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The deposition of one-dimensional objects (such as polymers) on a one-dimensional lattice with the presence
of impurities is studied in order to find saturation conditions in what is known as jamming. Over a critical
concentration of k-mers (polymers of length k), no further depositions are possible. Five different nematic
(directional) depositions are considered: baseline, irreversible, configurational, loose-packing, and close-packing.
Correspondingly, five jamming functions are found, and their dependencies on the length of the lattice, L, the
concentration of impurities, p = M/L (where M is the number of one-dimensional impurities), and the length
of the k-mer (k) are established. In parallel, numeric simulations are performed to compare with the theoretical
results. The emphasis is on trimers (k = 3) and p in the range [0.01,0.15], however other related cases are also
considered and reported.
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I. INTRODUCTION

The deposition of one-dimensional objects (such as poly-
mers) usually cannot fully cover the lattice leaving empty
positions in what is called jamming. An extensive overview of
this field can be found in the excellent work by Evans [1] and
references therein.

The blocking of the lattice by the deposited objects plays an
important role in numerous systems in which the deposition
process is irreversible over time scales of physical interest
[2]. In this theoretical frame, anisotropic particles of different
shapes and sizes have been studied: linear k-mers (particles
occupying k adjacent lattice sites) [3–7], flexible polymers
[8,9], T-shaped objects and crosses [10], squares [11–14],
disks [15], regular and star polygons [16], etc. In all cases, the
limiting or jamming coverage depends strongly on the shape
and size of the depositing particles. This is the classical random
sequential deposition (RSD) or random sequential adsorption
(RSA) [17] that is usually invoked in catalysis, corrosion, and
other surface science problems. Here we will consider other
possible depositions as well.

The jamming phenomenon is enhanced by the presence of
impurities that prevent the deposition of objects over them and
some of the neighboring positions. Two previous articles from
our group [18,19] were devoted to the study of percolation
and jamming properties of extended objects deposited on
square lattices with the presence of impurities. The simulations
were performed for k-mer sizes ranging from 2 to 9. More
recently, Tarasevich et al. [20] extended the study of straight
rigid k-mers with defective sites to larger particle sizes (k
values up to 128). For each value of k, the results showed
the existence of a critical fraction of impurities, at which
percolation threshold and jamming coverage are equal and,
consequently, percolation becomes impossible.

The effects of impurities on percolation and jamming
properties of straight rigid k-mers have also been studied for
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triangular lattices [21,22]. In these papers, the filling process
was done in two stages. In the first stage, impurity particles
were deposited up to some level. In the next stage, the k-mers
were adsorbed on the substrate contaminated by impurities.
The author showed how the size and impurity concentration af-
fect the percolation threshold [21] and jamming coverage [22].

In the present paper, we study analytically and numerically
the jamming problem varying the length of the k-mer (linear
polymer of length k in terms of the lattice constant), the
concentration of impurities, p, and the size of the square lattice,
L, discussing the thermodynamic limit as L → ∞.

We will consider below five different deposition cases:
close-packing or attractive, loose-packing or repulsive, se-
quential irreversible (the usual deposition case described
above), configurational (or equilibrium considering all possi-
ble configurations), and baseline configurational (a mathemat-
ical way of looking at this problem based on the jamming con-
figurations only). These depositions will be carefully defined
below.

We address here the very important case of directional
nematic deposition where objects are lined up directionally
at the moment of deposition. This is the case of guided
deposition of oriented nanotubes [23] or magnetically oriented
deposition of particles [24,25]. In the present case, we consider
depositions of longitudinal objects along one given direction
(“horizontal”), which coincides with the axis of the k-mer.
Transverse depositions at any angle are inhibited by external
conditions (flux, electric fields, magnetic fields) appropriate
for each kind of polymer. This nematic deposition actually
uncouples in the vertical direction from the horizontal direction
since depositions along the former are forbidden, so each
row is independent. This simplification allows us to consider
depositions on any one of the rows of the square lattice, which
is equivalent to a one-dimensional lattice (ODL).

In addition, we consider the presence of impurities ran-
domly spread all over the ODL. This is illustrated in Fig. 1
for a random location of impurities (a) and for an equally
spaced deposition of impurities (b). Such impurities prevent
the deposition of any portion of the k-mer over them, so
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(a) 

(b) 

FIG. 1. Two possible distributions for four one-site impurities
on an L = 34 one-dimensional lattice. (a) A random distribution
with one segment of nil length (two impurities touching each other);
(b) an equally spaced distribution with all segments of length 6.

such depositions can occur only within segments between
impurities. Let us call � the length of a particular segment;
then depositions of k-mers with k � � are possible. We will
begin by finding the jamming conditions for segments of finite
length �.

