87
0.90 0.94 0.85 0.86 0.95 0.94

RMSEb 0.024 0.018 0.024
REPc 4.7 3.6 4.9

a Concentrations are all given in the measuring cell, expressed in mg L−1.
b RMSE, root mean square error, expressed in mg L−1.
c REP%, relative error of prediction, expressed (in %) with respect to the mean of cali-

bration concentrations (0.5 mg L−1).
summarized in Tables 2, 3 and 4, showing accurate predictions for the
different systems, with REP % values ranged from 3.3 up to 7.4.

PARAFAC satisfactory results allow to assert that there is no loss of
multilinearity caused neither by irreproducibility in the pH gradient,
nor by the finite time employed by the spectrofluorimeter in recording
thematrix, in comparisonwith the time elapsed between successive pH
points.

In order to qualify the method, figures of merit were calculated for
the studied FQs. Very recently, expressions for multi-way calibration
based on the concept of input and output noise in a given system
were derived, and these expressions were used to compute the figures
of merit in the present work. Sensitivity (SEN) measures the ratio of
Urine samples Urine samples with SA

Nominala Predicteda Nominala Predicteda

OFLO OFLO SA

0 0.02 0 0.40 0.002
0.10 0.11 0 0.80 0.02
0.20 0.22 0.15 0.20 0.15
0.30 0.30 0.25 0.80 0.25
0.38 0.41 0.30 0.70 0.32
0.50 0.50 0.40 0.40 0.43
0.66 0.69 0.52 0.60 0.52
0.75 0.74 0.60 0.52 0.63
0.90 0.90 0.72 0.20 0.72
1.00 1.02 0.90 0.30 0.85

1.00 1.00 0.94

RMSEb 0.018 0.028
REPc 3.6 5.6

a Concentrations are all given in the measuring cell, expressed in mg L−1.
b RMSE, root mean square error, expressed in mg L−1.
c REP%, relative error of prediction, expressed (in %) with respect to the mean of cali-

bration concentrations (0.5 mg L−1).



Table 3
Predicted concentrations for CIP in urine samples.

Urine samples Urine samples with SA Urine samples with NX

Nominala Predicteda Nominala Predicteda Nominala Predicteda

CIP CIP SA CIP NX

0 0.001 0 0.40 0.02 0.15 0.20 0.18
0.15 0.16 0 0.80 0.01 0.30 0.70 0.31
0.30 0.33 0.15 0.20 0.16 0.50 0.50 0.46
0.42 0.42 0.25 0.80 0.24 0.60 0.87 0.64
0.50 0.51 0.30 0.70 0.33 0.70 0.30 0.66
0.65 0.62 0.42 0.90 0.39 0.85 0.30 0.90
075 0.74 0.50 0.40 0.54
0.80 0.80 0.60 0.15 0.58
0.90 0.88 0.70 0.30 0.73

0.85 0.80 0.83
0.90 0.30 0.87

RMSEb 0.017 0.024 0.037
REPc 3.3 4.8 7.4

a Concentrations are all given in the measuring cell, expressed in mg L−1.
b RMSE, root mean square error, expressed in mg L−1.
c REP%, relative error of prediction, expressed (in %) with respect to the mean of cali-

bration concentrations (0.5 mg L−1).

Table 5
Analytical figures of merit for PARAFAC method in urine samples.

Figures of merit OFLO CIP NOR

SEN (mg−1 L)a 12,000 9600 7400
γn (mg−1 L)b 700 600 680
LOD (mg L−1)c 0.035 0.028 0.035
LOQ (mg L−1)d 0.11 0.08 0.11

a SEN: sensitivity.
b Analytical sensitivity, calculated as sensitivity/sdtest; sdtest: residual fit of the test

sample signal.
c LOD: limit of detection.
d LOQ: limit of quantitation.

217A.P. Pagani, G.A. IbañezMicrochemical Journal 132 (2017) 211–218
output noise to input noise, and can be defined as the variation in net re-
sponse for a given change in analyte concentration [34]. The obtained
figures of merit (Table 5) when applying PARAFAC in urine samples
were satisfactory, with detection limits on the order of 0.028–
0.035 mg L−1 for all FQs, calculated according to Ref [35].

With the purpose of getting further insight into the accuracy and
precision of the proposed method, nominal versus found concentration
values were compared by application of the elliptical joint confidence
region (EJCR) test [36], taking into account all urine samples for each
FQ. The conclusion is that all the ellipses (at 95% confidence level) con-
tain the ideal point and have a small size (see Fig. 6), indicating great an-
alytical accuracy and precision, as expected. Specific results for the
regressions are: OFLO, slope = 0.97 ± 0.03, intercept = 0.02 ± 0.02;
CIP, slope = 0.98 ± 0.03, intercept = 0.01 ± 0.02; NOR, slope =
0.98 ± 0.03, intercept = 0.01 ± 0.01 (confidence intervals at the 95%
confidence level). All slopes and intercepts are statistically comparable
to 1 and 0, respectively.
Table 4
Predicted concentrations for NOR in urine samples.

Urine samples Urine samples with SA Urine samples with NX

Nominala Predicteda Nominala Predicteda Nominala Predicteda

NOR NOR SA NOR NX

0 0.00 0 0.40 0.02 0.15 0.20 0.18
0.15 0.14 0 0.80 0.01 0.30 0.70 0.33
0.20 0.19 0.15 0.20 0.14 0.50 0.50 0.55
0.30 0.31 0.23 0.80 0.24 0.60 0.87 0.62
0.45 0.42 0.30 0.70 0.31 0.70 0.30 0.68
0.50 0.47 0.40 0.70 0.40 0.85 0.30 0.86
0.60 0.59 0.50 0.50 0.54
0.65 0.62 0.63 0.30 0.62
0.75 0.74 0.70 0.30 0.68
0.80 0.81 0.85 0.90 0.84

0.90 0.40 0.90

RMSEb 0.033 0.017 0.029
REPc 6.7 3.4 5.8

a Concentrations are all given in the measuring cell, expressed in mg L−1.
b RMSE, root mean square error, expressed in mg L−1.
c REP%, relative error of prediction, expressed (in %) with respect to the mean of cali-

bration concentrations (0.5 mg L−1).
5. Conclusions

Innovative third-order data based on excitation-emission fluores-
cence matrices modulated by a double pH gradient were obtained in a
fast and simple way, and allowed the quantitation of fluoroquinolones
in unprocessed urine samples. PARAFACwas able to give satisfactory re-
sults in all the studied systems, highlighting that in the experimental
conditions the data array complies with the multilinearity conditions.
Furthermore, the algorithm can handle the presence of unmodeled
compounds with dissimilar degrees of overlap in the different spectral
modes. PARAFAC,which uses all the data structure and has the property
of uniqueness, satisfactorily retrieved the analytes and interferent pro-
files, which ensures reaching physically interpretable results.

As previously stated, the increase of data order might produce more
stable methods towards background effects and changes in the experi-
mental conditions, improving the prediction ability. Therefore, the use
of higher-order data, as the presently reported third-order data, enables
new analytical strategies for resolving analytical situations in complex
samples.
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Fig. 6. Elliptical joint regions (at 95% confidence level) for the slopes and intercepts of the
regressions for the corresponding predictions for OFLO (dashed line, red), CIP (solid line,
green) and NOR (dotted line, blue). The black circle in the elliptical plots marks the
theoretical (intercept = 0, slope = 1) point. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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