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Abstract.  Monte Carlo simulations and finite-size scaling analysis have been 
performed to study the jamming and percolation behavior of linear k-mers (also 
known as rods or needles) on a two-dimensional triangular lattice of linear 
dimension L, considering an isotropic RSA process and periodic boundary 
conditions. Extensive numerical work has been done to extend previous studies 
to larger system sizes and longer k-mers, which enables the confirmation of a 
nonmonotonic size dependence of the percolation threshold and the estimation 
of a maximum value of k from which percolation would no longer occur. Finally, 
a complete analysis of critical exponents and universality has been done, 
showing that the percolation phase transition involved in the system is not 
aected, having the same universality class of the ordinary random percolation.

Keywords: critical exponents and amplitudes, finite-size scaling, irreversible 
aggregation phenomena, percolation problems
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1. Introduction

Adsorption of extended objects is currently a very active field of research in phys-
ics, chemistry and biology. Deposition processes in which the relaxation over typical 
observation times is negligible can be studied as random sequential adsorption (RSA). 
In RSA processes, particles are randomly, sequentially and irreversibly deposited onto 
a substrate without overlapping each other. The quantity of interest is the fraction of 
lattice sites covered at time t by the deposited particles θ(t). Due to the blocking of the 
lattice by the already randomly deposited objects, the final state generated by RSA is a 
disordered state (known as jamming state θJ), in which no more elements can be depos-
ited due to the absence of free space of appropriate size and shape, θJ ≡ θ(t → ∞) < 1. 
This phenomenon plays an important role in numerous systems where the deposition 
process is irreversible over time scales of physical interest [1–6].

When a fraction θ of the lattice is covered by particles, nearest-neighbor occupied 
sites form structures called clusters. If the concentration of the deposited objects is 
large enough, a cluster of nearest-neighbor occupied sites extends from one side to the 
other of the lattice. The minimum concentration of sites for which this phenomenon 
occurs is named the percolation threshold θp, and determines a phase transition in the 
system [7–11]. As discussed in previous paragraph, θ ranges from 0 to θJ for extended 
objects (i.e. objects occupying more than one lattice site) and the interplay between 
jamming and percolation must be considered.

Despite the simplicity of its definition, it is well-known that it is a quite dicult 
matter to analytically determine the value of the jamming coverage and percolation 
threshold. For some special types of lattices, geometrical considerations enable to derive 
their jamming and percolation thresholds exactly, i.e. one-dimensional (1D) substrates 
[12], and random bond percolation on square lattices (or, equivalently, random site 
percolation on triangular lattices) [8, 11].
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In the case of lattice models of extended objects deposited on 2D lattices, which is 
the topic of this paper, the inherent complexity of the system still represents a major 
diculty to the development of accurate analytical solutions, and computer simula-
tions appear as a very important tool for studying this subject. In this line, it is worth 
mentioning some early works using dimers (objects occupying two adjacent sites on the 
lattice). Among them, Bunde et al [13] and Harder et al [14] investigated the percolat-
ing properties of dimeric phases in adsorption/diusion systems; Evans [15] studied 
some problems of correlated percolation on Bethe lattices; and Evans and Sanders [16] 
used correlated percolation theory to analyze the propagation of the c(2× 2) structure3 
in nonequilibrium adsorption models. However, in these papers, the evolution with the 
size of the objects was not explored, being limited exclusively to dimers and to small 
system sizes.

More recently, several authors investigated the deposition of linear k-mers or rods 
(objets occupying k consecutive sites in a row) on a two-dimensional (2D) square lat-
tice [17–22]. The results obtained revealed that: (1) the jamming coverage decreases 
monotonically approaching the asymptotic value of θJ = 0.66(1) for large values of k; 
(2) the percolation threshold of the occupied sites is a nonmonotonic function of the 
size k: it decreases for small rod sizes, goes through a minimum around k = 13, and 
finally increases for large segments; and (3) the ratio of the two thresholds θp/θJ  has a 
complex behavior: after initial growth, it stabilizes between k = 3 and k = 7, and then 
it grows again.

