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1  Introduction

The adsorption process of gas mixtures on solid surfaces 
and its applications (gas separation, purification, het-
erogeneous catalysis, etc.) have attracted the attention of 
researchers for many years (Ruthven 1984; Yang 1987; 
Doraiswamy 1990; Smit and Maesen 2008; Dujak et  al. 
2015; Lauerer et  al. 2015). Despite the number of con-
tributions on this subject, the problem is far from being 
exhausted.

As in any adsorption process, the interactions between 
the adsorbed species play an important role in the mixed-
gas adsorption on solids. In other words, the description 
of real multicomponent adsorption requires to take into 
account the effect of the lateral interactions in the adsorbed 
layer. An exact statistical mechanical treatment of this 
problem is unfortunately not yet available and, therefore, 
the theoretical description of the phenomenon relies on 
simplified models.

In this context, Tovbin and co-workers studied pure and 
mixed adsorption in the presence of lateral interactions and 
surface heterogeneity (Tovbin 1991, 1997; Votyakov and 
Tovbin 1997). By using mean-field approximation, quasi-
chemical approach (QCA), and the so-called fragment 
cluster method, the authors investigated the main adsorp-
tion properties (isotherms and heats of adsorption), and the 
effects of the phase transitions occurring in the system.

Several papers from our group have focused on the 
study of binary gas adsorption by Monte Carlo (MC) 
simulation method. Simple lattice-gas models have been 
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investigated, and the behavior of the adsorbed phase 
has been studied in dependence on lateral interactions 
between adsorbed molecules (Bulnes et  al. 2001, 2005, 
2008; García et  al. 2012), surface heterogeneity (Bulnes 
et  al. 2001, 2005), and lattice geometry (Bulnes et  al. 
2008; García et al. 2012).

More recently, a cluster-exact approximation (CA) was 
presented (Sanchez-Varretti et  al. 2014). This theoretical 
approach, based on the exact calculation of configurations 
on finite cells, was used to study the behavior of interact-
ing binary mixtures adsorbed on square lattices. The CA 
predictions were successfully compared with MC and QCA 
data, demonstrating the applicability of simplified models 
to address a problem whose analytical treatment and exper-
imental realization is very complex.

The results in Refs. (Bulnes et  al. 2001, 2005, 2008; 
García et  al. 2012; Sanchez-Varretti et  al. 2014) are 
restricted to the case where the chemical potential of one 
species is kept constant during the adsorption process. Even 
though this assumption simplifies the analysis, such ideal 
conditions are not usually encountered in real systems. In 
fact, when the gas mixture is introduced directly into the 
reactor, the change of the total pressure in the gas phase 
will lead to changes in the partial pressures of the compo-
nents of the gas mixture. In this line of work, Fefelov and 
co-workers recently studied the adsorption of a binary mix-
ture with a simultaneous variation of the chemical poten-
tials of both components (Fefelov et  al. 2016). The effect 
of repulsive and attractive lateral interactions was analyzed, 
and a rich variety of structural orderings were observed in 
the adlayer.

In the case of keeping constant the chemical potential of 
one species, MC results have been backed up by theoretical 
analysis (Sanchez-Varretti et  al. 2014). The same has not 
happened in the case studied by Fefelov and co-workers 
and, consequently, the results predicted by MC techniques 
in Ref. (Fefelov et al. 2016) have not been corroborated yet 
by analytical methods. The objective of this paper is to pro-
vide a thorough study in this direction.

In a previous contribution (Sanchez-Varretti et al. 2014), 
QCA and CA proved to be very useful tools for the research 
of adsorption of binary mixtures . The results showed, in 
addition, that the techniques could be also applied to model 
experimental data (Sanchez-Varretti et al. 2016). Here, the 
scheme introduced in Ref. (Sanchez-Varretti et  al. 2014) 
is extended to include the analysis of binary-mixture sys-
tems with a simultaneous increasing of the chemical poten-
tials of the mixture components. The study (i) is a natural 
continuation of our previous work (Sanchez-Varretti et  al. 
2014, 2016), (ii) complements the previous numerical 
analysis (Fefelov et  al. 2016), and (iii) allows to test the 
applicability of QCA and CA in the context of the present 
model. The theoretical scheme is also applied to model 

experimental data of methane-carbon dioxide mixtures 
adsorbed on activated carbon.

The paper is organized in the following way. The details 
of the model and analytical approximations are given 
in Sect.  2. In Sect.  3, the MC simulation methodology 
is described. The results are presented and discussed in 
Sect. 4. Finally, the conclusions are drawn in Sect. 5.

2 � Model and theory

2.1 � The model

The homogeneous surface is represented by a two-dimen-
sional square lattice of M = L × L adsorption sites with 
periodic boundary conditions. The substrate is exposed to 
an ideal A−B mixed-gas phase, at temperature T and chem-
ical potentials �A and �B. Particles can be adsorbed on the 
substrate with the restriction of at most one adsorbed par-
ticle per site. Thus, this approach is limited to monolayer 
adsorption. In addition, nearest-neighbor (NN) interaction 
energies are considered.

