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Phase transitions in a system of long rods on two-dimensional lattices by means of
information theory
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The orientational phase transitions that occur in the deposition of longitudinal polymers of length k (in terms
of lattice units) are characterized by information theory techniques. We calculate the absolute value of an order
parameter δ, which weights the relative orientations of the deposited rods, which varies between 0.0 (random
orientation) and 1.0 (fully oriented in either of the two equivalent directions in an L × L square lattice). A Monte
Carlo (MC) algorithm is implemented to induce a dynamics allowing for accommodation of the rods for any given
density or coverage θ (ratio of the occupied sites over all the sites in the lattice). The files storing δ(t) (with time
t measured in MC steps) are then treated by data recognizer wlzip based on data compressor techniques yielding
the information content measured by a parameter η(θ ). This allows us to recognize two maxima separated by
a well-defined minimum for η(θ ) provided k � 7. The first maximum is associated with an isotropic-nematic
(I -N ) phase transition occurring at intermediate density, while the second maximum is associated with some kind
of nematic-isotropic transition at high coverage. In the cases of k < 7, the curves for η(θ ) are almost constant,
presenting a very broad maximum which can hardly be associated with a phase transition. The study varies L and
k, allowing for a basic scaling of the found critical densities towards the thermodynamic limit. These calculations
confirm the tendency obtained by different methods in the case of the intermediate-density I -N phase transition,
while this tendency is established here in the case of the high-density phase transition.
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I. INTRODUCTION

The study of systems of hard rodlike particles has been
an attractive and important topic in statistical physics for a
long time. A pioneering contribution to this subject was made
by Onsager [1], who predicted that very long and thin rods
interacting by means of excluded-volume interaction only can
lead to long-range orientational (nematic) order. This nematic
phase, characterized by a big domain of parallel molecules,
is separated from an isotropic state by a phase transition
occurring at a finite critical density.

The problem proposed by Onsager is a clear example of an
entropy-driven phase transition. Despite the physical relevance
of this type of system with purely steric interactions, rigorous
results are still very limited. In this vein, Heilmann and Lieb
[2] showed that, for dimers, the system is disordered at all
densities. The existence of nematic order in a system of large
rods was rigorously demonstrated by Disertori and Giuliani
[3]. In Ref. [4] the problem of hard rods was solved exactly on
a treelike lattice. The authors showed rigorously the existence
of a phase transition on this lattice. Later, Kundu and Rajesh [5]
solved exactly a model of monodisperse long rigid rods with
repulsive interactions on the random, locally treelike layered
lattice. In the limit of hard interactions, two phase transitions
are recovered as for the two-dimensional (2D) lattice.

The behavior of long rods has also been studied by
using approximate methods [6,7]. Based on the configuration-
counting procedure of the Guggenheim approximation [8],
DiMarzio [6] showed the existence of nematic order in a lattice
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model of straight rigid rods. Identical results were obtained in
Ref. [7], by using density-functional theory.

For the continuum problem, there is general agreement
that in the case of deposition of infinitely thin rods in three
dimensions the system undergoes a first-order phase transition
[1]. On the other hand, in two dimensions, the nature of the
phase transition depends crucially on the particle interactions
and a rich variety of behaviors is observed [9–11].

In the case of lattice models, which is the topic of this
paper, a system of straight rigid rods of length k on a square
lattice, with two allowed orientations, was studied by Ghosh
and Dhar [12]. Using Monte Carlo (MC) simulations and
analytical arguments, the authors found strong numerical
evidence showing that the system reaches nematic order at
intermediate densities for k � 7 and provided a qualitative
description of a second phase transition (from a nematic order
to a non-nematic state) occurring at a density close to 1.