It is interesting to mention that a similar nonmonotonic behavior of the percola-
tion threshold has been observed in previous studies of cooperative RSA (see [2], p 
1318, and references therein). Here, the percolation threshold initially decreases with 
increasing the characteristic length (as expected given the introduction of clustering), 
passes through a minimum, and finally asymptotically converges towards the con-
tinuum regime limit.

There has been much less progress in addressing the RSA of extended objects on 2D 
triangular lattices [23–26]. In this line, Budinski-Petković and Kozmidis-Luburić [23] 
examined the kinetics of the RSA of objects of various shapes on a planar triangular 
lattice. The coverage of the surface and the jamming limits were calculated by Monte 
Carlo simulation. In all cases, the authors found that the jamming coverage decreases 
monotonically as the k-mer size increases: θJ = θ0 + θ1 exp (−k/r), where θ0, θ1 and r 
are parameters that depend on the shape of the adsorbing object. In the case of straight 
rigid k-mers, the simulations were performed for values of k between 1 and 11 and lat-
tice size L = 128.

Later, Budinski-Petković et al [24] investigated percolation and jamming thresh-
olds for RSA of extended objects on triangular lattices. Numerical simulations were 
performed for lattices with linear size up to L = 1000, and objects of dierent sizes and 
shapes (linear segments; angled objects; triangles and hexagons). It was found that for 
elongated shapes the percolation threshold monotonically decreases, while for more 
compact shapes it monotonically increases with the object size. In the case of compact 
objects such as triangles and hexagons, a no-percolation regime was observed. In the 
case of linear segments with values of k up to 20, the obtained results revealed that 

3 This phase could be associated with the RSA problem of particles with nearest-neighbor (NN) exclusion on a 
square lattice.

https://doi.org/10.1088/1742-5468/aa79ae
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(1) the jamming coverage monotonically decreases with k, and tends to 0.56(1) as the 
length of the rods increases; (2) the percolation threshold decreases for shorter k-mers, 
reaches a value θp ≈ 0.40 for k = 12, and, it seems that θp does not significantly depend 
on k for larger k-mers; and (3) consequently, the ratio θp/θJ  increases with k.

The eects of anisotropy [25] and the presence of defects on the lattice [26] were 
also studied by the group of Budinski-Petković et al In summary, despite over two 
decades of intensive work, the current conjectures for the behavior of the percolation 
threshold and jamming concentration as a function of k are based on simulations for 
relatively short k-mers (up to k = 20). In this context, the main objective of the present 
paper is to extend the work of Budinski-Petković et al [23–26] to larger lattice sizes and 
longer k-mers. For this purpose, extensive numerical simulations (with 2 � k � 256 and 
40 � L/k � 160) supplemented by analysis using finite-size scaling theory have been 
carried out. Our study allows (1) to obtain more accurate values of site percolation and 
jamming thresholds; (2) to improve the predictions on the behavior of the system for 
long rods; and (3) to perform a complete analysis of critical exponents and universality.

The paper is organized as follows: the model is described in section 2. The kinetics 
and jamming coverage are studied in section 3. The percolation properties are presented 
in section 4: simulation scheme, section 4.1; dependence of the percolation threshold 
on the size k, section 4.2; and analysis of the critical exponents and universality class, 
section 4.3. Finally, conclusions are given in section 5.

2. Model

Let us consider the substrate represented by a 2D triangular lattice of M (= L× L) 
sites with periodic boundary conditions in each direction, so that all the lattice sites 
are equivalent. In the filling process, straight rigid k-mers (with k � 2) are deposited 
randomly, sequentially and irreversibly on an initially empty lattice. This procedure, 
known as random sequential adsorption, is as follows: (i) one of the three (x1, x2, x3) 
possible lattice directions and a starting site are randomly chosen; (ii) if, beginning at 
the chosen site, there are k consecutive empty sites along the direction selected in (i), 
then a k-mer is deposited on those sites (the k sites are marked as occupied). Otherwise, 
the attempt is rejected. When N rods are deposited, the concentration is θ = kN/M . 
Figure 1(a) shows the formation of a percolating cluster (highlighted in blue) for a sys-
tem of trimers (solid circles) deposited on a 10× 10 triangular lattice.