In order to describe the system consisting of N adsorbed 
molecules (N = NA + NB, being NA[NB] the number of 
molecules of A[B] species), the occupation variable �i was 
introduced: �i = 0 if site i is empty, and �i = 1[2] if site i is 
occupied by an A[B] particle. The energy parameters of the 
model are:

(a)	 �A, interaction energy between a monomer type A and a 
lattice site.

(b)	 �B, interaction energy between a monomer type B and 
a lattice site.

(c)	 wAA, lateral energy interaction between a NN pair A–
A.

(d)	 wBB, lateral energy interaction between a NN pair B–
B.

(e)	 wAB(= wBA), lateral energy interaction between a NN 
pair A–B.

Then, in the grand canonical ensemble, the adsorbed phase 
is characterized by the Hamiltonian:

where the symbol � represent the Kronecker delta, and the 
summation over l(i) represents a sum running over the all 
the nearest-neighbor sites of i.

(1)

H =
1

2

M∑

i

∑

l(i)

[
wAA��i,�l,1

+ wBB��i,�l,2
+ wAB

(
�
�i,1

�
�l,2

+ �
�i,2

�
�l,1

)]

+

M∑

i

[
�A��i,1

+ �B��i,2

]
−

M∑

i

[
�A��i,1

+ �B��i,2

]
,
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Finally, the total (�) and partial (�A[B]) surface coverage can 
be defined as

2.2 � Quasi‑chemical approximation for adsorbed binary 
mixtures

In this section, the statistical thermodynamics of interacting 
binary mixtures adsorbed on homogeneous surfaces is devel-
oped on a generalization in the spirit of the lattice-gas model 
and the quasi-chemical approximation.

To begin, the canonical partition function corresponding 
to NA and NB particles adsorbed on a regular substrate of M 
sites can be written as (Hill 1960)

where qA[B] is the partition function for a single adsorbed 
A[B] molecule; NAA, NAB and NBB represent the number of 
nearest-neighbor A−A, A−B and B−B pairs, respectively; 
Ω(NA,NB;NAA,NAB,NBB;M) is the number of ways to array 
NA and NB particles on M sites with (NAA,NAB,NBB) pairs of 
occupied sites; and kB is the Boltzmann constant. The lat-
tice allows a total number of pairs equal to zM/2 (z is the 
lattice connectivity).

As it is usual in this kind of problems, it is convenient to 
write the relations between NAA,NAB,NBB and N00,NA[B]0, 
where N00 is the number of pairs of empty nearest-neighbor 
sites, and NA[B]0 is the number of pairs consisting in an atom 
of A[B] species and an adjacent empty site. Thus,

and

Only three of these numbers are independent (i.e. NAA, NAB 
and NBB).

By using the standard formalism of the QCA, the number 
of ways of assigning a total of zM/2 independent pairs to the 
six categories AA,  BB,  AB,  A0,  B0 and 00, with any num-
ber 0 through zM/2 per category consistent with the total, is

By taking logarithm in Eq. (7), using the Stirling’s approxi-
mation and operating, it results

(2)� =
N

M
, �A[B] =

NA[B]

M
, � = �A + �B.

(3)

Q(NA,NB,M, T) = q
NA

A
q
NB

B

∑

NAA

∑

NAB

∑

NBB

Ω(NA,NB;NAA,NAB,NBB;M)

×e−(wAANAA+wABNAB+wBBNBB+�ANA+�BNB)∕kBT

(4)2NAA + NAB + NA0 = zNA,

(5)2NBB + NAB + NB0 = zNB

(6)2N00 + NA0 + NB0 = z(M − NA − NB).

(7)

̃Ω(NA,NB;NAA,NAB,NBB,NA0,NB0,N00;M)

=

(
zM

2

)
!

[(
NA0

2

)
!
]2[(

NB0

2

)
!
]2[(

NAB

2

)
!
]2
NAA!NBB!N00!

.

It is convenient to write ̃Ω as a function of NAA, NBB and 
NAB. For this purpose, we obtain NA0, NB0 and N00 in terms 
of NAA, NBB and NAB [using Eqs. (4–6)], and replace it in 
Eq. (8), then

̃Ω(NB,NB;NAA,NAB,NBB;M) cannot be set equal to 
Ω(NA,NB;NAA,NAB,NBB;M) in Eq. (3), because treating 
the pairs as independent entities leads to some unphysical 
configurations (see Reference (Hill 1960), p. 253 ). To take 
care of this, we must normalize ̃Ω:

and

where Ω(NA, NB,M) is the number of ways to place NA and 
NB non-interacting particles on M sites. In the present case, 
this number can be exactly calculated,

Now, as usual in the quasi-chemical formalism, 
C(NA, NB,M) can be calculated using the maximum-term 
method (Hill 1960) in Eq. (11). The method allows us to 
replace 

∑
NAA

∑
NAB

∑
NBB

̃Ω(NA,NB;NAA,NAB,NBB;M) by the 
maximum term in the sum, ̃Ω(NA,NB;N

∗
AA
,N∗

AB
,N∗

BB
;M). 