It is well known that it is quite a difficult matter to
analytically determine the value of the jamming coverage for
a given lattice. For some special types of lattices, geometrical
considerations enable us to derive their jamming thresholds
exactly. In the case of straight rigid k-mers on an ODL of
length L under periodic boundary conditions (mimicking the
thermodynamic limit), the RSA problem has been solved
exactly [3,26], leading to

θk
L→∞(t) = k

∫ t

0
exp

⎡
⎣−u − 2

k−1∑
j=1

(
1 − e−ju

j

)⎤
⎦du, (1)

where θk
L(t) represents the fraction of lattice sites covered

at time t by the deposited k-mers. However, in the present
case we consider finite impurity concentrations p, which
necessarily partitions the lattice into finite segments between
consecutive impurities even in the thermodynamic limit. So a
new derivation of the jamming condition valid for fixed ends
in now necessary. This is done in the Appendix at the end of
this paper.

Parameters k, �, and L (measured in lattice constants)
will be varied, but the length of the deposited object k is
kept constant during the deposition process. In other words,
no mixing of depositing objects of different length will be
allowed. Concentration p is related to � as we show below, so
it is also varied.

In this work, we investigate the jamming phenomenon in
the presence of impurities for the case of nematic deposition
of straight rigid k-mers. Impurities are supposed to present
a random distribution, which generalizes the treatment. We
consider in detail the deposition of k-mers over linear segments
of different finite sizes. The simultaneous consideration of
five different deposition cases enriches the study and leads to
interesting results to understand the jamming problem.

The paper is organized as follows: in Sec. II, the basic
definitions are given, the general basis for the computer
simulations are established, and the five deposition cases are
defined. Results for the lattices with impurities are presented
and discussed in Sec. III; relevant results for finite segments
are given in the Appendix. Finally, the conclusions are drawn
in Sec. IV.

II. THE MODEL

A. The system

As explained above, we only need to consider one row of the
lattice at a time, which reduces the problem to the deposition
of k-mers on an ODL of length L that has M impurities of
length 1 on it. Then the concentration of impurities p is given
by

p = M

L
. (2)

In principle, impurities can occupy any lattice site; consecutive
impurities will act as impurities of larger extension. A total of
M single impurities spread across a lattice of length L produces
N = M + 1 segments of lengths �1,�2, . . . ,�i, . . . ,�N . An
example is shown in Fig. 1(a) for noninteracting impurities
for the case M = 4 and L = 34. If two impurities are next
to each other, the length of the segment in between is zero.
Figure 1(b) presents the case in which impurities are uniformly
distributed within the ODL (which would be the case for highly
self-repulsive impurities).

Generally speaking, the average segment length is given by

〈�〉 =
∑N

i=1 �i

N
= L − M

M + 1
= 1 − p

p + 1/L
, (3)

which establishes a relationship between � and p for each
different L.

In the thermodynamic limit, this is equivalent to

〈�〉L→∞ = 1 − p

p
, (4)

which is a finite value. The length of the segments has to be
considered as a finite value, so the approximation of periodic
boundary conditions [3] to calculate the jamming coverage
does not apply here.

The concentration of impurities considered below will be
in the range [0.01,0.15]. Lower concentrations correspond
to very diluted impurities with negligible effect. Larger
concentrations of impurities lead to interesting problems of
their own, but they are beyond the scope of this paper. The
numeric simulations below will be for lattices with L � 1000,
where Eq. (4) is good enough.

A random distribution of impurities can produce a huge
variety of combinations, producing segments of different
lengths; in other words, there is a distribution of lengths for
the segments. Segment number 1, for instance, is defined by
the wall to the left, an impurity with probability p at the
right end, and �i = i consecutive empty sites in between with
a probability (1 − p) each; the total probability for such a
segment is p(1 − p)i .

It can be noticed that these probabilities are normalized:

imax∑
i=0

p(1 − p)i ≈
∞∑
i=0

p(1 − p)i = p + p
1 − p

1 − (1 − p)
= 1.

(5)
Then, the number of segments of length i, denoted by si , can
be written as

si ≈ p(1 − p)i(pL + 1), (6)

022120-2



JAMMING FOR NEMATIC DEPOSITION IN THE . . . PHYSICAL REVIEW E 95, 022120 (2017)

FIG. 2. Segment length distribution for L = 2000, M = 200
(p = 0.10); average values after 1000 initializations.

where (pL + 1) is the total number of segments for a lattice
of length L and impurity concentration p.