In this paper, and in order to eciently occupy the sites of the lattice, we randomly 
select empty k-tuples from the set of empty k-tuples, instead of from the whole lattice. 
This strategy improves significantly the computational cost of the algorithm.

3. Kinetics and jamming coverage

In order to calculate the jamming thresholds, the probability WL(θ) that a lattice 
of linear size L reaches a coverage θ will be used [27]. In the simulations, the pro-
cedure to determine WL(θ) consists of the following steps: (a) the construction of an  

https://doi.org/10.1088/1742-5468/aa79ae
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L−lattice (initially empty) and (b) the deposition of particles on the lattice up to the 
jamming limit θJ. The jamming limit is reached when it is not possible to adsorb any 
more k-mers on the surface. A typical jamming configuration corresponding to trimers 
adsorbed on a 10× 10 lattice is shown in figure 1(b). In the late step, the quantity mi(θ) 
is calculated as

mi(θ) =

{
1 for θ � θJ
0 for θ > θJ .

 (1)

n runs of such two steps (a) and (b) are carried out for obtaining the number m(θ) of 
them for which a lattice reaches a coverage θ,

m(θ) =
n∑

i=1

mi(θ). (2)

Then, WL(θ) = m(θ)/n is defined and the procedure is repeated for dierent values of 
L. A set of n = 105 independent samples is numerically prepared for several values of 
the lattice size (L/k = 100, 150, 200, 300). The L/k ratio is kept constant to prevent 
spurious eects due to the k-mer size in comparison with the lattice linear size L.

For infinite systems (L → ∞), WL(θ) is a step function, being 1 for θ � θJ and 0 
for θ > θJ . For finite values of L, WL(θ) varies continuously between 1 and 0, with a 
sharp fall around θJ. As shown in [27], the jamming coverage can be estimated from the 
curves of the probabilities WL plotted versus θ for several lattice sizes. In the vicinity 

Figure 1. Typical configurations corresponding to trimers (solid circles) deposited 
on a 10× 10 triangular lattice. Open circles denote empty sites. This particular 
example shows (a) the formation of a percolating cluster (highlighted in blue), and 
(b) the evolution of the same trial until reaching the jamming condition.

https://doi.org/10.1088/1742-5468/aa79ae
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of the limit coverage, the probabilities show a strong dependence on the system size. 
However, at the jamming point, the probabilities adopt a nontrivial value W ∗

L, irre-
spective of system sizes in the scaling limit. Thus, plotting WL(θ) for dierent linear 
dimensions L yields an intersection point W ∗

L, which gives an accurate estimation of the 
jamming coverage in the infinite system.

The strategy adopted here for calculating θJ has been successfully applied in previ-
ous studies from our group [27, 28]. The accuracy of the results obtained in [27, 28] 
encourage us to use this method in the present case. Similar results could be obtained 
by averaging over jamming concentrations for each specific lattice size L, and then 
extrapolating these averages.

In figure 2, the probabilities WL(θ) are shown for dierent values of L/k (as indi-
cated) and two typical cases: (a) k = 10 (left); and (b) k = 20 (right). The curves of 
WL(θ) were obtained on a set of n = 105 runs. From the inspection of the figure (and 
from data do not shown here for a sake of clarity), it can be seen that: (a) for each k, 
the curves cross each other in a unique point W ∗

L; (b) those points do not modify their 
numerical value for the dierent cases studied, being W ∗

L ≈ 0.50; (c) those points are 
located at very well defined values in the θ-axes determining the jamming threshold for 
each k, θJ,k; and (d) θJ,k decreases for increasing values of k.

The procedure of figure 2 was repeated for k ranging between 2 and 128. The 
results are shown in figure 3 and compiled in the second column of table 1. Two well-
dierentiated regimes can be observed. In the range 2 � k � 20, the values obtained 
of θJ coincide with those reported in [24] and [26], and can be fitted with the func-
tion proposed in [23]: θJ,k = θ0 + θ1 exp (−k/r), with θ0 = 0.684(3), θ1 = 0.332(6) and 
r = 2.66(2) (see inset). These results validate our program and calculation method.