To illustrate this point, Fig. 1 shows the typical curve for
density θ as a function of the chemical potential μ for a system
of k-mers on a square lattice of side L. The adlayer undergoes
an isotropic-nematic (I -N ) phase transition from a low-density
disordered phase to a nematic phase as θ is increased from
0 at θ = θ1. As the density is increased above θ1, a phase
transition associated with the loss of the nematic order appears
at θ = θ2 < 1. The phase above θ2 is not necessarily the same
as the one present below θ1, but the long-range order is lost
as the order parameter defined below vanishes. A schematic
representation of the plausible different phases occurring in
the system are shown in the insets of Fig. 1: (i) the low-density
disordered phase (0 < θ < θ1), (ii) the intermediate-density
nematic phase (θ1 < θ < θ2), and (iii) the high-density non-
nematic or differently ordered isotropic phase (θ2 < θ < 1).
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FIG. 1. Surface coverage θ as a function of the chemical potential
μ for k-mers on square lattices of side L; although the actual
curves vary with the ratio L/k = f , the general shape is preserved.
Insets illustrate plausible orientational patterns: (i) the low-density
disordered phase (0 � θ � θ1), (ii) the intermediate-density long-
range ordered phase (θ1 � θ � θ2), and (iii) the high-density partly
disordered phase (θ2 � θ � 1).

Based on the seminal work of Ghosh and Dhar [12], a
series of papers was devoted to the detailed study of the
I -N transition occurring at intermediate density values in
a system of long straight rigid rods on 2D lattices with
discrete allowed orientations [13–19]. In these articles, it was
shown that (1) the I -N phase transition from the low-density
disordered phase to the intermediate-density ordered phase
belongs to the 2D Ising universality class for square lattices
and the three-state Potts universality class for honeycomb and
triangular lattices [13,14], (2) the minimum value of k which
allows the formation of a nematic phase is k = 7 for triangular
lattices [15] and k = 11 for honeycomb lattices [14], and
(3) the critical density characterizing the I -N transition θ1

follows a power law as θ1(k) ∝ k−1 [15]. The corresponding
proportionality constant was obtained in Refs. [18,19]. It
was also shown that (4) the orientational order survives in
a wide range of lateral interactions between the adsorbed
k-mers [16,17] and (5) an Ising behavior is found for a 2D
Zwanzig fluid of hard line segments which may orient either
horizontally or vertically [18].

On the other hand, as it was mentioned in Ref. [12],
the relaxation time increases very quickly as the density
increases. Consequently, MC simulations at high density are
very time consuming and may produce artifacts related to
inaccurate equilibrium states. For these reasons, there have
been few studies related to the second transition at θ2 from
the nematic to the high-density phase [20–22]. In Ref. [20],
the authors provided numerical evidence for the existence of
an N -I2 phase transition at high coverage (I2 to distinguish
this isotropic phase from the low-density one as they are not
necessarily the same) and they estimated that θ2 varies between
0.87 and 0.93 for k = 7 and square lattices.

Kundu et al. [21,22] studied the problem of hard rigid rods
on 2D square and triangular lattices by using an efficient
MC scheme. The authors confirmed previous results [20]

showing that θ2 = 0.917(15) for square lattices and k = 7.
In the case of triangular lattices, a value of θ2 = 0.905(10)
was obtained for k = 7. In addition, an exhaustive study of
finite-size scaling showed that (a) for square lattices (k = 7),
the values obtained for the critical exponents for the N -I2
transition are different from those of the Ising universality
class, and (b) for triangular lattices (k = 7), the estimated
exponents for the second transition are consistent with those
of the 2D three-state Potts universality class.

Despite the number of recent contributions to the problem of
straight rigid rods on discrete lattices [12–22], there are many
aspects which are not yet completely solved, and the use of
theoretical and computational tools to identify and characterize
this sort of phase transitions is welcome. In this direction, an
alternative numerical method to treat phase transitions has
been presented [23]. The approach is based on the use of
information theory using data compressor methods for the
recognition of thermodynamic phases.