The function in Eq. (6) is plotted by means of solid triangles
in Fig. 2, where numbers are adapted to represent results over a
lattice L = 2000 and p = 0.1 (�i = i). Theoretical results are
compared with simulation data. The numerical example for
L = 2000 considers M = 200 impurities (p = 0.1), namely
201 segments (eventually some of them of length zero). These
results are represented by means of open squares in Fig. 2 after
1000 independent initializations, meaning a total of 201 000
segments.

The average segment in this exercise is 〈�〉 = 8.96, which
is about what can be expected since the thermodynamic
limit for this value is 〈�〉 = 9.0 according to Eq. (4). Similar
calculations can be done for other concentrations as presented
in Fig. 3. For the impurity concentrations considered here, we

FIG. 3. Average segment length as a function of impurity content
for L = 2000 (solid triangles), compared to the average segment
length for a system where L → ∞ (open squares).

shall use the results of Eq. (4) as the average segment length
for the impurity concentration p in the rest of the paper.

A careful scrutiny of Fig. 2 indicates that there are segments
shorter than the size of the k-mer that are bound to remain
empty after the impurity occupation of the lattice. The total
number of such blocked positions due to segments shorter than
k depends mainly on k, and it is given by

Bk
p =

k−1∑
i=1

i × si . (7)

Then, the total number of unblocked positions within the ODL
available for depositions of k-mers is

ϒk
p = L − M − Bk

p. (8)

The fraction of the lattice available for k-mer depositions
is υk

p = ϒk
p/L, namely

υk
p = 1 − p − βk

p, (9)

where

βk
p = 1

L

k−1∑
i=1

i × si . (10)

The fraction of the lattice available for k-mer depositions
is given by Eq. (9) and it is plotted with respect to p in Fig. 4
for dimers (k = 2) and trimers (k = 3). As in Fig. 2, these
simulations correspond to L = 2000, M = 200 (p = 0.1), and
1000 independent initializations.

Thus, υk
p acts as an upper limit for the concentration reached

due to k-mer deposition in a lattice with impurity concentration
p. No matter how efficient the deposition method can be, υk

p

cannot be overcome.
As depositions of k-mers take place, the number of occupied

positions at a certain moment is nk, and it continues to increase
up to the deposition of the last possible k-mer, for n = w(p)
say, giving a maximum number of w(p) k � ϒk

p positions

FIG. 4. Unoccupied portion of the ODL by means of blocking
analysis: υk

p for k = 2 and 3 after simulations for L = 2000.
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FIG. 5. All possible 21 depositions of two trimers within a
segment of length 11. Just three of them lead to jamming; they are
marked by an external rectangle. All other 18 depositions accept one
more trimer.

finally occupied by k-mers. The coverage is then defined by

�k
p = w(p)k

L
� υk

p. (11)

B. Deposition cases

For any segment of length � there is a jamming coverage
for depositions of k-mers, which will be denoted by γ k

� in a
generic way. We will discuss below five different functions γ k

�

corresponding to five different deposition cases over segments.
Depositions occur on any segment in the lattice. We

concentrate on a particular segment of length � for which
we will obtain all configurations with special attention over
those that jam the segment. We will illustrate the process
with an example for � = 11, as is shown in Fig. 5, where
the 21 different ways in which two trimers can be deployed
are presented. No overlaps are allowed, and all possible

combinations of k-mers and empty spaces are considered.
The three configurations presenting jamming are marked by a
rectangle surrounding the segment. Such configurations will
be referred to as jamming configurations.

When the deposition of three trimers is considered on
a segment of length 11 (not shown), all the 10 possible
distributions lead to jamming. Obviously, four trimers on a
segment of length 11 is out of question. On the other extreme,
there is no way in which just one trimer can jam a segment of
length 11. For any segment of length �, there is a minimum
number of k-mers leading to jamming, u say; there is also a
maximum number z of k-mers that can be accommodated in
such a segment; u = 2 and z = 3 for the example with � = 11.

Generally speaking, a segment of length � will present d
n,k
�

possible distributions or configurations of n k-mers within a
segment of length �:

d
n,k
� = (n + � − nk)!

n!(� − nk)!
=

(
7!

2!5!
= 21

)
, (12)

where nk � �. The result given in parentheses corresponds
to the example of two trimers in a segment of length 11 just
presented above.

The corresponding result for three trimers on a segment of
length 11 is given by

d
3,3
11 = 5!

3!2!
= 10. (13)

Not all the possible configurations jam the system. We can
denote by j

n,k
� the number of jamming configurations for a

segment of length � and deposition of n k-mers. Thus, for the
example under consideration, we have j

2,3
11 = 3 and j

3,3
11 = 10.