Figure 2. Curves of WL as a function of the density θ for several values of L/k 
and two typical cases, k = 10 and k = 20, as indicated. Insets: Zoom of the main 
figure in the vicinity of the intersection points. The grey strip indicates the region 
where the intersections occur and their width is an estimation of the error.

https://doi.org/10.1088/1742-5468/aa79ae
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For large values of k, the data follow a similar behavior to that predicted by Bonnier 
et al [17] for square lattices: θJ,k = A+ B/k + C/k2 (k � 12), being A = θJ,k=∞ = 0.5976(5) 
the result for the limit coverage of a triangular lattice by infinitely long k-mers, 
B = 1.268(30) and C = −3.61(34).

The value θJ,k=∞ = 0.5976(5) improves the previously obtained in [24] using an 
exponential fit, showing the advantages of having reached larger sizes for the objects.

4. Percolation

4.1. Simulation scheme

As it was already mentioned, the central idea of percolation theory is based on finding 
the minimum concentration θ = θp for which a cluster extends from one side of the 
system to the opposite. We are interested in determining i) the dependence of θp as a 
function of the size k, and ii) the universality class of the phase transition occurring in 
the system.

The finite-scaling theory gives us the basis to determine the percolation threshold 

and the critical exponents of a system with a reasonable accuracy. For this purpose, the 

probability R = RX
L,k(θ) that an L−lattice percolates at the concentration θ of occupied 

sites by rods of size k can be defined [8, 29, 30]. Here, the following definitions can be 
given according to the meaning of X:

Figure 3. Jamming coverage θJ,k as a function of k for linear k-mers on triangular 
lattices with k between 2 and 128. Inset: As main figure for 2 � k � 10. Solid 
squares represent simulation results (second column of table 1), open symbols 
denote previous data in the literature [24, 26], and lines correspond to the fitting 
functions as discussed in the text.

https://doi.org/10.1088/1742-5468/aa79ae
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 •	 Rx1
L,k(θ): the probability of finding a percolating cluster along the x1-direction,

 •	 Rx2
L,k(θ): the probability of finding a percolating cluster along the x2-direction,

 •	 Rx3
L,k(θ): the probability of finding a percolating cluster along the x3-direction,.

Other useful definitions for the finite-size analysis are:

 •	 RU
L,k(θ): the probability of finding a cluster which percolates on any direction,

 •	 RI
L,k(θ): the probability of finding a cluster which percolates in the three (x1, x2, x3) 

directions,

 •	 RA
L,k(θ)  =  1

3
[Rx1

L,k(θ) +Rx2
L,k(θ) +Rx3

L,k(θ)].

Computational simulations were applied to determine each of the previously men-
tioned quantities. Each simulation run consists of the following steps: (a) the construc-
tion of a triangular lattice of linear size L and coverage θ, (b) the cluster analysis using 
the Hoshen and Kopelman algorithm [31]. In the last step, the size of largest cluster SL 
is determined, as well as the existence of a percolating island.

A total of mL independent runs of such two steps procedure were carried out for each 
lattice size L. From these runs a number mX

L  of them present a percolating cluster, this 

is done for the desired criterion among X = x1, x2, x3, I, U,A. Then, RX
L,k(θ) = mX

L /mL 
is defined and the procedure is repeated for dierent values of L, θ and k.

In addition to the dierent probabilities RX
L,k(θ), the percolation order parameter 

P and the corresponding susceptibility χ have been measured [32, 33],
P = 〈SL〉/M, (3)

Table 1. Jamming coverage versus k. The values marked with a have been digitized 
from figure 4 of [24].

k θJ θJ ([24]) θJ ([26])

2 0.9142(12) 0.9139(5) 0.9194(5)
3 0.8364(6) 0.8362(7) 0.8358(5)
4 0.7892(5) 0.7886(8) 0.7888(7)
5 0.7584(6) 0.758a 0.7579(6)
6 0.7371(7) 0.737a 0.7356(8)
8 0.7091(6) 0.708a 0.7089(8)
10 0.6912(6) 0.692a 0.6906(9)
12 0.6786(6) 0.678a

20 0.6515(6) 0.653a

30 0.6362(6)
40 0.6276(6)
50 0.6220(7)
60 0.6183(6)
70 0.6153(6)
80 0.6129(7)
90 0.6108(7)
100 0.6090(8)
128 0.6060(13)

https://doi.org/10.1088/1742-5468/aa79ae
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and

χ = [〈S2
L〉 − 〈SL〉2]/M, (4)

where SL represents the size of the largest cluster and 〈...〉 means an average over 
 simulation runs.