In several works [23–25] these data compressor techniques
were improved showing that they can be a very useful tool
for the research of magnetic systems: the 2D Edwards-
Anderson model near the ferromagnetic limit [23], the 2D
and 3D Ising ferromagnetic models [24], and the 3D Edwards-
Anderson model covering the full range of mixture between
ferromagnetic and antiferromagnetic interactions [25]. In the
present paper, the scheme introduced in Refs. [23–25] is
applied to study orientational phase transitions in systems of
adsorbed molecules. For this purpose, a system of straight
rigid rods deposited on a square lattice is simulated by MC
algorithms and order parameter sequences are generated and
their corresponding indicators are later calculated by data
compressor techniques. The first transition is revisited, con-
firming previous results in the literature [15]. The application
of the information theory method to the N -I2 phase transition
occurring at higher densities yields estimated values for θ2 in
the range 7 � k � 10.

Summarizing, the detection of phase transitions by means
of information theory is applied to this problem, confirming
all the known results at low densities, while our results are
reported at high densities; in this way our method is now
available for use to attain a better understanding of nematic
transitions in general. This paper is organized as follows. The
model and the simulation scheme are described in Sec. II. In
Sec. III, the method of data compression to obtain the critical
densities is presented. Section IV is devoted to the main results
of the application of our technique and the comparison with
previous results. A summary and general conclusions are given
in Sec. V.

II. MODEL AND SIMULATION SCHEME

In this paper, the adsorption of straight rigid particles
containing k identical units (k-mers) on square lattices is
considered. The distance between k-mer units is assumed
to be equal to the lattice constant; hence exactly k sites are
occupied by a k-mer when adsorbed. The only interaction
between different rods is hard-core exclusion: No site can
be occupied by more than one k-mer unit at the same time. The
substrate is represented as an array of M = L × L adsorptive
sites on a square lattice arrangement, where L denotes the

062133-2



PHASE TRANSITIONS IN A SYSTEM OF LONG RODS ON . . . PHYSICAL REVIEW E 96, 062133 (2017)

linear size of the array. In addition, conventional periodic
boundary conditions are considered.

The problem has been studied by grand canonical MC
simulations using a typical adsorption-desorption algorithm
[26,27]. The procedure is as follows. Once the value of the
chemical potential μ is set, a linear k-uple of nearest-neighbor
sites is chosen at random. Then, if the k sites are empty,
an attempt is made to deposit a rod with probability W =
min{1, exp(μ/kBT )}, where kB is the Boltzmann constant and
T is the temperature; if the k sites are occupied by units
belonging to the same k-mer, an attempt is made to desorb
this k-mer with probability W = min{1, exp(−μ/kBT )}; oth-
erwise, the attempt is rejected. In addition, diffusive relaxation
of adparticles to nearest-neighbor positions, by either jumps
along the k-mer axis in any direction or reorientation by
rotation around any of the k-mer ends, must be allowed in
order to reach equilibrium in a reasonable time [28]. A MC
step (MCS) is achieved when M k-uples of sites have been
tested to change its occupancy state.

In order to follow the formation of the nematic phase from
the isotropic phase, we use the standard order parameter for
square lattices [12,13,29]

δ = |n1 − n2|
(n1 + n2)

, (1)

where n1 (n2) is the number of k-mers aligned along the
horizontal (vertical) direction.

In our MC simulations, we varied the chemical potential
and monitored both the density θ = kN/M (where N is the
number of k-mers present in the lattice at that instant) and
the order parameter δ. All calculations were carried out using
the supercomputing infrastructure of the NLHPC (ECM-02)
at Centro de Excelencia en Modelación y Computación Cien-
tífica at Universidad de La Frontera CEMCC-UFRO, Chile.

III. INFORMATION RECOGNIZER

A data analysis method based on information recognition
has yielded useful results on magnetic phase transitions
[23–25], agitation in stock markets [30], variations in capi-
talization towards pensions [31], blood pressure [32], wind
energy [33], and seismic activity [34]. In principle, this method
recognizes the information content in any sequence such as
a time series. In the present paper, we apply this powerful
technique to the recognition of information content in the MC
time series depicted in the preceding section.