The corresponding coverage is obtained from the number
of deposited k-mers, namely

x
n,k
� = nk

�
. (14)

We introduce now five different deposition conditions. The
leading three correspond to noninteracting k-mers, while the
last two represent cases of interacting k-mers.

1. Baseline deposition

This is a rather mathematical condition in which all
jamming configurations have the same probability, regardless
of any physical way in which this is reached. Although it is
difficult to realize how it could be achieved experimentally, it
serves as a general guide to the subject and a comparison point
for the other realistic cases discussed next. Since it leads to the
lowest possible jamming values for noninteracting k-mers, we
call it “baseline”.

For the case of homogeneous k-mer deposition, k is a fixed
parameter in each experiment. The total number of jamming
configurations is given by

J k
� =

z∑
n=u

j
n,k
� , (15)

where u and z were defined a few lines before Eq. (12) during
the presentation of the example above.
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The probability P
n,k
� of jamming with n k-mers in this case

is given by

P
n,k
� = j

n,k
�

J k
�

. (16)

Then, the saturation concentration σ k
� is reached through

the configurational probability:

γ k
� = σ k

� =
z∑

n=u

P
n,k
� x

n,k
� , (17)

where x
n,k
� is the site occupation for n polymers of length k. For

the example under consideration with a total of 13 jamming
configurations, we get

σ 3
11 = 3

13 × 6
11 + 10

13 × 9
11 = 0.755. (18)

In the Appendix, we illustrate the way coefficients P
n,k
� can

be obtained for this deposition case. The extension to the other
deposition cases is straightforward.

The jamming function for a segment of length � for this
deposition case will be denoted by σ k

� . The jamming function
for the ODL with impurity concentration p will be denoted
by Sk(p) when defined below. The notation is as follows:
lower-case Greek letters for segment jamming functions and
upper case letters for lattice jamming functions.

2. Irreversible sequential deposition

This is the most common approach to jamming, which was
already discussed in the Introduction as RSD. A protocol is
defined in which a random site in the segment is picked, then a
k-mer is applied from this pivot site along a previously assigned
direction (left or right). If all these k sites are empty, the k-mer
is deposited irreversibly. If at least one site is occupied by
an impurity or a previous k-mer, a new pivot site is picked.
The process continues until all possibilities are covered and
all empty chains have lengths less than k. This deposition is
dependent on the sequence in which the sites are occupied.
This case will be studied numerically only as described below
in a detailed way yielding the jamming function γ k

� = θk
� for

segments. The corresponding jamming function for the whole
lattice will be denoted by T k(p).

3. Configurational deposition

In this case, all possible configurations for k-mer depo-
sitions are considered with equal probability. Jamming is
studied for each k-mer concentration defined by n polymers
of length k as given by Eq. (14). This deposition is not
dependent on the sequence in which the k-mers are deposited
since all possible accommodations are in principle possible.
However, the configurations with extreme x values have low
probabilities.

For a segment of length �, the probability Q
n,k
� for jamming

is now given with respect to all possible configurations for that
number n of k-mers (not over the total number of jamming
configurations, as in Sec. II B 1), namely

Q
n,k
� = j

n,k
�

d
n,k
�

. (19)

The no jamming probability or complementary probability can
be denoted as

C
n,k
� = 1 − Q

n,k
� . (20)

Then, the total jamming function has to be calculated
progressively now since configurations are tried on the basis
of one at a time. For simplicity, we drop indices � and k in the
derivation of the jamming function φk

� in the next lines. The
first jamming possibility comes for n = u with a probability
Qu and a coverage xu, while the probability that the jamming
occurs for any higher k value is the complementary probability
(Cu). If this is the case, configurations with one more k-mer
are invited with a jamming probability Qu+1,k and a coverage
xu+1; the probability of not finding jamming at this stage is
given by Cu+1. The process goes on for configurations with
additional k-mers (u + 2,u + 3, . . . ) while jamming is not
achieved. This continuous process ends when we reach the last
possible configuration with a probability Qz and a coverage
xz; the corresponding Cz = 0. This can be expressed in the
following way recovering the full notation:

φk
� = Q

u,k
� x

u,k
� + C

u,k
�

[
Q

u+1,k
� x

u+1,k
�

+C
u+1,k
�

(
Q

u+2,k
� x

u+2,k
� · · · + C

z−1,k
� Q

z,k
� x

z,k
�

)]
. (21)

For the example under consideration, we find

φ3
11 = Q

2,3
11 × x

2,3
11 + (

1 − Q
2,3
11

)
Q

3,3
11 × x

3,3
11

= 3
21 × 6

11 + 18
21 × 10

10 × 9
11 = 0.779. (22)

The jamming function for segments is γ k
� = φk

� ; the
corresponding jamming function for the entire lattice will be
denoted by Fk(p).