In our percolation simulations, we used mL = 105. In addition, for each value 
of θ, the eect of finite size was investigated by examining square lattices with 
L/k = 32, 40, 50, 75, 100. As it can be appreciated this represents extensive calculations 
from the numeric point of view. From there on, the finite-scaling theory can be used 
to determine the percolation threshold and the critical exponents with a reasonable 
accuracy.

4.2. Percolation threshold

The standard theory of finite-size scaling [8, 29, 30] allows for various ecient routes to 
estimate the percolation threshold from simulation data. One of these methods, which 

will used here, is from the curves of RX
L,k(θ).

In figure 4, the probabilities RI
L,k(θ), R

U
L,k(θ) and RA

L,k(θ) are presented for two typi-
cal cases: (a) k = 8 (left); and (b) k = 32 (right). In order to express these curves as a 

function of continuous values of θ, it is convenient to fit RX
L,k(θ) with some approximat-

ing function through the least-squares method. The fitting curve is the error function 

because dRX
L,k(θ)/dθ is expected to behave like the Gaussian distribution [30]

Figure 4. Fraction of percolating lattices RX
L,k(θ) (X = I, U,A as indicated) as 

a function of the concentration θ for k = 8 (a), k = 32 (b) and dierent lattice 
sizes: L/k = 32, squares; L/k = 40, circles; L/k = 50, up triangles; L/k = 75, down 
triangles; and L/k = 100, diamonds. Vertical dashed line denotes the percolation 
threshold θp,k in the thermodynamic limit.

https://doi.org/10.1088/1742-5468/aa79ae
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dRX
L,k

dθ
=

1√
2π∆X

L,k

exp

{
−1

2

[
θ − θXp,k(L)

∆X
L,k

]}
, (5)

where θXp,k(L) is the concentration at which the slope of RX
L,k(θ) is the largest and ∆X

L,k 
is the standard deviation from θXp,k(L).

Once obtained the values of θXp,k(L) for dierent lattice sizes, a scaling analysis can 
be done [8]. Thus, we have

θXp,k(L) = θXp,k(∞) + AXL−1/ν , (6)

where AX is a non-universal constant and ν is the critical exponent of the correlation 
length which will be taken as 4/3 for the present analysis, since, as it will be shown in 
section 4.3, our model belongs to the same universality class as random percolation [8].

Figure 5 shows the plots towards the thermodynamic limit of θXp,k(L) according 
to equation (6) for the data in figure 4. From extrapolations it is possible to obtain 

θXp,k(∞) for the criteria I, A and U. Combining the three estimates for each case, the 
final values of θp,k(∞) can be obtained. Additionally, the maximum of the dierences 

between |θUp,k(∞)− θAp,k(∞)| and |θIp,k(∞)− θAp,k(∞)| gives the error bar for each deter-
mination of θp,k(∞). In this case, the values obtained were: θp,k=8(∞) = 0.4118(1) and 
θp,k=32(∞) = 0.4303(1). For the rest of the paper, we will denote the percolation thresh-
old for each size k by θp,k (for simplicity we will drop the ‘(∞)’).