From the condition ∇ ln ̃Ω(NAA,NAB,NBB) = 0, we obtain

(8)

ln ̃Ω =
zM

2
ln
(
zM

2

)
− NA0 ln

NA0

2
− NB0 ln

NB0

2
− NAB ln

NAB

2

− NAA lnNAA − NBB lnNBB − N00 lnN00.

(9)

ln ̃Ω(N
A
, N

B
;N

AA
, N

BB
,N

AB
;M)

=
zM

2
ln

(
zM

2

)
− N

AB
ln

N
AB

2
− N

AA
lnN

AA
− N

BB
lnN

BB

− (zN
A
− 2N

AA
− N

AB
) ln

[
1

2

(
zN

A
− 2N

AA
− N

AB

)]

− (zN
B
− 2N

BB
− N

AB
) ln

[
1

2

(
zN

B
− 2N

BB
− N

AB

)]

−
(
zM

2
− zN

A
− zN

B
+ N

AA
+ N

BB
+ N

AB

)

× ln

(
zM

2
− zN

A
− zN

B
+ N

AA
+ N

BB
+ N

AB

)
.

(10)
Ω(N

A
, N

B
;N

AA
, N

AB
, N

BB
;M) = C(N

A
, N

B
,M) ̃Ω

(N
B
, N

B
;N

AA
, N

AB
, N

BB
;M),

(11)
Ω(N

A
, N

B
,M) = C(N

A
, N

B
,M)

∑

N
AA

∑

N
AB

∑

N
BB

̃Ω

(N
A
, N

B
;N

AA
, N

AB
, N

BB
;M),

(12)Ω(NA, NB,M) =
M!

NA!NB!
(
M − NA − NB

)
!
.

(13)

𝜕 ln ̃Ω(NAA,NAB,NBB)

𝜕NAA

= 2 ln
[
1

2

(
zNA − 2NAA − NAB

)]
− lnNAA

− ln
(
zM

2
− zNA − zNB + NAA + NAB + NBB

)

= 0,
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and the corresponding values of NAA, NAB and NBB giving 
the maximum term in the sum in Eq. (11) can be obtained 
by solving the equations,

Then, from Eqs. (12, 16–18), and by sim-
ple algebra, C(NA, NB,M), and consequently 
Ω(NA, NB;NAA, NAB, NBB;M), can be calculated,

Then

Thus, the partition function can be written as

(14)

𝜕 ln ̃Ω(NAA,NAB,NBB)

𝜕NBB

= 2 ln
[
1

2

(
zNB − 2NBB − NAB

)]
− lnNBB

− ln
(
zM

2
− zNA − zNB + NAA + NAB + NBB

)

= 0,

(15)

𝜕 ln ̃Ω(NAA,NAB,NBB)

𝜕NAB

= 2 ln
[
1

2

(
zNA − 2NAA − NAB

)]

+ 2 ln
[
1

2

(
zNB − 2NBB − NAB

)]
−

lnNAB

2

− ln
(
zM

2
− zNA − zNB + NAA + NAB + NBB

)

= 0,

(16)N∗
AA

=

(
zNA − 2N∗

AA
− N∗

AB

)2

4
(
zM∕2 − zNA − zNB + N∗

AA
+ N∗

AB
+ N∗

BB

) ,

(17)N∗
BB

=

(
zNB − 2N∗

BB
− N∗

AB

)2

4
(
zM∕2 − zNA − zNB + N∗

AA
+ N∗

AB
+ N∗

BB

) ,

(18)N∗
AB

=

(
zNA − 2N∗

AA
− N∗

AB

)(
zNB − 2N∗

BB
− N∗

AB

)

2
(
zM∕2 − zNA − zNB + N∗

AA
+ N∗

AB
+ N∗

BB

) .

(19)

C(NA,NB,M) =
Ω(NA,NB,M)

∑
NAA

∑
NAB

∑
NBB

̃Ω(NA,NB;NAA,NAB,NBB;M)

=
Ω(NA,NB,M)

̃Ω(NA,NB;N
∗
AA
,N∗

AB
,N∗

BB
;M)

.

(20)

Ω(N
A
, N

B
;N

AA
, N

AB
, N

BB
;M)

=
Ω(N

A
, N

B
, M) ̃Ω(N

A
, N

B
;N

AA
, N

AB
, N

BB
;M)

̃Ω(N
A
,N

B
;N

∗
AA
,N

∗
AB
,N

∗
BB
;M)

.