For a textbook comparison between irreversible sequential
deposition and configurational deposition, see [27]. In partic-
ular, the example in Sec. II B 1 is appropriate to the present
discussion.

4. Loose packing or repulsive deposition

In this case, the k-mers can move while trying to stay apart
within the segment. They repel each other and they could
also repel the boundaries of the segment. This deposition
can be realized by means of electrically charged (or ionized)
segments. An acceptable deposition attempt finishes when
equilibrium is reached and the repulsive energy reaches a
minimum. Then configurations with one additional k-mer are
attempted. The packing is loose since the spacing between
k-mers is maximum, producing n + 1 spaces of length up to
(k − 1). In this case, the only possible configuration is the one
with n = u, which leads to the repulsive jamming function:

ρk
� = x

u,k
� . (23)

For the running example, this yields

ρ3
11 = x

2,3
11 = 0.545. (24)

The jamming function for segments is denoted by ρk
�=x

u,k
� ,

while the corresponding one for the whole lattice will be
denoted as Rk(p).
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5. Close packing or attractive deposition

In this case, the k-mers can move while trying to stay
together within the segment. They attract each other and
they could also attract the boundaries of the segment. This
deposition can be achieved by electrically or magnetically
polarized polymers properly oriented by external fields. An
acceptable deposition attempt finishes when equilibrium is
reached and the attractive energy reaches a minimum. Then,
configurations with one additional k-mer are attempted.
The packing is close since spacing between the n k-mers
is minimum, ideally leaving just one space of maximum
length (k − 1) depending on the commensuration with �. The
attractive jamming function is now given by

αk
� = x

z,k
� . (25)

For the running example, this yields

α3
11 = x

3,3
11 = 0.818. (26)

The jamming function for segments is denoted by γ k
� = αk

�

while the corresponding one for the whole lattice is Ak(p).

III. RESULTS

A. Segments

With the aid of tables constructed according to the proce-
dure described in the Appendix, we can obtain the jamming
functions φk

� , σ k
� , ρk

� , and αk
� , according to the deposition case.

Thus, for trimer occupation these four functions are given in
Fig. 6 with respect to �−1. It is interesting to notice that for
�−1 = 0.125 (� = 8), u = z = 2, so this is a common point for
all depositions. From there onto higher values of �, they split
and show large differences.

In the case of θk
� , the values shown in Fig. 6 were

obtained using numerical simulations. In the filling process,
straight rigid rods of size k (k = 3) were deposited randomly,
sequentially, and irreversibly on an initially empty segment
of length �. The procedure of deposition is as follows: (i)

FIG. 6. Jamming concentrations γ 3
� as labeled in the inset where

indices are omitted. Depositions correspond to trimers over segments
of increasing length up to � = 87.

one of the two possible lattice directions (left or right) and
a starting site are randomly chosen; (ii) if, beginning at the
chosen site, there are k consecutive empty sites, then a k-mer
is deposited on those sites. Otherwise, the attempt is rejected.
As is standard in the literature [28], the dimensionless time
variable t was defined in terms of the number of deposition
attempts per lattice site. For an �-site segment, the time step
t = 1 corresponds to � deposition attempts. The jamming
coverage is reached when it is not possible to deposit any more
k-mers on the segment, this limit is reached for t ≈ 102. Each
point in the figure was calculated by averaging over 100 000
independent runs.

One interesting corollary coming from this exercise is that
oscillations affect the results for the noninteracting depositions
for small values of �. In terms of their presence in the lattice
of length L, Eqs. (2) and (3) indicate that this corresponds
to a high impurity presence. For low impurity content,
p < 0.10 say, oscillations lose importance, and linear regres-
sions to extrapolate for the different γ functions are possible.

The oscillations of α are easy to understand since they are
directly related to the commensuration properties of the k-mer
with respect to �. Whenever the latter is a perfect multiple nk

of the former, α = 1.0. As � grows from here, α decreases
reaching its local minimum at � = nk + (k − 1). Obviously in
the thermodynamic limit these oscillations tend to disappear
and αk

∞ = 1.0.
On the other extreme, the oscillations of ρ are related to the

distribution of k-mers and spaces. In the case of lower cover-
age, the segment is covered by n k-mers of length k plus n + 1
spaces of length k − 1, namely � = nk + (n + 1)(k − 1);
the corresponding coverage nk/� is ρk

∞ = k/(2k − 1) in the
thermodynamic limit. In the case of higher coverage, there are
n k-mers of length k and n − 1 spaces, �=nk + (n − 1)(k−1),
and the thermodynamic limit is again ρk

∞ = k/(2k − 1). This
tendency is confirmed by Fig. 6 in the case of trimers. Cycles
have a period 2k − 1 reflecting the addition of one k-mer and
one large space of length k − 1. This is reflected in Fig. 6 by
a period 5 for trimers. As k increases, oscillations are more
pronounced.

