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a  b  s  t  r  a  c  t

This  paper  presents  the  development  of  a  non-aqueous  capillary  electrophoresis  method  coupled  to
UV detection  combined  with  multivariate  curve  resolution-alternating  least-squares  (MCR-ALS)  to  carry
out the  resolution  and  quantitation  of  a mixture  of  six  phenolic  acids  in  virgin  olive  oil  samples.  p-
Coumaric,  caffeic,  ferulic,  3,4-dihydroxyphenylacetic,  vanillic  and  4-hydroxyphenilacetic  acids have  been
the analytes  under  study.  All  of them  present  different  absorption  spectra  and  overlapped  time  profiles
with  the  olive  oil  matrix  interferences  and  between  them.  The  modeling  strategy  involves the  building
of a single  MCR-ALS  model  composed  of  matrices  augmented  in the  temporal  mode,  namely  spectra
remain  invariant  while  time  profiles  may  change  from  sample  to sample.  So MCR-ALS  was used  to cope
with  the  coeluting  interferences,  on  accounting  the  second  order  advantage  inherent  to  this  algorithm
henolic acids
irgin olive oil

which,  in  addition,  is  able  to  handle  data  sets  deviating  from  trilinearity,  like the  data  herein  analyzed.
The  method  was  firstly  applied  to  resolve  standard  mixtures  of  the  analytes  randomly  prepared  in  1-
propanol  and,  secondly,  in real  virgin  olive  oil  samples,  getting  recovery  values  near  to  100%  in all cases.

The  importance  and  novelty  of this  methodology  relies  on  the  combination  of  non-aqueous  capillary

electrophoresis  second-order  

these  compounds  simplifying  
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. Introduction

Under the denomination “phenolic compounds” there are more
han 4000 compounds divided in 12 subclasses [1]. Currently, these
ompounds are receiving considerable attention, fundamentally
ue to its antioxidant activity, strongly related to the preven-
ion of cancer, inflammatory disorders and cardiovascular diseases
2,3]. They are part of the minor components of virgin olive oil
VOO), one of the most important foods in the Mediterranean
iet which has associated many benefits for the human health,
ssentially due to its content in these compounds [4].  In addition,
henolic compounds and their strong natural antioxidant activity
ontribute to the stability of VOO against oxidation and influence
n its organoleptic characteristics and nutritional qualities [5].  The
omposition of phenolic compounds in VOO is related to agronomic
nd technological aspects [6].

For the quantitation of phenolic compounds in VOO it is impor-
ant to carry out a complete extraction of this fraction from the oil.
able 1 shows the most used procedures (both traditionally and
owadays) and a comparison between them. Both the liquid–liquid
xtraction (LLE) and the solid phase extraction (SPE) procedures
re complex, tedious and time consuming. In addition, it is habit-
al to have a great consumption of toxic solvents, like hexane [1].
owadays, the traditional methods for detection and quantitation
f phenolic compounds have been replaced by separation tech-
iques, such as gas chromatography (GC), high performance liquid
hromatography (HPLC) and capillary electrophoresis (CE) coupled
o different detectors [12–15,20,21]. CE is getting importance and
opularity for the analysis of food components, mainly due to the
ombination of short analysis time and high separation efficiency
22]. In addition, and especially in the case of non-aqueous matri-
es as those of olive oil samples, the pretreatment of the sample
an be greatly simplified using the non-aqueous capillary elec-
rophoresis (NACE) mode. Compared with aqueous capillary zone
lectrophoresis (CZE), NACE has the advantages of wide bore cap-
llary as a consequence of a minor Joule effect, fast analysis since
t is possible to use a higher separation voltage, low adsorption on
he capillary wall, and high separation selectivity by selecting the
dequate non aqueous background electrolyte (BGE) [23].

Ideally, in optimized conditions, electrophoretic experiments
ead to total analytes separation, i.e. each peak belongs to a sin-
le compound. It is interesting to note that, although a complete
eparation of the peaks could not be performed, second order
ata coupled to chemometrics can be used to achieve selectivity
y mathematical means, allowing for resolution and quantita-
ion of overlapped analytes [24,25].  The information provided
y the second-order signals, adequately decomposed by suitable
econd-order algorithms, can be uniquely ascribed to the ana-
yte of interest, even in the presence of unexpected components
ot considered in the calibration stage. This property is called the
econd-order advantage and avoids the requirement of physically
emoving interferences [26,27].  Among the available second order
lgorithms, MCR-ALS and PARAFAC2, a variant of PARAFAC (paral-
el factor analysis) [28], are those able to handle second order data
eviating from trilinearity, i.e. when changes in shape and/or posi-
ion of component profiles from sample to sample occur, which
s commonly found in capillary electrophoresis data [29–32].  To
vercome this challenge, MCR-ALS was performed in the so-called
xtended mode [33], which involves building an augmented data
atrix by appending calibration and test data matrices in the

ime direction, i.e. the rows represent spectra and the columns
ime profiles, because this alleviates the problems associated with

ample-to-sample differences in this dimension.