The data recognizer wlzip was created to find repeated
meaningful information in any sequence of data. It is freely
available upon request [30]. Algorithms are similar to those of
data compressors which recognize any repeated information
regardless of its meaning. However, “word length zipper”
(wlzip) recognizes only exact matches within a given sequence
recognizing the positions of the digits in the numeric infor-
mation. Thus, compressions done by wlzip represent specific
properties of the system. Actually, wlzip compacts less than
other compressors like rar or bzip2, but its data recognition is
meaningful [24].

A high degree of compression recognized by wlzip means
that specific repetitive information has been detected along
the data chain; this is characteristic of a monotonic behavior,

FIG. 2. Information recognizer indicator η for the compressed
files of the absolute value of the orientational parameter δ as a
function of the density θ . The curves correspond to k = 5 and L = 30
(closed squares), k = 6 and L = 36 (open squares), k = 7 and L = 42
(closed circles), k = 8 and L = 48 (open circles), k = 9 and L = 54
(closed triangles), and k = 10 and L = 60 (open triangles).

suggesting that the system does not alter its properties within
the data window under consideration. On the other hand, low
degrees of compression mean that most of the information is
not repeated in the data chain, namely, a system that changes
constantly its properties along the data chain, as in phase
transitions or chaotic regimes.

The measure of information content is called mutability
and will be denoted by the symbol η; it will be defined as a
relative indicator. A sequence of σ entries is compressed by
wlzip and the size or weight of the compressed file is found to
be w∗(σ ); the weight of the original file was W (σ ). Then the
relative mutability η(σ ) is simply given by the ratio

η(σ ) = w∗(σ )

W (σ )
. (2)

In the present work we will consider σ = 15 000 MCSs in
the equilibrated time series for the order parameter δ defined in
Eq. (1). In previous studies [24], it was shown that the method
is very robust in recognizing the maxima for mutability even
when the time series is decreased to a few thousand MCSs.
Actually, this is one of the main advantages of this method
based on information theory in comparison to other methods
where a large time series is needed to recognize the critical
points. Just to be on the safe side, we did the analysis for
the cases of k = 7, 8, 9, and 10 for different lattices sizes
using 30 000 MCSs without finding significant differences
with respect to those reported below, namely, the maxima
remain at their values. Eventually σ could be optimized to
attain a better numeric precision, but for the present purposes
of recognizing the two maxima for η(σ ) and appreciating the
way they depend on k it is enough to consider mutability over
σ = 15 000 instants in the sequence.

We also investigated the dependence on the initial state (or
random seed) at the beginning of the series without finding
differences in the positions of the maxima or minima of Fig. 2.
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This is also an advantage of the information theory method
where the accent is on the variation of the information content
along the data chain and not on the actual values of the data
chain.

IV. RESULTS AND DISCUSSION

Simulations have been conducted for different values of
k-mer length (5 � k � 10) and lattice sizes (L/k = 5,6,7,8).
The coverage θ is varied, giving rise to a sequence δ(k,L,θ )
after equilibration.

A time window of 15 000 MCSs is defined over which
wlzip is let to act to calculate η(k,L,θ ) in the way defined
by Eq. (2). In Fig. 2, we plot this function with respect to θ

as a free variable for some typical cases: k = 5 and L = 30
(closed squares), k = 6 and L = 36 (open squares), k = 7
and L = 42 (closed circles), k = 8 and L = 48 (open circles),
k = 9 and L = 54 (closed triangles), and k = 10 and L = 60
(open triangles).

From an inspection of Fig. 2, it is observed that there are
two different behaviors: (a) For k = 5 and k = 6, the curves
for η are almost constant, presenting a very broad maximum
which can hardly be associated with a phase transition, and
(b) for k � 7, this behavior changes notoriously and the
corresponding curves show two well-marked maxima (the
second one sharper than the first one) with a minimum in
between; the first maximum is in the range of intermediate
densities and the second one in the range of high densities; the
minimum in between sharpens as k grows, while the maxima
tend to separate, moving in opposite directions along the θ axis.