Values of φk
� are larger than the corresponding ones for θk

�

due to the deposition sequence dependence of the latter. Let
us use the example with � = 11 in Fig. 5 to understand this
result. If we enumerate the configurations from top to bottom,
we realize that the six leading ones lead to a jamming with
three trimers. If we continue to the next five, where the first
site of the segment is left empty, we realize that four of them
jam with three trimers while the ninth one saturates with only
two trimers, at a lower coverage. When we continue to the
next four configurations (with two empty sites on the left end),
half of them jam at the lower coverage. Since the deposition
is irreversible, these three early jamming depositions will
favor lower jamming concentrations. In the configurational
deposition, these three jamming configurations have a weight
but still there is a probability of reaching jamming at higher
coverage. As � grows, the difference between φk

� and θk
� is

more notorious due to the increase in the number of possible
configurations.

Another way of looking at these differences is to pay
attention to the spectral distribution of results for the saturation
coverage of θk

� over a large number of initializations. This
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FIG. 7. Distribution for the jamming values for RSD after 50 000
depositions (x = 3n/�, where n is the number of saturating trimers)
over a segment of length L = � = 80 (no impurities).

is done for trimers in Fig. 7 for L = � = 80, with 50 000
initializations. The distribution maximizes at x3

80 ≈ 0.82,
corresponding to 22 trimers. Several comments are in order.
First, the distribution is not symmetric with a tendency to
favor jamming at lower coverage values. Second, it is a wide
distribution going from about x = 0.70 to about x = 0.90
(both of these concentrations present a few samples from the
50 000 initializations). Third, upon looking at Fig. 6 we find
that for �−1 = 0.0125 (� = 80) this distribution maximizes at
θ3

80; the left wing (lower x) of the distribution clearly includes

σ 3
80 while the right side (higher x) of the distribution includes

φ3
80. Fourth, functions σ 3

� and φ3
� escort the central θ3

� jamming
function for all values of �, hence all values of p.

The baseline function σ 3
� necessarily goes under θ3

� since
the lower coverage jamming configurations are weighted with
respect to other jamming configurations only. So, from this
point of view σ k

� serves as a kind of lower bound for the
distribution of possible jamming coverage configurations of
noninteracting k-mers. The main advantage of σ k

� is that it is
easy to calculate from an analytic point of view, so it can be
used as a reference value.

The dependence on k can be appreciated in Fig. 8, where
we have picked the baseline deposition for simplicity. As the
length of the depositing polymer increases, strong oscillations
occur for short segments or high impurity content. For
a particular application involving long k-mers and/or high
impurity content, some of these projections may not hold and
a particular study should be done calculating the jamming
conditions for each p and not by means of the linear regressions
that will be used below in the case of trimers.

B. One-dimensional lattice with impurities

Finally, we turn our attention to the complete lattice with
impurity concentration p. The aim is to find the five jamming
functions Sk(p), T k(p), Fk(p), Rk(p), and Ak(p). They will
be obtained from the γ jamming functions for segments for
each deposition case and the impurity presence, which is a
general feature independent of the deposition mechanism.

FIG. 8. Jamming function σ k
� for k = 2, 3, and 4 for the baseline

deposition as functions of the segment length.

For the different depositions, we can plot the corresponding
γ functions in the way presented in Fig. 6. Actually, we can
obtain the linear regression in terms of �−1 in each case. We
have seen that 〈�〉 and p are related by Eq. (4). At this point,
we propose to use 〈�〉 as representative of the distribution of
lengths for a given p. This allows us to establish a direct
connection between � = 〈�〉 and p.