Regarding the published works in this context, Sentellas and
aurina reviewed in 2003 the application of chemometrics in CE,
n which the methods for data analysis [34] and optimization [35]
 Chimica Acta 763 (2013) 11– 19

were introduced. In later years, both first- and second-order meth-
ods have been also used for quantification in CE, including principal
component regression (PCR), partial least squares regression (PLS),
multiple linear regression (MLR), artificial neural networks (ANN)
[36–38] and MCR-ALS [24,32,39].  CE coupled with chemometric
methods enhances its ability of separation and analysis tremen-
dously. Regarding the combination of chemometric and CE for
food analysis, many papers have been published in the authenti-
cation and characterization field [36,37]. However, to the best of
our knowledge, no paper has been published regarding the use
of second order data and CE in the food analysis field for resolu-
tion and quantitation. In this context, we pretend innovatively to
develop a non-aqueous capillary electrophoresis method coupled
to UV detection (NACE-DAD) and combine it with the MCR-ALS
algorithm to carry out the resolution and quantitation of a complex
mixture of six phenolic acids in VOO samples, in a short period of
time and without being necessary a complex experimental work.

2. Theory

2.1. Baseline correction adapted to second order data

Generally, the elimination of baseline is crucial for reducing
the number and complexity of the unexpected components. In
this work, baseline correction was carried out according to the
asymmetric least-squares methodology proposed by Eilers [40] and
adapted to second-order data [41], which consists in the minimi-
zation of the cost function:

Q =
∑

i

vi(yi − fi)
2 + �

∑

i

(�2fi)
2

(1)

in which y is the experimental signal, f is a smooth trend (the base-
line approximation), and v is a prior weight. The elements of v are 1
in all places where y is observed or allowed to influence f, while, in
all other places, these elements are 0. The positive parameter � sets
the second term weight. It acts as a roughness penalty: the larger
�, the smoother f will be. � denotes the derivative of f.

Taking into account the following choice of asymmetric weights:
vJK = p if yJK > fJK and vJK = 1 – p if yJK ≤ fJK with 0 < p < 1, positive
deviation from the trend will get weights different from negative
residuals. Experience demonstrates that a quick and reliable solu-
tion could be achieved in about 10 iterations, starting from v ∼= 1
and iterating between the two  computations.

2.2. MCR-ALS

MCR-ALS is an algorithm capable of handling data sets deviat-
ing from trilinearity, i.e. data in which migration time shifts or peak
shape changes occur for analytes from sample to sample. This can
be done due to the strategy of augmenting matrices along the mode
which is suspected of breaking the trilinear structure, i.e. if matrix-
to-matrix variation of profiles occurs along the column direction,
a column-wise augmented matrix is created. The bilinear decom-
position of the augmented matrix D is performed according to the
expression:

D = C × ST + E (2)

in which the rows of D contain the UV–Vis spectra (K wave-
lengths), as a function of time (J times), the columns of C contain
the time profiles of the N compounds involved in the process, the
columns of S their related spectra, and E is a matrix of residuals

not fitted by the model. Decomposition of D is achieved by itera-
tive least-squares minimization of ||E||, under suitable constraining
conditions, i.e. non-negativity in the spectral profiles, unimodal-
ity and non-negativity in the time profiles, correspondence among
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Table 1
Commonly utilized procedures to carry out the extraction of phenolic compounds from VOO samples.