As described in a previous work [24], the lack of recognition
of meaningful repetitions is not the same under different
circumstances. Near a critical point, where a chaotic suc-
cession of data should occur, repetitions of values for δ

will be seldom and wlzip will compress very little, giving
higher values for η. Thus, what wlzip should give is high
contrast between monotonic regimes as compared to chaotic
regimes. Consequently, each maximum in the data of Fig. 2
should be indicative of the existence of a critical point:
The first maximum can be associated with θ1, while the
second maximum can be associated with θ2. Reinforcing these
arguments, note that the positions on the θ axes of the first
(second) maximum shift to the left (right) upon increasing
the k-mer size. These observations are a clear indication that
the critical density characterizing the first (second) transition
decreases (increases) upon increasing k. This behavior has
already been reported for the I -N transition [15] and it is
expected for the N -I2 transition [12], which is confirmed here
by Fig. 2. The analysis of Fig. 2 shows that data compressor
techniques supply an alternative way of identifying and charac-
terizing orientational phase transitions in systems of adsorbed
molecules. Hereafter, curves of η(k,L,θ ), supplemented by
finite-size scaling analysis, will be used to obtain θ1 and θ2

for square lattices and k ranging between 7 and 10.
One of the important points here is the evolution in the

high-coverage regime. In spite of this being slow, the relaxation
mechanism used in the simulations helps to unblock the
dynamics. This is illustrated in Fig. 3, where instants for six
different θ values are captured for a system of k = 10 and
L = 80. The corresponding 〈δ(θ )〉 (closed squares, left vertical

FIG. 3. Orientational order parameter δ (squares, left vertical
axis) and information recognizer indicator η (triangles, right vertical
axis) as functions of the density θ for k = 10 and L = 80. The
evolution of the ordering as the coverage grows is captured by means
of snapshots given at the top. The corresponding θ values are indicated
over each image with the exemption of the first one, which is given
underneath.

axis) and η(θ ) (open triangles, right vertical axis) curves are
included to appreciate the way the second transition appears
and is detected by both a descent in 〈δ(θ )〉 and a sharp
maximum in the mutability η(θ ) of the order parameter.
The snapshots on top clearly show how the long-range
ordered phase is lost breaking into growing patches of the
perpendicular orientation. The second maximum in the figure
is to be attributed then to the loss of the long-range order phase.

In Fig. 4, η(k,L,θ ) is plotted for intermediate densities
(0.45 � θ � 0.6), k = 9, and different values of L/k as
indicated. The maxima in the curves are clear evidence of

FIG. 4. Information recognizer indicator η for the compressed
files for the absolute value of the parameter δ as a function of density
θ (0.45 � θ � 0.6). The curves were obtained for k = 9 and different
lattice sizes as indicated. A clear tendency for an I -N transition
density to approach the value 0.569 (vertical dotted line) is observed.
See the discussion in the text.
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FIG. 5. Same as Fig. 4 but for k = 7 in the high-density range
(0.8 � θ � 0.95). The vertical dotted line indicates the value of the
corresponding N -I2 transition density 0.917 (see the discussion in
the text).

the existence of the I -N phase transition. The vertical line
denotes the value of the critical density in the thermodynamic
limit, θ1(k = 9) ≈ 0.569. This value was obtained in Ref. [15].
A similar study, conducted for k = 7 in the high-density range
(0.8 � θ � 0.95), is presented in Fig. 5. This time, the maxima
reveal the presence of the N -I2 phase transition in the system
and the vertical line indicates the critical density obtained in
Ref. [22], θ2(k = 7) ≈ 0.917.

In order to express η(k,L,θ ) as a function of continuous
values of θ , it is convenient to fit η(k,L,θ ) with some
approximating function through the least-squares method.
Around each maximum, the fitting curve is expected to behave
like the Gaussian function1

η(k,L,θ ) = 1√
2π�L

exp

{
−1

2

[
θ − θ1 [2](L)

�L

]2
}

, (3)

where θ1 [2](L) is the concentration at which the first (second)
maximum in η(k,L,θ ) occurs and �L is the standard deviation
from θ1 [2](L).