Then we can express the linear regressions for the γ ’s in
terms of p, yielding

σ 3
p = 0.78 − 0.53 p, (27)

θ3
p = 0.84 − 0.59 p, (28)

φ3
p = 0.88 − 0.66 p, (29)

ρ3
p = 0.6, (30)

and

α3
p = 1.0 − 1.097 p. (31)

In the last two cases, we attempt a description of the general
tendency only avoiding the oscillations related to the k-mer
length, i.e., we pay attention to the central point only. In the
case of the repulsive depositions, the central point lays on a
constant line at 0.6. In the case of the attractive interaction, the
straight line given by the last equation was obtained from the
central points of α3

p in Fig. 6.
We now combine these results, that are valid for segments,

with a previous analysis on the available portion of the lattice
over which depositions are possible, as discussed in connection
with Eq. (8) and Figs. 2 and 4. Three different mechanisms act
to limit the jamming functions: (i) The impurity concentration
p on its own, which is deposition-independent; (ii) the blocked
positions, which depend on both p and k, as discussed
in connection with Fig. 4 and its discussion; this is also
deposition-independent; and (iii) the deposition of the k-mers
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FIG. 9. Jamming function for the full lattice for trimer irreversible
deposition. Red circles are obtained from Eq. (32) in the text,
corresponding to a projected result from previously simulated depo-
sitions on segments. Black squares correspond to direct irreversible
deposition of trimers over a whole lattice with L = 10 000 for
impurity concentration p.

within the segment, which is dependent on the way the
polymers are deposited in the way shown by Fig. 6.

For the purpose of a comparative study among deposition
mechanisms, we look for a representative way to describe the
distribution in the last of the previous contributions to the
jamming. We choose to use the average segment 〈�〉 due to its
direct connection with p. The only justification we can give at
the moment is that the projected results obtained in this way for
T 3(p) are in good agreement with those obtained by numeric
simulations, as presented in Fig. 9. We are not guaranteed that
such a good agreement holds for all deposition methods in the
same way, but for comparative purposes it looks reasonable.

Then, jamming coverage functions for trimer depositions
over an ODL with impurity concentration p for irreversible
sequential deposition including the three previously identified
contributions can be written as

T 3(p) = θ3
p − p − β3

p, (32)

where β3
p has been obtained from numeric studies as presented

in Fig. 4. In any case, β3
p starts at 0.0 for small p values and

grows up to slightly over 0.05 for p = 0.15. We call the result
given by Eq. (32) a projected result for T 3(p) since it projects
the result that is valid for segments to the entire lattice.

In Fig. 9, we compare the results of the previous equation
to extensive numeric calculations done directly over a lattice
with L = 10 000 varying p. The agreement is quite good for
the range of interest both in values and in slope.

A similar analysis can be done for each of the jamming
functions for the whole lattice: Sk(p), T k(p), Fk(p), Rk(p),
and Ak(p). In Fig. 10, we plot the projected results within
the range of interest. Here we have omitted the oscillatory
behavior for the interacting depositions, which would render
the lines presented in Fig. 9 into bands of decreasing width
as p decreases. It is noteworthy that the three noninteracting

FIG. 10. Projected jamming functions for trimers on ODLs with
impurity concentration p for the five depositions indicated in the
inset.

depositions exhibit a parallel behavior, with all of them
decreasing mainly due to the impurity effect. The interacting
depositions present different values and slopes, which makes
them clearly different over the entire range.

IV. CONCLUSIONS

The oriented deposition of k-mers on a lattice has several
interesting features, some of them not previously considered in
the literature. On the one hand, the problem can be simplified to
deposition on ODLs due to directional orientation established
by external conditions. On the other hand, the problem is
enlarged due to the presence of impurities that break the lattice
into finite segments, which do not allow for treatments that are
valid in the thermodynamic limit.

Segments present a distribution that maximizes at short
lengths, decaying asymptotically to zero for long lengths
(see Fig. 2). The average length 〈�(p)〉 decreases with the
impurity concentration p, slightly modulated by the lattice
length L. For small enough impurity concentrations (around
and under 0.1), the weak L dependence can be ignored, giving
a direct relationship between 〈�〉 and p [see Eq. (4)].

Three complementary mechanisms contribute to the jam-
ming condition: (a) the impurity concentration p by itself
(independent of k and the deposition method); (b) the segments
with length under k (also independent of the deposition
method); and (c) the jamming within the individual segments
(depending on p through 〈�〉 and depending on the deposition
conditions generically denoted as γ k

� ). The role of (a) and (b) is
summarized by Eq. (9), while function γ k

� has to be obtained
separately for finite values of � according to the deposition
mechanism under consideration.

Depositing linear polymers can be interacting or nonin-
teracting. For the latter, three deposition conditions were
considered and fully discussed. The configurational method
is based on equilibrium conditions yielding the segment
jamming function φk

� , which gives the highest values among
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the noninteracting depositions. The sequential irreversible
mechanism is based on partial coverage of the configuration
space following the irreversible occupations leading to the
jamming function θk

� with values under those for φk
� . The

baseline method is based on the jamming configurations only
leading to σ k

� , which presents the lowest jamming values. This
functional dependence of the deposition of noninteracting k-
mers with � is summarized by the central three curves in Fig. 6.