(21)

Q = q
NA

A
q
NB

B

Ω(NA, NB,M)

̃Ω(NA, NB;N
∗
AA
,N∗

AB
, N∗

BB
;M)

∑

NAA

∑

NAB

∑

NBB

̃Ω(NA, NB;NAA, NAB, NBB;M)

× e−(wAANAA+wABNAB+wBBNBB+𝜖ANA+𝜖BNB)∕kBT

The sum in (21) can be solved by applying the max-
imum-term method again, and replacing 

∑
N
AA∑

N
AB

∑
N
BB

C(N
A
, N

B
,M) ̃Ω(N

B
, N

B
;N

AA
, N

AB
, N

BB
;M)

× exp
[
−
(
w
AA
N
AA

+ w
AB
N
AB

+ w
BB
N
BB

+ �
A
N
A
+ �

B
N
B

)
∕

k
B
T
]
 by the maximum term in the sum, C(N

A
, N

B
,M) 

̃Ω(N
B
, N

B
;N

∗∗
AA
,N

∗∗
AB
,N

∗∗
BB
;M) × exp

[
−
(
w
AA
N

∗∗
AA
+

w
AB
N

∗∗
AB

+ w
BB
N

∗∗
BB

+ �
A
N
A
+ �

B
N
B

)
∕k

B
T
]
. The corre-

sponding values of N∗∗
AA, N∗∗

AB and N∗∗
BB can be obtained 

by solving the equations,

Finally,

The chemical potential of each adsorbed species can be cal-
culated from the free energy F = − lnQ,

and

where f = F∕M and �x = xNx∕M (x = A,B).
On the other hand, the chemical potential of each kind 

of molecule in an ideal gas mixture, at temperature T and 
pressure P, is

where Xx is the mole fraction, and �0
x
 is the standard chemi-

cal potential of the x species.
At equilibrium, the chemical potential of the adsorbed 

and gas phase are equal, �x,ads = �x,gas. Then,

(22)

N∗∗
AAe

wAA∕kBT =

(
zNA − 2N∗∗

AA − N∗∗
AB

)2

4
(
zM∕2 − zNA − zNB + N∗∗

AA + N∗∗
AB + N∗∗

BB

) ,

(23)

N∗∗
BBe

wBB∕kBT =

(
zNB − 2N∗∗

BB − N∗∗
AB

)2

4
(
zM∕2 − zNA − zNB + N∗∗

AA + N∗∗
AB + N∗∗

BB

) ,

(24)

N∗∗
ABe

wAB∕kBT =

(
zNA − 2N∗∗

AA − N∗∗
AB

)(
zNB − 2N∗∗

BB − N∗∗
AB

)

2
(
zM∕2 − zNA − zNB + N∗∗

AA + N∗∗
AB + N∗∗

BB

) .

(25)

Q(N
A
,N

B
,M,T)

= q
N
A

A
q
N
B

B

Ω(N
A
,N

B
,M) ̃Ω(N

A
,N

B
;N∗∗

AA
,N∗∗

AB
,N∗∗

BB
;M)

̃Ω(N
A
,N

B
;N∗

AA
,N∗

AB
,N∗

BB
;M)

× exp
[
−𝛽(𝜖

A
N
A
+ 𝜖

B
N
B
+ N

∗∗
AA
w
AA

+ N
∗∗

AB
w
AB

+ N
∗∗

BB
w
BB
)
]
.

(26)��A,ads =

(
��F

�NA

)

NB,M,T

=

(
��f

��A

)

�B,T

,

(27)��B,ads =

(
��F

�NB

)

NA,M,T

=

(
��f

��B

)

�A,T

,

(28)��x,gas = ��
0
x
+ lnXxP, {x = A,B},

(29)��
0
A
+ lnXAP =

(
��f

��A

)

�B,T

,
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and

The theoretical procedure described in this section can be 
summarized as follows:

(1)	 Given the complete set of lateral interactions and tem-
perature, the values of N∗

AA
, N∗

AB
 and N∗

BB
 are obtained 

by solving Eqs. (16-18).
(2)	 Once calculated N∗

AA
, N∗

AB
 and N∗

BB
, C(NA,NB,M) and 

Ω(NA,NB;NAA,NAB,NBB;M) can be obtained (see 
Eqs.  19 and 20), and the partition function can be 
written as in Eq. (21).

(3)	 The partition function Q is calculated by using the 
maximum-term method. For this purpose, N∗∗

AA, 
N∗∗

AB and N∗∗
BB are obtained by solving Eqs. (22–24), 

and are introduced in Eq. (25).
(4)	 f = −(lnQ)∕M is calculated, and the partial adsorp-

tion isotherms of the system are obtained from Eqs. 
(29) and (30).

Points 3) and 4) are numerically (and simultaneously) 
solved through a standard computing procedure.

2.3 � Cluster approximation for adsorbed binary 
mixtures

Cluster approximation is based on exact calculations of 
configurations on a finite cell or cluster. The cluster con-
sists of m (m ≪ M) adsorptive sites forming a m = l × l 
square sub-system (in the present paper, we use l = 4), 
with adsorption energy �A[B] for A[B] particles. As before, 
nearest-neighbor lateral interaction energies and periodic 
boundary conditions are considered. Then, the exact grand 
partition function for the cluster can be written as follows:

�A ≡ exp
(
�A∕kBT

)
[�B ≡ exp

(
�B∕kBT

)
] is the activity of 

the A[B] species. nA[nB] is the number of A[B] particles 
adsorbed on the cluster. g

(
E, nA, nB

)
 is the number of con-

figurations corresponding to nA adsorbed A particles and 
nB adsorbed B particles having the same energy E [see Eq. 
(1)],

(30)��
0
B
+ lnXBP =

(
��f

��B

)

�A,T

.