The procedure of figure 5 was repeated for k ranging between 2 and 256, and the 
results are shown in figure 6 (solid squares) and collected in the second column of 
table 2. A nonmonotonic size dependence is observed for the percolation threshold, 
which decreases for small particles sizes, goes through a minimum around k = 13, and 
finally grows for large segments. This striking behavior has already been observed for 

Figure 5. Extrapolation of θXp,k(L) towards the thermodynamic limit according 
to the theoretical prediction given by equation (6). Circles, triangles and squares 

denote the values of θXp,k(L) obtained by using the criteria I, A and U, respectively. 
Dierent values of k are presented: (a) k = 8 and (b) k = 32, and ν was taken equal 
to 4/3.

https://doi.org/10.1088/1742-5468/aa79ae
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the percolation threshold of k-mers on square lattice [17, 20, 21], and can be interpreted 
as a consequence of the local alignment eects occurring for larger k (long needles) and 
their influence on the structure of the critical clusters [17, 21].

We tried to fit the obtained data for larger k (k = 16...256), using the function 
θp,k = a+ b log k, being a = 0.3265(26) and b = 0.030 03(70). In figure 6 can also be 
observed the ratio of percolation and jamming concentrations, θp/θJ , which shows a 
monotonically increasing behavior. Combining the fitting functions used for both con-
centrations we obtain an estimation for this ratio which increases, for large k, propor-
tionally to log k. In this way, the condition θp/θJ � 1 corresponds to a value of k � 104 
from which percolation would no longer occur. Similar result has been obtained in the 
case of straight rigid rods on a square geometry [21, 22]. In [22], the authors determined 

Figure 6. Squares represent the percolation threshold θp,k as a function of k for 
linear k-mers on triangular lattices with k between 2 and 256 (second column of 
table 2). Open symbols denote previous data in the literature [24]. Diamonds 
represent the ratio θp/θJ  and dashed line corresponds to the the fitting function 
θp,k = a+ b log k.

Table 2. Percolation threshold versus k. The values marked with a have been 
digitized from figure 4 of [24].

k θp θp ([24])

2 0.4876(5) 0.4841(13)
4 0.4449(13) 0.4399(12)
8 0.4118(1) 0.407a

12 0.4092(5) 0.400a

16 0.4124(6) 0.406a

20 0.4169(3) 0.401a

32 0.4303(1)
64 0.4523(4)
80 0.4597(3)
128 0.4737(8)
192 0.4844(5)
256 0.4887(7)

https://doi.org/10.1088/1742-5468/aa79ae
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that the percolation phase transition only exists for values of k between 1 and approxi-
mately 6× 103. For k > 6× 103, percolation cannot occur, even at (maximal) jamming 
concentration.

4.3. Critical exponents and universality class

In this section, the critical exponents ν, β and γ will be calculated. Critical exponents 
are of importance because they describe the universality class of a system and allow for 
the understanding of the related phenomena.

The standard theory of finite-size scaling allows for various methods to estimate ν 
from numerical data. One of these methods is from the maximum of the function in 
equation (5) [8],

(
dRX

L,k

dθ

)

max

∝ L1/ν . (7)

Figure 7. (a) Log–log plot of 
(
dRA

L,k/dθ
)
max

 as a function of L/k for k = 8 (squares), 
k = 20 (diamonds) and k = 32 (triangles). According to equation (7) the slope of 
each line corresponds to 1/ν = 3/4. (b) Log–log plot of χmax as a function of L/k 
and the same values of k. The slope of each line corresponds to γ/ν = 43/24. 

(c) Log–log plot of ∆A
L,k as function of L/k. (d) Log–log plot of (dP/dθ)max as a 

function of L/k. According to equation (10), the slope of each curve corresponds 
to (1− β)/ν = 31/48.

https://doi.org/10.1088/1742-5468/aa79ae
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In figure 7(a), ln
[(
dRA

L,k/dθ
)
max

]
 has been plotted as a function of ln [L] (note the 

log–log functional dependence) for k = 8, k = 20 and k = 32. According to equation (7) 
the slope of each line corresponds to 1/ν . As it can be observed, the slopes of the curves 
remain constant (and close to 3/4) for all studied cases. Thus, ν = 1.36(3) for k = 8; 
and ν = 1.35(2) for k = 32. The results coincide, within numerical errors, with the exact 
value of the critical exponent of the ordinary percolation ν = 4/3.