The interacting depositions present commensuration effects
that are more noticeable for shorter segments (or higher
impurity content). The repulsive deposition is characterized by
the function γ k

� → ρk
� , which presents decreasing oscillations

of period 2k − 1 around a value k/(2k − 1). Repulsion among
segments means the largest possible empty intersegment
spacings. This leads to the lowest possible values in Fig. 6. On
the other extreme is the attractive depositions characterized by
the function γ k

� → αk
� , which presents decreasing oscillations

with the highest values always 1.0, corresponding to cases of
jamming by n = �/k k-mers, with n an exact integer number.
In this case we reach the maximum possible values for the
jamming values in Fig. 6.

It is interesting to notice that numeric simulations based
on irreversible depositions produce a dispersion of results
that span a range of jamming values that include the three
noninteracting depositions (see Fig. 7). This means that some
of the irreversible depositions find the low probability path
to exhibit coverage close to the high values of the configu-
rational deposition. On the other extreme, some irreversible
depositions go over mostly jamming configurations staying
close to the low values of the baseline method.

The dependence of the jamming functions with the length of
the k-mer has two different components. On one side, there is
a monotonous decrease of the lattice available for depositions
as k grows, as can be seen in Fig. 4. On the other side, there
is a nonmonotonic oscillatory behavior for high p values as k

grows in the way illustrated by Fig. 8.
We can obtain linear regressions for previous γ functions in

the low-p regime. This result is combined with the fraction of
the whole lattice L actually available for depositions given by
Eq. (9), which is common to all deposition methods. This was
done explicitly for the case of T k(p) by means of θk

� , which
allows the method to be tuned to establish the relationship
between 〈�〉 and p (see Fig. 9).

The extension of this projection method to the other
deposition cases allows us to obtain similar projected jamming
functions for all of them, as is shown in Fig. 10. The
order is Ak(p) > Fk(p) > T k(p) > Sk(p) > Rk(p) in general
terms. However, some of the slopes are different, so some
discrepancies to previous ordering could be found out of
the range considered here for p. This picture will be more
complicated as the length of the polymers increases.

Most of the reported calculations were done for trimers.
However, the extension to other k-mers is straightforward.
The case of dimers is actually simpler than the one for trimers
reaching higher values for all jamming functions (see Fig. 8).
The case of longer k-mers requires special care for high
impurity content as oscillations are strong, as can be seen for
the case k = 4 in Fig. 8. For a particular application involving
a polymer of given length over 4, a special study has to be
conducted with the appropriate deposition method.
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APPENDIX

In this appendix, we deal with the jamming functions for
segments of finite length �, which is one of the parameters to
be varied. Let us recall that it is related through the impurity
content and the lattice size by Eq. (3). In addition, the size of
the k-mer is also a possible variable. We shall use short k-mers
here, namely k = 2, 3, and 4.

The next consideration is for the deposition case, and that is
fixed by a predetermined application. We choose to illustrate
the process using the neutral baseline deposition, described in
Sec. II B 1. The procedure outlined here can be extended to
the other cases by just describing the probability depositions
accordingly.

To apply Eq. (17) to get σ k
� , we need in advance all

the probability expressions P
n,k
� , where n runs from u the

minimum possible number of k-mers leading to jamming, and
to z the maximum number of k-mers that can be accommodated
in a segment of length �. This is laborious work, which
increases with the size of the segment. To illustrate this point,
we present in Table I the coefficients P

n,k
� for a segment with

� = 30 for k = 2, 3, and 4.
We can then plot these results with respect to �−1 as it is pre-

sented in Fig. 8. These results clearly indicate that finite-size

TABLE I. Coefficients P
n,k
� intended for the calculation of σ k

�

(as indicated in the text) for k-mers on a 1D homogeneous lattice; k

ranges from 2 to 4.

n k = 2 k = 3 k = 4

4 0.0000 0.0000 0.0038
5 0.0000 0.0000 0.4152
6 0.0000 0.0100 0.5536
7 0.0000 0.3617 0.0274
8 0.0000 0.5532 0.0000
9 0.0000 0.0748 0.0000
10 0.0033 0.0003 0.0000
11 0.1487 0.0000 0.0000
12 0.5155 0.0000 0.0000
13 0.3007 0.0000 0.0000
14 0.0315 0.0000 0.0000
15 0.0003 0.0000 0.0000
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segments produce nonmonotonic jamming functions for short
segments. Such an effect is mainly due to commensuration
between the segment length and the k-mer size. This is even

more so as k increases. Then for applications to high impurity
content (short segments), particular calculations should be
done.
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