Extraction procedure Characteristics References

Liquid–liquid extraction (LLE) Oil previously dissolved in hexane
Several portions of methanol/water as extracting solvent

[7,8]

Solid phase extraction (SPE) C18 cartridges
Methanol as elution solvent
Phenols are separated from VOO for the first time

[9]

LLE vs. SPE

LLE according to Montedoro et al. [7]
SPE, Alltech C18 Extract – Clean High Capacity cartridges, methanol as elution solvent
SPE more efficient to separate simple phenols
The recovery of the secoiridoid derivatives using LLE is higher

[10]

LLE using methanol/water 60:40 (v/v) and VOO dissolved in hexane
SPE using C8 cartridges and acetonitrile as elution solvent
Significant differences in the phenols recovery were not found

[11]

SPE using C8, modified C8, C18 or Diol cartridges and LLE were examined
Diol-SPE and LLE showed higher recoveries of total phenols than other extraction procedures

[12]

LLE  with SPE using C18, Diol or Sax cartridges were compared
Diol-SPE and LLE methods were found more effective for the extraction of tyrosol, hydroxytyrosol,

[13]
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LLE and Diol-SPE The most utilized procedure to carry out

pecies and samples in the case of samples containing uncalibrated
nterferents.

Typically D is built by placing one on top of another the cali-
ration submatrices and each of the test data submatrices. While
he pure spectrum of each compound should be the same in all
xperiments and the spectral mode must be selective, the tempo-
al profiles in the different C submatrices need not share a common
hape. This is the reason why electropherographic runs can be ana-
yzed together even in the presence of migration time shifts from
ample to sample, i.e. non-trilinear data.

It is necessary to point out that MCR-ALS requires initialization
ith system parameters as close as possible to the final results. In

ur case, the analyte and interference spectra are required, because
he resolution is based on the selectivity in the spectral mode. In
his work, the latter were obtained by a combination of the selec-
ion of the purest spectra for the interferents based on SIMPLISMA
simple interactive self-modeling mixture analysis) [42] and the
ntroduction of the real spectra for the analytes.

. Materials and methods

.1. Chemicals and reagents

For all experiments, analytical reagent grade chemicals and sol-
ents were used. Ultrapure water was obtained from a Millipore
illi-QA10 System (Waters, Germany). p-Coumaric acid (p-CUM),

affeic acid (CAF), ferulic acid (FER), 3,4-dihydroxybenzoic acid
DOPAC), vanillic acid (VAN) and 4-hydroxyphenylacetic acid (4HP)
ere obtained from Sigma–Aldrich Chemie GmbH (Steinheim,
ermany). Boric acid (ACS quality) was provided by Carlo Erba

Italy) and potassium hydroxide (PA quality) by Merck (Germany).
ll employed solvents were HPLC grade, ethanol was provided by
anreac (Spain), 1-propanol by Sigma–Aldrich (USA) and methanol
y Scharlau (Spain).

.2. Standards and samples

1.00 mg  mL−1 stock solutions of each compound were prepared
n volumetric flasks by dissolving the suitable amount of the com-

ercial products and diluting to the mark with 1-propanol. These

olutions were stored at 4 ◦C, avoiding exposure to direct light.
resh solutions of lower concentrations were prepared by appro-
riate dilution of the stock solution with the selected solvent. Olive
il samples were acquired from the market and were kept at 4 ◦C
traction of these kinds of compounds from olive oil samples. [5,14–19]

avoiding exposure to direct light. It is important to clarify that these
samples are characterized as a particular group of VOO, called extra
virgin olive oil (EVOO), since they own an acidity ≤2.0%.

3.3. CE method

CE was performed using a capillary electrophoresis system 3DCE
(Agilent Technologies, Waldbronn, Germany) equipped with tem-
perature control devices in the sample tray (by a thermostatic
bath) and in the capillary (by forced air) and a DAD (Agilent Tech-
nologies, Germany). Fused-silica capillaries of 49 cm in length and
75 �m inner diameter (375 �m outer diameter) were used (Agi-
lent Technologies, Germany). The software package ChemStation
was used to control the instrument, and for acquisition of signals.
The instrumental and chemical separation conditions [43] were
the following: separation voltage, +20 kV; hydrodynamic injec-
tion, −30 mbar for 6 s in the cathode; separation temperature,
35 ◦C; temperature of the sample tray, 20 ◦C; BGE, 18 mM KOH
and 25 mM boric acid in a 74:26 v:v 1-propanol:methanol medium
(pH* = 11.2). In these conditions all analytes are negatively charged
and migrate to the anode against of EOF spending a maximum time
of 10–12 min.