With the previous results for θ1(L) and θ2(L), a scaling
analysis can be done. Thus, it is expected that

θ1 [2](L) = θ1 [2](∞) + A1 [2]L
−1/ν1 [2] , (4)

where A1 [2] is a nonuniversal constant and ν1 [2] is the critical
exponent of the correlation length. The I -N phase transition
belongs to the 2D Ising universality class for square lattices
and, consequently, ν1 = 1 [13]. In the case of the N -I2 phase
transition, ν2 will be taken as 0.90 ± 0.05 [22].

Figure 6 shows the plots towards the thermodynamic limit
of θ1(L) and θ2(L) according to Eq. (4) for the data in Figs. 4
and 5 (and similar data obtained for k = 7, 8, and 10). From ex-
trapolations, it is possible to obtain θ1 ≡ θ1(L → ∞) and θ2 ≡

1Even though the behavior of η(k,L,θ ) is known not to be Gaussian
in the whole range of θ , this quantity is approximately Gaussian near
each peak and Eq. (3) is a good approximation for the purpose of
locating its maximum.

FIG. 6. Extrapolation of θ1(L) (open symbols) and θ2(L) (closed
symbols) towards the thermodynamic limit according to Eq. (4)
for k = 7 (circles), k = 8 (triangles), k = 9 (squares), and k = 10
(diamonds).

θ2(L → ∞). In the case of the first transition, θ1 ≈ 0.751 for
k = 7, θ1 ≈ 0.643 for k = 8, θ1 ≈ 0.570 for k = 9, and θ1 ≈
0.499 for k = 10. In all cases, the simulation error was of the
order of 1%. For the second transition, the obtained values of
the critical density were θ2 ≈ 0.931 for k = 7, θ2 ≈ 0.974 for
k = 8, θ2 ≈ 0.985 for k = 9, and θ2 ≈ 0.989 for k = 10. In this
case, the simulation error was of the order of 3%. The values
of θ1 and θ2 are collected in Table I. The table also includes the
values of θ1 and θ2 previously reported in the literature [15,22].

Finally, the values compiled in Table I are shown in Fig. 7.
In the case of the I -N phase transition, it is well known that the
critical density follows a power law as θ1(k) = AkB , with A =
4.80 ± 0.05 [19] and B = −1 [12,15,18,19]. This expression
was derived for large values of the k-mer size (k → ∞) [12]. In
the present study, due to the small size of the studied particles
(7 � k � 10), some deviations were observed with respect to
the value of A reported in Ref. [19], where the simulations were
performed for rods of length up to k = 32. However, the values
calculated using data compressor techniques (closed symbols)
coincide (within statistical errors) with previous results in the
literature (open symbols) [15].

On the other hand, for the N -I2 phase transition, Ghosh
and Dhar found that θ2(k) ≈ 1 − Ck−2 for large k, where C

TABLE I. Critical densities θ1 and θ2 (as indicated in the text)
for straight rigid rods on a square lattice and k ranging from 7 to 10.
The values in the second and fourth columns correspond to previous
calculations in Refs. [15] and [22], respectively. The errors in columns
3 and 5 are of the order of 1% and 3%, respectively.

k θ1 [15] θ1 (this work) θ2 [22] θ2 (this work)

7 0.729(4) 0.751 0.917(15) 0.931
8 0.647(3) 0.643 0.974
9 0.569(2) 0.570 0.985
10 0.502(1) 0.499 0.989
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FIG. 7. Critical densities θ1 and θ2 as a function of k (on a log-log
scale). The symbols are defined in the legend. The inset shows 1 − θ2

as a function of k.

is some constant [12]. As mentioned above, the range of k

studied in this paper does not allow a quantitative comparison
of our results with the theoretical expression derived by Ghosh
and Dhar [12]. This situation is clearly reflected in the inset of
Fig. 7, where 1 − θ2 is plotted as a function of k. As observed in
the figure, the asymptotic regime 1 − θ2 ∝ k−2 is not reached
yet for the values of k used in these simulations; however, it
is barely appreciated that the larger curvature for the results
is for the lower k values. Nevertheless, the results in Fig. 7
indicate that (1) θ2(k = 7) agrees (within statistical errors) with
previous calculation [22] and (2) according to the prediction
of Ref. [12], θ2 tends to 1 as the k-mer size is increased. In
addition, it is important to note that the values corresponding
to k � 8 are reported.