(31)

Ξ =1 +

m∑

nA, nB = 0

1 ≤ nA + nB ≤ m

�A
nA
�B

nB

×

{
∑

E

g
(
E, nA, nB

)
exp

(
−E∕kBT

)
}

,

(32)E = wAAnAA + wABnAB + wBBnBB + �AnA + �BnB,

where nAA, nAB and nBB represent the number of A − A, 
A − B and B − B pairs, respectively, on the cluster.

The partial adsorption isotherm corresponding to the A[B] 
species can be obtained from Eq. (31) (Hill 1960),

and the total coverage is � = �A + �B.

3 � Monte Carlo simulation scheme

The adsorption of a binary mixture of gases on a homogene-
ous solid surface was simulated by using the grand canonical 
ensemble Monte Carlo method (GCMC) (Nicholson and Par-
sonage 1982; Rinaldi 2008).

In adsorption-desorption equilibrium there are two 
elementary ways to perform a change of the system state, 
namely, adsorbing one molecule onto the surface (adding one 
molecule into the adsorbed phase), and desorbing one mol-
ecule from the adsorbed phase. The corresponding transition 
probabilities are, respectively (Metropolis et al. 1953),

and

(33)�A[B] =
kBT

m

(
� lnΞ

��A[B]

)

T ,�B[A]

,

(34)

Wads(N → N + 1) = min

{
1, exp

[
−
H(N + 1) − H(N)

kBT

]}
,

(35)

Wdes(N → N − 1) = min

{
1, exp

[
−
H(N − 1) − H(N)

kBT

]}
,

Fig. 1   Partial concentrations �
A
 and �

B
 as a function of 

�
A
= �

B
− Δ� for the case Δ� = 8 and w = 1. Symbols, solid lines 

and dashed lines represent MC simulations, CA results and QCA 
data, respectively. Snapshots of two typical configurations of A (green 
circles) and B (red circles) particles are shown. The first one corre-
sponds to the beginning of the adsorption process, whereas the sec-
ond one is an example of a final configuration. (Color figure online)
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where H(N + 1) − H(N) [H(N − 1) − H(N)] represents the 
difference between the hamiltonians of the final and initial 
states.

The basic algorithm to carry out an elementary Monte 
Carlo Step (MCS) can be summarized as follows:

(1)	 Set the value of �A, �B and temperature T.
(2)	 Set an initial state by placing randomly N molecules 

onto the lattice.
(3)	 Choose randomly one of the components of the mix-

ture → X (X ≡ A or B).
(4)	 Choose randomly one of the M sites, → i and generate 

a random number �∈[0, 1].

(4.1)	If the site i is empty, and � ≤ Wads, then adsorb 
an X particle on i. Otherwise, the transition is 
rejected.

(4.2)	If the site i is occupied by an X particle, and 
� ≤ Wdes, then the X molecule is desorbed from i. 
Otherwise, the transition is rejected.

(5)	 Repeat from (3) M times.

The approximation to thermodynamic equilibrium is moni-
tored through the fluctuations in the number N of adsorbed 
particles. The first m0 = 106 MCSs are discarded in order 
to reach equilibrium; after that, mean values of thermody-
namic quantities, like total � and partial isotherms (�A and 
�B) are obtained as simple averages over m = 106 succes-
sive configurations:

where the thermal average, ⟨...⟩, means the time average 
throughout m MCSs.

The simulations were done for lattices of l = 120 and 
periodic boundary conditions in both directions. With this 
lattice size we verified that finite size effects are negligible.

4 � Results

As discussed in Sect. 1, Fefelov et al. (Fefelov et al. 2016) 
studied the problem of a binary mixture with attractive AA 
interactions and repulsive BB interactions [each of them 
separately shows the classical phase transitions of first 
and second kind, respectively (Landau and Binder 2009; 
Zhdanov 1991)]. In addition, for the purity of the experi-
ment, the authors consider that particles of different com-
ponents do not interact between themselves in the model. 
Given the rich phenomenology exhibited by this system, 
the energy scheme proposed in (Fefelov et  al. 2016) will 

(36)

�(�A,�B) =
⟨N⟩
M

, �A(�A,�B) =
⟨NA⟩
M

, �B(�A,�B) =
⟨NB⟩
M

,

be maintained in the present study. Namely, attractive inter-
species lateral interaction for the A species (wAA = −w),  
repulsive inter-species interaction for the B species 
(wBB = w), and no interaction energy between particles of 
different species (wAB = 0). We will refer to w as the (posi-
tive) magnitude of the inter-species lateral interaction.