At the beginning of the day, the capillary was rinsed with water
for 3 min  (2 bar), flushed with aqueous NaOH 0.1 M for 1 min and
rinsed with water and 1-propanol, successively, for 3 min  each
(2 bar). For the separation, the capillary was previously flushed with
BGE for 3 min  (900 mbar) and after the separation, in the post condi-
tioning, it was rinsed with 1-propanol (3 min, 2 bar), water (5 min,
2 bar) and 1-propanol again (2 min, 2 bar). Every three injections the
post conditioning was  changed as follows: rinse with 1-propanol
for 3 min and water for 2 min  (2 bar), flush with aqueous NaOH
0.1 M (900 mbar, 0.2 min) and rinse with water and 1-propanol,
successively, for 2 min  each (2 bar).

For each electropherogram, spectra were registered in the range
200–400 nm each 2 nm,  at regular steps 0.8 s for a total time of
12 min. The matrices were built by placing the wavelengths in
columns and the times in rows (therefore with dimensions of
901 × 102, although selected regions were subsequently employed
for multivariate calibration).
3.4. Software

Data were saved in ASCII format, and transferred to a PC
for subsequent manipulation by chemometric programs. All
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Table 2
Prediction results of the validation samples using MCR-ALS.

Sample p-CUM CAF FER DOPAC VAN 4HP

Actual Predicteda Actual Predicteda Actual Predicteda Actual Predicteda Actual Predicteda Actual Predicteda

1 9.90 9.33 (94.3) 9.54 7.72 (80.9) 9.09 7.56 (83.2) 10.4 8.75 (83.8) 9.90 9.30 (93.9) 3.09 3.41 (110)
2  3.30 3.45 (104) 9.54 8.33 (87.3) 9.09 7.09 (78.0) 10.4 9.64 (92.4) 9.90 9.63 (97.3) 9.27 7.71 (83.3)
3  3.30 3.16 (95.6) 3.18 2.70 (84.8) 9.09 7.74 (85.2) 3.48 4.07 (117) 9.90 10.1 (102) 9.27 8.30 (89.5)
4 3.30  3.11 (94.2) 3.18 2.67 (84.1) 3.03 2.35 (77.4) 10.4 9.12 (87.4) 3.30 3.04 (92.2) 9.27 7.65 (82.5)
5 9.90  9.37 (94.6) 3.18 2.66 (83.8) 3.03 2.26 (74.4) 3.48 3.71 (107) 9.90 9.91 (100) 9.27 7.55 (81.5)
6  9.90 9.81 (99.0) 9.54 8.36 (87.6) 9.09 7.62 (83.9) 3.48 3.76 (108) 9.90 9.99 (101) 3.09 3.39 (110)
7  3.30 3.21 (97.3) 9.54 8.87 (93.0) 9.09 7.77 (85.4) 10.4 9.68 (92.8) 3.30 3.63 (110) 9.27 7.50 (80.9)
8  9.90 9.43 (95.3) 3.18 2.61 (82.0) 9.09 7.98 (87.8) 10.4 9.44 (90.4) 9.90 9.46 (95.5) 3.09 3.14 (102)
9  3.30 3.18 (96.4) 3.18 2.94 (92.6) 3.03 2.40 (79.1) 3.48 3.54 (102) 3.30 3.49 (106) 3.09 3.35 (108)
10 6.60  6.41 (97.2) 6.36 5.24 (82.4) 6.06 4.98 (82.2) 6.96 5.86 (84.2) 6.60 5.93 (89.8) 6.18 5.04 (81.6)
RMSEb 0.31 0.95 1.24 0.90 0.36 1.17
REPc 5.2 15.8 20.7 15.0 6.08 19.4

a Concentrations are given in �g mL−1 and recoveries (between parentheses) are given in percentage.
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[∑I

1
(cact − cpred)2/1

]1/2
, where I = 10.

c REP (relative error of prediction) = 100 × RMSE/c̄, where c̄ is the mean calibrat

mployed algorithms were implemented in MATLAB 7.6 [44].
hose for applying MCR-ALS are available in the Internet at
ttp://www.mcrals.info/. Homemade routines based on the Eilers
lgorithm were applied to perform the second-order data baseline
orrection [40].

.5. Calibration and model validation procedure

For calibration, a set of standard samples of each analyte
as prepared by triplicate in a concentration range from 2 to

0 �g mL−1 by dilution of known amounts of the phenolic acids
tock solutions in 1-propanol. For computing figures of merit, the
eak areas of the phenolic compounds predicted by MCR-ALS were
lotted against the nominal concentrations and the lines were fit-
ed by a least-squares method. Then, the figures of merit were
alculated according to Saurina et al. [45].