Another alternative way of evaluating ν is given through the divergence of the stan-

dard deviation of the threshold observed from their average values, ∆X
L,k in equation (5),

∆X
L,k ∝ L−1/ν

 (8)

Figure 7(c) shows ln
[
∆X

L,k

]
 as a function of ln [L] (note the log–log functional depend-

ence) for k  =  8, 20 and 32. According to equation (8), the slope of each line corresponds 
to 1/ν . As in figure 7(a), the slopes of the curves remain constant and close to −3/4.

Once we have ν, the exponent γ can be determined by scaling the maximum value 

of the susceptibility equation (4). According to the finite-size scaling theory [8], the 

behavior of χ at criticality is χ = Lγ/νχ(u), where u = (θ − θp,k)L
1/ν and χ is the corre-

sponding scaling function. At the point where χ is maximal, u =const. and χmax ∝ Lγ/ν. 
Our data for χmax are shown in figure 7(b). The values obtained are γ = 2.35(1) for 
k = 8 and γ = 2.38(1) for k = 32. Simulation data are consistent with the exact value 
of the critical exponent of the ordinary percolation, γ = 43/18.

On the other hand, the standard way to extract the exponent ratio β is to study the 
scaling behavior of P at criticality [8],

P = L−β/νP (u′) , (9)

where u′ = |θ − θp,k|L1/ν and P  is the scaling function. At the point where dP/dθ is 
maximal, u =const. and

(
dP

dθ

)

max

= L(−β/ν+1/ν)P (u′) ∝ L(1−β)/ν . (10)

The scaling of (dP/dθ)max is shown in figure 7(d). From the slopes of the curves, 
the following values of β were obtained: β = 0.18(2) for k = 8 and β = 0.19(4) for 
k = 32. These results agree very well with the exact value of β for ordinary percolation, 
β = 5/36 = 0.14.

The protocol described in figure 7 was repeated for k between 2 and 128. In all cases, 
the values obtained for ν, γ and β clearly indicate that, independently of the size k, 
this problem belongs to the same universality class that the random percolation. This 
finding is expected, given the robustness of this universality for RSA models like the 
one studied in this paper [16, 19, 34–37].

The scaling behavior can be further tested by plotting RX
L,k(θ) versus (θ − θp,k)L

1/ν, 

PLβ/ν versus |θ − θp,k|L1/ν and χL−γ/ν versus (θ − θp,k)L
1/ν and looking for data col-

lapsing [8] see supplementary material4.

4 See supplemental material (stacks.iop.org/JSTAT/2017/073206/mmedia) for the details on the data collapsing 
tests.

https://doi.org/10.1088/1742-5468/aa79ae
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5. Conclusions

In this paper, extensive numerical simulations and finite-size scaling theory have been 
used to study the percolation properties of straight rigid rods of length k out of equi-
librium (RSA adsorption) as well as the jamming threshold on the two-dimensional 
triangular lattice.

A nonmonotonic size dependence was found for the percolation threshold θp, which 
decreases for small particles sizes, goes through a minimum around k = 13, and finally 
increases for large segments. The behavior observed for small values of k had already 
been described by Budinski-Petković et al [24]. However, the increase of θp for large 
values of k is reported here for the first time in a triangular geometry. This striking 
behavior, also observed for square lattices [17, 21], is related to local alignment eects 
that aect the structure of the percolation cluster. In fact, compact blocks of oriented 
k-mers are formed on the surface for large values of k, and the system behaves quali-
tatively similar to an ideal RSA of k-blocks, where the percolation threshold increases 
with k [38].

On the other hand, the observed functionality of the jamming coverage with k 
 suggests that percolation is impossible if k exceeds approximately 104. For k > 104, 
percolation cannot occur, even at (maximal) jamming concentration. Similar conjecture 
has been proposed for the case of straight rigid rods on square lattices, where the limit 
value of k leading to percolation is approximately 6× 103 [22]. The existence of this 
limit object size can also be understood from the interplay between percolation and 
jamming eects in a RSA model of k-blocks [38]. However, more simulations are neces-
sary in order to obtain direct confirmation of this conjecture for straight rigid k-mers.

Finally, we observe that the nature of the phase transition occurring in the sys-
tem is not aected, belonging to the same universality class of the ordinary random 
percolation.
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