The time needed for previous calculations increases enor-
mously as the coverage θ increases. This means that the last
points to the right in Figs. 2 and 5 were extremely difficult to
obtain, especially so for the larger systems. Apparently, these
difficulties prevented previous authors [12] from obtaining θ2

values for a variety of sizes which we were able to estimate
here using our method. Another difficulty that we found is
that calculations initiated with different random seeds do not
necessarily repeat the values of η producing a family of curves
which, nevertheless, all maximize at the same value of θ . In
other words, the maximum is always located at the same place,
but each curve needs to be obtained in a continuous way. This
is a practical limitation for larger systems at this moment.

V. CONCLUSION

In the present paper, we have addressed the critical proper-
ties of long straight rigid rods adsorbed on square lattices at
intermediate and high densities. The results were obtained by
combining MC simulations and information theory based on
the use of data compressor methods.

The main general conclusion of this work is that information
recognition in the time series generated by the induced MC
dynamics in the systems described above leads to an alternative
method to describe the orientational phase transitions at
different deposition coverage values. To have at our disposal
an additional method to characterize phases is always an
advantage. Supporting this affirmation, the analysis in Fig. 2

presents the most general picture, where the low- and high-
coverage transitions are shown for the deposition of the larger
polymers considered here.

Our method succeeds in detecting the low- to
intermediate-coverage maximum for k-mers larger that
seven units, while similar behavior was not found for shorter
k-mers deposited on square lattices. This is a known result
but it is still surprising as it is not clear what geometrical or
topological reasons are behind this discontinuity: Depositions
of polymers shorter than seven square lattice units do not show
a nematic transition, while deposition of polymers of length
7 or larger present a long-range order nematic transition at
intermediate coverage θ1.

For k � 7 a second transition is also present at larger
coverage values maximized at θ2. This finding suggests that
the system is without any order for θ < θ1 and then presents
orientational order for θ1 < θ < θ2 to finally rearrange in a
different way (not necessarily absolute disorder) for θ > θ2.
This second transition is harder to characterize since the
dynamics at high coverage is very slow, so equilibration is
harder to reach. Eventually the system could get trapped in a
long-lived metastable state, leading to errors in the estimation
of θ2. Actually, a more comprehensive treatment focusing on
this second transition is needed, which is beyond the scope of
the present paper.

The dependence of θ1 with the lattice size was obtained
(Fig. 4) and was later escalated to the thermodynamic limit
(Fig. 6). The conclusion is very direct: For any k � 7
value an extrapolation for the first maximum towards the
thermodynamic limit can be found. Taking advantage of this
procedure, the critical density dependence on the particle size
k has been reported for the first transition. As in previous work
[15], we found that θ1(k) follows a power law as θ1(k) ∝ k−1

(see the lower part of Fig. 7).
The scheme was repeated for the second phase transition

(N -I2 transition) occurring in the system. In this case, the
values of θ2(L) were determined from the positions of the
second maxima of the curves of η vs θ (Fig. 5). Extrapolating
these data to the thermodynamic limit, the behavior of θ2 as a
function of the k-mer size was numerically obtained (see the
upper part of Fig. 7). The results indicate that θ2 tends to 1 as
size k is increased, in agreement with the theoretical prediction
of Ref. [12].

The information method itself is quite robust since it does
not require long data chains to detect the general shape of the
curve leading to the phase transitions. It is also independent of
the initial conditions on which the calculations are launched.
The measurement of the information content is what matters,
which is a measure of variability. This opens the possibility of
using this method for other nematic processes.
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