For model validation, 10 standard mixtures were randomly pre-
ared in concentrations between 3 and 9 �g mL−1 (Table 2) in
-propanol, taking into account the concentration levels of these

ompounds in olive oil [46]. To perform the MCR  resolution, a D
ugmented matrix was built by appending the second order data
athered for these 10 mixtures together with those for the calibra-
ion samples (see Section 4.3 for more details). Then, the nominal

Fig. 1. Chemical structures of th
ncentration.

concentrations of each analyte were compared with those founded
taking into account the areas retrieved by MCR-ALS and the pseu-
dounivariate external standard calibration plots.

3.6. Virgin olive oil analysis

VOO samples (5 g) were accurately weighed in a centrifuge tube
and extracted with 1.00 mL  of ethanol stirring for 2 min  in an ultra-
sonic bath [47]. Later, the samples were centrifuged and, after the
separation of the phases, the ethanolic phase was directly injected
in the capillary. The electrophoretic analysis was  carried out using
the conditions described in Section 3.3.

To perform the determination of the phenolic compounds by the
standard addition calibration method coupled to MCR-ALS, second
order data for VOO samples (5 g) spiked with variable and grow-
ing concentrations of phenolic acids by triplicate were registered.
In this case, the D augmented matrix was composed of the VOO
sample and its additions appended with the calibration data (see

Section 4.4 for more details). The standard addition calibration plots
were built by representing the peak areas retrieved by MCR-ALS
versus the added concentration of each compound, in �g g−1 olive
oil. The recovery tests were carried out using the same data than in

e studied phenolic acids.

http://www.mcrals.info/
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Fig. 3. Two  dimensional contour plots for a 20 �g mL−1 standard of the six phenolic
ig. 2. Electropherograms for 20 �g mL−1 solutions of the phenolic acids in 1-
ropanol (A) and different 4HP standards of 10 and 20 �g mL−1 (B). BGE: 18 mM
OH, 25 mM boric acid in a 1-propanol:methanol 74:26 v:v medium.

he standard addition method, but subtracting the signal of found
henolic acids in the olive oil to the rest of signals.

. Results and discussion

.1. General considerations

As mentioned in Section 1, the main objective of the present
ork is to develop a chemometric method in combination with

he NACE technique for the resolution and determination of sev-
ral phenolic acids from a VOO sample in a short period of time
nd without being necessary a complex experimental work. In this
ense, our research was performed in two steps. Firstly, the pre-
iction ability of the selected algorithm according to the analytical
roblem under consideration was studied by applying MCR-ALS to
esolve and quantitate ten standard mixtures of the six studied phe-
olic acids (Fig. 1) randomly prepared at different concentrations.
hen, the application of the method for the resolution and deter-
ination of these compounds in a real VOO sample was carried

ut. The electrophoretic separation and detection were performed
sing the conditions described in Section 3.3.

.2. Electropherographic analysis

In Fig. 2 the electropherograms corresponding to different stan-
ards of each analyte are shown. It can be seen an important overlap
etween the different peaks and, in addition, peak shifts occur
etween different runs. Some of them, as in the case of 4HP, suffer

 marked shift (Fig. 2B).
The high complexity of the analytical problem under study can

lso be seen in Fig. 3, which shows two contour plots of the com-
lete landscape of absorbance as a function of wavelength and
igration time for a calibration sample composed of 20 �g mL−1

f the six phenolic acids (Fig. 3A), and for an ethanolic extract of a
OO sample spiked with them at the same concentrations (Fig. 3B).

In the present work, MCR-ALS was chosen for data processing
ecause this algorithm achieves the second-order advantage
ithout requiring that the electropherograms remain invariant

etween different runs for each analyte.

.3. Implementation of NACE–MCR-ALS to resolve standard
ixtures of phenolic acids
MCR-ALS is able to handle data sets deviating from trilinear-
ty, like the NACE data herein analyzed. Therefore and to exploit
his advantage, the electropherographic data was augmented in
he temporal mode, namely spectra remain invariant while time
acids (A) and an ethanolic extract of a VOO sample spiked with the six analytes at
the  same concentrations (B).

profiles may  change from sample to sample. In this way, a matrix-
to-matrix variation of profiles occurs along the column direction
and thus, a column-wise augmented matrix was  created (see Sec-
tion 2.2).