As has already been mentioned, the restriction of the 
model to no more than one particle per site involves that 
there will be at least a excluded volume interaction between 
any pair of particles, no matter to what species they belong.

The case of single species adsorption, already consid-
ered previously (García et  al. 2012), is reproduced here 
by taking �A → −∞; the well-known Langmuir isotherm, 
passing through the point (�B∕kBT = 0, �B = 1∕2), is 
obtained for wBB∕kBT = 0. As this interaction increases 
and crosses a critical value, wc∕kBT ≈ 1.763, a plateau is 
developed in the isotherm at �B = 1∕2 indicating the occur-
rence of a c(2 × 2) ordered structure on the substrate. In the 
present work we can observe this effect due to the repulsive 
interactions between B particles.

We will consider now the adsorption and competition 
of the two species by varying the values of the chemical 
potentials �A∕kBT  and �B∕kBT . The process will be moni-
tored by measuring the amount of adsorbed particles of 
each species, that is, the partial and total coverage as both 
chemical potentials are varied simultaneously, keeping the 
difference Δ� = �B − �A constant. This has proved to be 
an interesting way of go over the (�A,�B) space to analyze 
the different structures that appear in the adsorbate (Fefelov 
et al. 2016). In addition, for the rest of the analysis we will 
take factor kBT = 1 for simplicity and without any loss of 
generality, and will be omitted from the expressions.

Thus, the study was conducted in order to obtain the iso-
therms for different values of the lateral interaction, as well 
as for different values of Δ�. The curves are shown as a 
function of �A (= �B − Δ�).

Firstly, the value of Δ� was set at a small value, 
Δ� = 8.0 (see Fig. 1). Then, increasing values for the mag-
nitude of the inter-species interaction were taken, from 
w = 1.0 to 3.0.

For low chemical potential values there are no presence 
of any species on the substrate. When the chemical poten-
tial � ≈ −13, the adsorption of the B species begins. This 
adsorption process starts earlier than the A species because 
the value of �B is greater than the value of �A. A large part 
of the surface is already covered by B particles at the time 
when the A species starts its deposition. Therefore, there 
are less free sites available for adsorption of A particles due 
to the presence of B particles.

Figures  2, 3, and 4 show, for the same Δ� value, the 
partial isotherms for increasing values of w. In the case of 
w = 1.5, the B species begins to adsorb at the same cover-
age than in the previous case. In this case, the greater value 
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of repulsive lateral interaction makes that the adsorbed spe-
cies develops a c(2 × 2) ordered structure. Thus, it is possi-
ble to observe an incipient plateau at half coverage of the B 
species. This situation favors the A species to be adsorbed 
into the empty sites of the ordered phase. The final cov-
erage of the A species increases, roughly of 0.1, at the 
expense of the coverage of the other species.

Figure 3 shows the behaviour of the system with a lat-
eral interaction of w = 2.0 (and the same Δ� value). This 
case corresponds exactly to Δ� = 4w.

The B species begins to be adsorbed at the same value as 
in the previous cases, but when it reaches the half coverage, 

a c(2 × 2) ordered structure is formed. Now, the deposition 
of A particles begins in the empty sites left by B species. 
As the ordered structure of B species is now more stable, A 
species has enough time to populate completely the empty 
sites. The ordered structure imposed by B species is pre-
served and at high chemical potentials the system have a 
partial coverage of ≈0.5 for both species.

In Fig. 4 we show the case of Δ� = 8 and w = ±3.0. The 
adsorption of B species starts again at a chemical potential 
of ≈13 and rises until a coverage near 0.5.

At this point, the adsorption of A particles begins. The 
stronger lateral attractive interaction between A particles 
favors energetically the condensation of this species in the 
form of an abrupt jump of the isotherm. This time, the final 
state is the surface completely covered of A particles, dis-
placing completely the B ones.

Now we will analyse the case were the difference 
between �A and �B is set to 15.0. In the Fig. 5 we can see 
how the surface is covered with B particles meanwhile the 
A particles are not adsorbed. As here the lateral energy is 
weak, w = ±1.0, the B particles starts up covering rap-
idly the surface, leaving no room for the adsorption of A 
particles.

The Fig. 6 shows the case of lateral interaction energy 
w = ±2.0 and the same value of Δ�. The formation of a 
c(2 × 2) ordered structure can be observed at the partial 
coverage 0.5. Nevertheless, given the large Δ� value, B 
particles continue filling the surface until the total cover-
age, preventing the insertion of A particles. In all the range 
of chemical potential the coverage of the A particles is zero.

In Fig.  7 the plateau is more marked and includes a 
wider range of chemical potential; the lateral interaction 
energy is w = ±3.0. This situation allows A species to be 

Fig. 2   Same as Fig. 1 for w = 1.5. Snapshots of two typical configu-
rations of A (green circles) and B (red circles) particles are shown. 
The first one corresponds to the formation of the c(2 × 2) structure of 
B particles, whereas the second one is an example of a final configu-
ration. (Color figure online)

Fig. 3   Same as Fig. 1 for w = 2. Snapshots of two typical configura-
tions of A (green circles) and B (red circles) particles are shown. The 
first one corresponds to the maximum concentration of B particles, 
whereas the second one is an example of a final configuration. (Color 
figure online)

Fig. 4   Same as Fig. 1 for w = 3. Snapshots of two typical configura-
tions of A (green circles) and B (red circles) particles are shown. The 
first one corresponds to the formation of the c(2 × 2) structure of B 
particles, whereas the second one is an example of a final configura-
tion. (Color figure online)
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inserted into the surface so that there is a final non zero 
coverage of A particles.

The next case in Fig. 8 corresponds to a lateral interac-
tion energy of 4w = ±14, close to Δ�. Again, the ordered 
structure of B particles allows the adsorption of A particles, 
reaching now a higher final coverage.

Figure 9 shows the formation of the ordered structure of 
B species followed by the insertion of additional particles 
of both species. The energetic cost of any additional par-
ticle is the same, given that Δ� = 4w, nevertheless, addi-
tional B particles are rapidly replaced by A particles. This 
entropic competitive effect makes the final partial coverage 
of both species almost the same.

Increasing the lateral interaction to w = ±4.0, Fig.  10, 
makes the adsorbed structure of B species be partially 

displaced by the A species. This effect is more marked as 
the lateral interaction energy is greater than Δ�∕4.

In Figs.  11, 12, 13, 14, 15, 16, and 17, we show the 
cases corresponding to Δ� = 30 and for interaction ener-
gies ranging from 1 to 8. A detailed analysis of each curve 
could be carried out by following similar arguments to 
those used in the analysis of previous figures. In relation 
to the MC results obtained in these cases, it is important 
to note that the unusually high magnitude used for both 
Δ� and w (remember that kBT  was taken equal to unity) 
greatly impairs the equilibration of the MC runs (consisting 
on simple Metropolis steps). This limitation can be mainly 

Fig. 5   Partial concentrations �
A
 and �

B
 as a function of 

�
A
= �

B
− Δ� for the case Δ� = 15 and w = 1. Symbols, solid lines 

and dashed lines represent MC simulations, CA results and QCA 
data, respectively

Fig. 6   Same as Fig. 5 for w = 2

Fig. 7   Same as Fig. 5 for w = 3. Snapshots of two typical configura-
tions of A (green circles) and B (red circles) particles are shown. The 
first one corresponds to the formation of the c(2 × 2) structure of B 
particles, whereas the second is an example of a final configuration. 
(Color figure online)

Fig. 8   Same as Fig. 5 for w = 3.5. Snapshots of two typical configu-
rations of A (green circles) and B (red circles) particles are shown. 
The first one corresponds to the formation of a c(2 × 2) structure of B 
particles, whereas the second is an example of a final configuration. 
(Color figure online)
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observed in the last part of the partial coverage shown in 
Figs. 15 and 17.

Finally, analysis of experimental results extracted 
from Reference (Buss 1995) has been carried out in 
order to test the applicability of the proposed theoretical 
scheme. For this purpose, experimental adsorption iso-
therms of pure CO2, pure CH4 and their binary mixtures 
at different fixed proportions were analyzed using the 
theoretical scheme presented here. Given that the experi-
mental data were reported in adsorbed amount (moles 
per kg) as a function of pressure (MPa), the theoretical 
isotherms were rewritten in terms of pressure P [see 

Eq. (28)] and adsorbed amount g = �gmax (being gmax 
the maximum amount of adsorbed molecules) as fitting 
quantities.

The substrate was modeled as a homogeneous surface. 
Figure 17 shows the best fit of the pure gas isotherms and 
their mixtures. Symbols correspond to experimental data 
from Reference (Buss 1995): pure methane isotherm 
(open circles); pure carbon dioxide isotherm (solid cir-
cles); (0.50)carbon dioxide-(0.50)methane mixture iso-
therm (solid squares); and (0.09)carbon dioxide-(0.91)
methane mixture isotherm (open squares). Lines repre-
sent theoretical data from CA and QCA1. The values of 

1  Curves corresponding to QCA and CA are indistinguishable for 
these values of interaction energy.

Fig. 9   Same as Fig. 5 for w = 3.75. Snapshots of two typical config-
urations of A (green circles) and B (red circles) particles are shown. 
The first one corresponds to the point of maximum concentration of 
B species, whereas the second is an example of a final configuration. 
(Color figure online)

Fig. 10   Same as Fig. 5 for w = 4. Snapshots of two typical configu-
rations of A (green circles) and B (red circles) particles are shown. 
The first one corresponds to the formation of the c(2 × 2) structure of 
B particles, whereas the second is an example of a final configuration. 
(Color figure online)

Fig. 11   Partial concentrations �
A
 and �

B
 as a function of 

�
A
= �

B
− Δ� for the case Δ� = 30 and w = 1. Symbols, solid lines 

and dashed lines represent MC simulations, CA results and QCA 
data, respectively

Fig. 12   Same as Fig. 11 for w = 2
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fitting parameters are: species A (CO2); species B (CH4); 
T = 293K; Δ� = (�B − �A) = 0.45 kcal/mol; wAA = −0.04 
kcal/mol; wBB = 0.05 kcal/mol; wAB = 0; gmax species A 
12.19 mol/kg; and gmax species B 6.93 mol/kg.