It is important to point out that the performance of the reso-
lution strongly depends on the knowledge of the global and local
properties of the data set, particularly on those related to the math-
ematical and chemical rank [48]. When applying SVD to determine
the correct number of compounds in the model validation matri-
ces, it was  not capable of detecting the right number of contributing
components which explain the variance of the system. This fact can
be ascribed to some similarities in the species spectra but especially
because of some identical migration times, i.e. such as in the case
of DOPAC and FER (see Fig. 2), leading to rank-deficient matrices.

This problem was  overcome by resorting to the strategy of matrix
augmentation [34,49],  i.e. to append matrices of pure analyte stan-
dards, in this case the calibration data, to the rank deficient matrices
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Table 3
Analytical figures of merit [45].

Analyte Lineal range
(�g mL−1)

Intercept ± SDa Slope ± SDa

(mL  �g−1)
Determination
coefficient (r2)

% linearity (Analytical sensitivity,
�)−1 (�g mL−1)

LODb

(�g mL−1)
LOQc

(�g mL−1)

p-CUM 2.20–11.0 −30 ± 15 105 ± 2 0.998 98 0.2 0.4 1
CAF 2.12–10.6 −34 ± 25 89 ± 3 0.990 96 0.4 0.8 2
FER  2.02–10.1 178 ± 12 53 ± 2 0.995 96 0.3 0.8 2
DOPAC 2.32–11.6 −43 ± 11 33 ± 1 0.989 96 0.4 0.9 3
VAN  2.20–11.0 −40 ± 11 68 ± 2 0.997 97 0.2 0.4 1
4HP  2.06–10.3 −40 ± 16 52 ± 3 0.986 95 0.4 0.9 3
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Fig. 4. Electropherogram (at 220 nm)  of an ethanolic extract of a VOO sample spiked
with 25 �g mL−1 of the six analytes (black solid line), the baseline calculated at
the same wavelength (black dashed line), and the corrected electropherogram, by
a SD, standard deviation.
b LOD, limit of detection.
c LOQ, limit of quantitation, calculated as (10/3)LOD.

nder study. This strategy, combined with the inclusion of informa-
ion about the correspondence among species in each submatrix,
eads to the successful MCR  resolution.

The external standard calibration plots were built between 2
nd 10 �g mL−1 of each phenolic acid in 1-propanol. In addition,
or model validation, a set of 10 samples was randomly prepared
Table 2). All these solutions were injected in the capillary and, the
btained data were then modeled by MCR-ALS. For this, a column-
ise augmented D data matrix was built by placing on top of each

ther all the calibration and validation data matrices, without per-
orming a region selection. As they were available, the real spectra
f the phenolic acids were provided to be used as initial estimations.

Decomposition was performed by imposing the restrictions
f non-negativity in spectral profiles and unimodality and non-
egativity in concentration profiles. Besides, successful MCR-ALS
as also aided by the inclusion of information about the correspon-
ence among species in each matrix (i.e. information as to whether

 given component exists or not in a given sample) [48].
The analytical figures of merit, calculated making used of the

seudounivariate calibration curves established with the relative
reas extracted for the calibration samples as described in Section
.5 are shown in Table 3. These pseudounivariate calibration curves
llowed us to predict the concentrations of the analytes in the
odel validation samples (Table 2). The recovery values as well as

he relative errors of prediction are satisfactory taking into account
he complexity of the data, i.e. very overlapped peaks with marked
ime shift between runs (Fig. 2).

.4. Application of NACE–MCR-ALS to the analysis of virgin olive
il

The proposed method was then applied to the resolution and
uantitation of the six phenolic acids in a VOO sample. The deter-
ination of these compounds was experimentally carried out by

sing a simple LLE with ethanol (Section 3.6). The ethanolic extract
as directly injected in the capillary and the separation was  per-

ormed in the optimized electrophoretic conditions (Section 3.3).
espite the simplicity of the experimental work, the standard addi-

ion calibration method was necessary, since it is not possible to
ccurately know the final volume of the extract, and subsequently
he amount of the analytes in it. Thus, for the experimental work,
liquots of 5 g of a VOO were spiked by triplicate with increasing
oncentrations of the phenolic acids, extracted with ethanol and
irectly injected in the capillary. The detection was performed with
he DAD by recording the spectral data between 200 and 400 nm in

 time not higher than 12 min.
The importance of the matrix influence is reflected in Fig. 3B,

here several unknown substances appear in the olive oil matrix,

aking necessary to model the data with a second order algorithm

apable of exploiting the second order advantage, like MCR-ALS.
n addition, a considerable baseline drift is present in these sam-
les (Fig. 4) and also in the standards (data not shown). Therefore a
subtraction of the baseline to the original electropherogram (red solid line). (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