As can be observed from Fig. 17, a very good agree-
ment between experimental and theoretical data is 

observed. This finding shows that the theoretical scheme 
proposed here is a good one considering the complex-
ity of the physical situation which is intended to be 
described, and could be very useful in interpreting exper-
imental data.

Fig. 13   Same as Fig. 11 for w = 5

Fig. 14   Same as Fig. 11 for w = 7. A snapshot of typical final con-
figuration of A (green circles) and B (red circles) particles is shown. 
(Color figure online)

Fig. 15   Same as Fig. 11 for w = 7.5. A snapshot of typical final con-
figuration of A (green circles) and B (red circles) particles is shown. 
(Color figure online)

Fig. 16   Same as Fig. 11 for w = 8. A snapshot of typical final con-
figuration of A (green circles) and B (red circles) particles is shown. 
(Color figure online)
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5 � Conclusions

In the present work, quasi-chemical approach and cluster 
approximation have been applied for the study of adsorp-
tion of binary mixtures with the simultaneous increasing 
of the individual chemical potentials of each component. 
The adsorption process has been monitored by following 
total and partial isotherms for different values of the lat-
eral interactions between the adsorbed species. Theoretical 
results were complemented with Monte Carlo simulations 
in the grand canonical ensemble.

Following previous work in the literature (Fefelov et al. 
2016), we considered here the case of wAA = −w (attrac-
tive interaction energy between A particles); wBB = w 
(repulsive interaction energy between B particles); and 
wAB = 0 (zero interaction energy between A and B parti-
cles). In addition, the chemical potentials of both gas com-
ponents were simultaneously varied, keeping the difference 
Δ� = �B − �A constant. A rich variety of behaviors was 
observed for different values of the ratio w∕Δ�.

•	 For w∕Δ𝜇 < 1∕4, B particles begin the adsorption 
early than the A particles due the difference between 
chemical potential. At low values of � the B species 
were adsorbed in all the lattice and the other type 
of particle can‘t be adsorbed. Finally the monolayer 
where covered exclusively by B particles. The Δ� 
value between both chemical potential is greater than 
the repulsive lateral interaction of the adsorbed parti-

cles hinder the adsorption of the A particles. A c(2 × 2) 
structure appear in the monolayer. It happens because 
the lateral repulsive interaction between B particles; 
it makes that this particles occupy all the lattice sites 
with not nearest neighbour forming a chess like order 
in the lattice and a plateau can be observed at 0.5 of 
the B particles coverage. When the �A chemical poten-
tial is increased the A particles begin the adsorption 
in the empty sites of the c(2 × 2) structure. Then this 
empty sites are covered with both type of particles 
until the monolayer is completed.

•	 For w∕Δ� ≃ 1∕4, B particles begin the adsorption ear-
lier than the A type like in the previous case and build 
the ordered phase c(2 × 2). Here the attractive lateral 
interaction between A particles with 4 neighbour is of 
the order of Δ�. This cause that the A specie began 
rapidly the adsorption in the free sites of the lattice 
and it facilite that newest particles adsorb in the near-
est neighbour sites. The A particles occupy the c(2 × 2) 
free structure replacing the already B adsorbed parti-
cles. This effect make that the coverage o the B parti-
cles down to 0.5. The A species have the same cover-
age and are embedded in the c(2 × 2) structure.

•	 For w∕Δ𝜇 > 1∕4, the B specie were adsorbed initially 
like in previous cases and the coverage rise to 0.5 and 
form the c(2 × 2) structure. In that case the lateral 
attractive interaction is greater than Δ�. When the A 
species began the adsorption its replace rapidly the B 
particles previously adsorbed. This effect inhibit the 
adsorption of B particles and the coverage of them 
decreases.

In general, the theoretical results present a very good 
qualitative and quantitative agreement with the MC data, 
CA being the most accurate for all cases. The agreement 
is excellent in the range w∕kBT < 2 (most of the experi-
ments in surface science are carried out in this range of 
interaction energy).

Finally, the theoretical results were applied to analyze 
experimental data of methane-carbon dioxide mixtures 
adsorbed on activated carbon. The substrate was mod-
eled as a homogeneous surface, and adsorbate-adsorbate 
interactions were considered. An excellent agreement 
between theoretical and experimental data was found. 
These findings demonstrate that the application of simple 
theoretical models, such as the QCA and CA employed in 
this study, can be very useful to obtain a very reasonable 
description of the process of adsorption of mixtures with 
lateral interactions.
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(open squares). Lines represent theoretical fitting curves. The fitting 
parameters are given in the text
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