baseline correction both for standards and VOO samples was  per-
formed (Section 2.1). The original electropherogram, the computed
baseline, and the corrected electropherogram for an ethanolic
extract of a VOO sample spiked with the phenolic acids (25 �g mL−1

of all of them) are shown in Fig. 4.
In the resolution of the phenolic acids from VOO samples not

only the great influence of the olive matrix, but also the peaks shift,
which also appears in the samples, difficult the analytical problem.
It can be appreciated in Fig. 5 the electropherograms for the VOO
sample spiked with the phenolic acids at increasing concentration
levels. In Fig. 5A, where the original electropherograms are shown,
the peak shifts can be observed and in Fig. 5B, the region in which
the analytes migrate has been expanded to show a better sight of
the problem under consideration. In order to simplify the resolu-
tion of the sample, due to the great interference of the olive oil
matrix, the total electropherographic data was divided in different
regions: region 1 to resolve p-CUM and CAF, region 2 for FER, region
3 for DOPAC, region 4 for VAN and, finally region 5 to resolve 4HP.
The regions of temporal sensors in which the total electrophero-
graphic data was  split in order to build individual MCR-ALS models
can be seen in Table 4. However, previously to the regions estab-
lishment, a manual alignment of the samples was applied in order
to simplify the MCR-ALS resolution. The final alignment of the sam-
ple electropherograms can be seen in Fig. 5B, as well as the selected
regions.

Once the data was obtained and treated as it has been men-
tioned, column-wise augmented D data matrices were built to

resolve the analytes by MCR-ALS. Taking into consideration the
rank deficiency of the real VOO sample data, the resolution was
also conducted appending the calibration data to the real sample
data. To build the initial estimations, the spectra of the interferences
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Fig. 5. (A) Original electropherograms of a VOO sample and it spiked with increasing co
tropherograms of the different additions to the VOO sample. Regions in which the total
(p-CUM  and CAF), region 2 (FER), region 3 (DOPAC), region 4 (VAN) and region 5 (4HP).

Table 4
Regions in which the total electropherographic VOO sample data was  split in order
to  build individual MCR-ALS models after the manual alignment and MCR-ALS nec-
essary factors.

Region Analytes Time sensors Spectral
region (nm)

MCR-ALS
factors

1 p-CUM/CAF 48–68 220–400 8
2 FER 58–78 220–400 10
3  DOPAC 58–68 220–400 9

w
S
p
o
(
r
n
i
e
a

a reasonable agreement between the real VAN spectrum and the

F
a

4 VAN 68–83 220–400 12
5 4HB 94–142 220–400 15

ere obtained from the analysis of the purest spectra based on the
IMPLISMA methodology [42] applied to the VOO matrix without
henolic acids additions, and combined with the known spectra
f the pure analytes. Then, each one of the established regions
Fig. 5B) was successively resolved for the VOO sample and its cor-
esponding phenolic acids additions by imposing the restrictions of

on-negativity in spectral profiles, unimodality and no-negativity

n concentration profiles and correspondence among species in
ach matrix. The latter restriction, which denotes the presence or
bsence of species in each appended submatrix, was implemented

ig. 6. Electropherograms retrieved by MCR-ALS processing of a VOO sample and success
nd  different components (dashed lines).
ncentration levels of the phenolic acids (220 nm). (B) Expanded and aligned elec-
 electropherographic data were divided in order to simplify the analysis: region 1

taking into account the unexpected components present in each of
the 5 regions. Table 4 includes the number of factors needed to per-
form the resolution of each analyte in its region, which evidences
the great complexity of the sample matrix, considering that it was
perform in the presence of 6–14 non calibrated interferences. As
an example of how each sample was analyzed, the extracted time
profiles of region 4 are shown in Fig. 6. In this region, which cor-
responds to the analyte VAN, twelve components were necessary
to model the system. As can be seen in the four sub-figures, sev-
eral profiles were extracted in the VOO sample, showing a severe
overlapping between them. The decomposition of the data into the
relevant contributions, by using the MCR-ALS algorithm, allows
using the areas under the extracted temporal profiles for quanti-
tative purposes. Thus, the isolation of the areas corresponding to
VAN for this region (black solid line), in each studied sample, can
be used for accurate analyte quantitation. In Fig. 7 the normalized
real spectrum of VAN and those extracted by MCR-ALS for VAN and
all the components of region 4 are shown. As can be seen, there is
profile extracted by MCR  (correlation coefficient equal to 0.999).
It is relevant to mention that a good concordance is obtained for
all the studied analytes, i.e. correlation coefficients equal to 0.999,

ive additions of the phenolic acids. The profiles correspond to VAN (black solid line)
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Fig. 7. MCR-ALS spectral profiles for region 4: predicted VAN spectrum (black solid
line), real VAN spectrum (red dashed line) and different components spectra (gray
dashed lines). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

Table 5
MCR-ALS predictions of VOO spiked with the analytes.

Analyte Nominal concentrationa Founda Recoverya CVa

p-CUM 1.09 1.14 104.6 7.0
CAF 1.04 1.01 97.1 11.6
FER  1.04 0.92 88.5 5.3
DOPAC 1.08 1.15 106.5 14.7
VAN  1.17 1.22 104.3 14.7
4HP  1.10 1.11 100.9 8.2
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[9] S. Mannino, M.S. Cosio, M.  Bertuccioli, Ital. J. Food Sci. 4 (1993) 363–370.
a Concentrations are given in �g g−1and recoveries and coefficients of variations
CV) are given in percentage.

.994, 0.995, 0.996 and 0.998 for p-CUM, CAF, FER, DOPAC and 4HP,
espectively.

Pseudounivariate standard addition calibration curves, by trip-
icate, allowed us to predict the concentrations of the analytes in
he VOO sample. Recovery assays were also carried out by compar-
ng the predicted concentration with the nominal concentration
f the first spiked VOO sample, by subtracting the signal of the
ound phenolic acids in the olive oil to the rest of signals. p-CUM
nd CAF were found to be no detectable, FER and VAN no quan-
ifiable and 0.262 (±0.080) and 1.13 (±0.22) �g g−1 olive oil were
he concentrations (±standard deviations in parentheses) found for
OPAC and 4HP, respectively. Predictions for the six analytes, in

he first spiked VOO sample are displayed in Table 5, together with
ecoveries which were computed taking into account the nominal
oncentrations spiked in the VOO sample, and coefficients of vari-
tions for the triplicates. It is important to note that predictions,
n most of the samples, may  be considered satisfactory, taking into
onsideration the complexity of the analytical problem. Regarding
he found concentration of the phenolic acids, they are in the order
xpected for the VOO samples, according to previous reports by
ther authors [46], and taking into account that the phenolic con-
ent in olive oil is influenced by different factors, such as the olive
ariety, location, environmental conditions or degree of ripeness,
s well as agronomic and technological aspects of production [6].

Finally, it is important to highlight the advantages of the present
ethod, not only in the good obtained results, but also in the time

eduction achieved. In first place, the combination of the NACE tech-

ique with MCR-ALS algorithm allows performing the resolution of
hese compounds by simplifying the previous sample pretreatment
tages. On the other hand, the total electrophoretic run time is also

[

[
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reduced. In fact, it has been previously carried out the determina-
tion of phenolic compounds by NACE without chemometrics [47],
and the total necessary time for a run was  about 20–24 min, while
if chemometrics is used a time not higher than 10–12 min  is spent.
In addition, the use of chemometrics has allowed to carry out the
quantitation of the phenolic acids herein studied, which could not
be determined by NACE without chemometrics, due to problems in
the peaks resolution.

5. Conclusions

A  non-aqueous capillary electrophoresis method, based on
modeling diode array detection second-order data with the mul-
tivariate curve resolution alternating least squares algorithm, was
presented for the simultaneous determination of six phenolic acids
in virgin olive oil samples. It was  shown that MCR-ALS is one of the
most versatile algorithms available for the management of com-
plex data without trilinearity. In addition, the non aqueous capillary
electrophoresis technique allows the analysis of complex samples
without being necessary an exhaustive pretreatment and, on the
other hand, in comparison with the electrophoresis methods which
do not use chemometrics, the NACE/MCR-ALS method herein pro-
posed supposes less total time than the required to optimize the
complete electrophoretic resolution of similar systems.

This is the first time that non-aqueous capillary electrophore-
sis data is combined with a second order algorithm in the food
analysis field, in general, and for the resolution and quantitation
of phenolic compounds in virgin olive oil, in particular. Most of the
previous literature reports based in capillary electrophoresis for the
analysis of this kind of compounds in olive oil require long analy-
sis times, while in the present report good results can be achieved
in less time due to the combination of the non aqueous capillary
electrophoresis and the MCR-ALS algorithm.
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