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The reliability of results obtained by multivariate curve resolution (MCR) methods is
strongly dependent on the absence or presence of a small degree of rotational
ambiguity associated to them. In this work, the effect of rotational ambiguities on
the profiles resolved by MCR methods is examined in detail for cases of interest
to analytical chemistry, where a number of calibration samples are usually prepared
containing analyte standards, while test samples may contain additional uncalibrated
constituents. These multiple chemical data sets having common constituents are
simultaneously analyzed using matrix augmentation strategies. In these cases,
conditions for better resolution and improved profiles are more easily achieved. To
evaluate the extension of rotational ambiguities and to quantify their reduction after
matrix augmentation, we applied the MCR‐BANDS procedure. Results obtained by
the application of this procedure confirmed that the simultaneous analysis of
multiple data sets decreased considerably the extension of rotational ambiguities
compared with those obtained when only a single data set is analyzed. Simulated
and experimental data sets of interest to second‐order analytical calibration are
discussed.
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1 | INTRODUCTION

Multivariate curve resolution (MCR) belongs to a family of
chemometric methods, which are especially suitable for the
investigation and analysis of multicomponent chemical mix-
tures.1,2 When these multicomponent systems are measured
over a set of samples using multivariate instrumental responses,
every measurement in a sample can be modeled by the sum of a
reduced number of contributions. Each of them can be defined
as the product of 2 factors, one related to the pure component
response (eg, a spectrum) and another one related to the
amount of this component (concentration) in the sample. The
goal of MCR methods is the estimation of the unknown
contributions of the different components in their mixtures
(mixture analysis). A typical example is the hyphenated
chromatographic case using a multichannel detector, such as
a liquid chromatograph connected to a diode array detector or
gas/liquid chromatography to a mass spectrometer.3,4
wileyonlinelibrary.com/journa
To achieve its goal, MCR methods use the information at
hand as constraints, eg, known properties of the multivariate
profiles defining the resolved components.5 The most general
constraint is that chemical concentrations of mixture compo-
nents (constituents) and their responses in many instrumental
methods should be nonnegative. Other common constraints
are unimodality (implying a single peak shape) in chromatog-
raphy, closure (chemical mass balance equations), or other
properties known in advance to be fulfilled by the shape of
the component profiles. Of outmost relevance are constraints
referring to the previously known presence or absence (zeros)
of a component in certain profiles. This occurs when a chem-
ical constituent is known to be absent in a particular mixture
sample, or when it is known that this constituent does not
produce a significant signal in a particular measurement
(spectral) region. These constraints are generally called
selectivity and local rank constraints2 and are especially
useful to limit the number of possible solutions and define
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FIGURE 1 Noiseless profiles used to build the simulated data sets. A,
Elution time profiles for 3 sample components. B, The corresponding
spectral profiles. Components 1 (black) and 2 (green) represent the calibrated
analytes, with component 3 (red) being the uncalibrated interferent
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the conditions to accomplish unique solutions as postulated
in the resolution theorems.6 A relatively easy way to imple-
ment constraints in MCR methods is using an alternating
least squares algorithm (MCR‐ALS), where constraints are
applied to the different profiles of the constituents of the ana-
lyzed mixture at every iteration cycle of the ALS optimiza-
tion. This method has been shown to provide good
solutions in the analysis of different data types and mixture
analysis problems.5

When only one data set is analyzed, the use of MCR
methods may be challenged by the lack of unique solutions,
ie, by the presence of rotational ambiguities, even under
selectivity or local rank constraints. This specific subject,
ie, single data matrices, has been widely discussed in the lit-
erature.1,2,6–9 One of the most powerful strategies to limit
rotational ambiguities in MCR methods is the simultaneous
analysis of multiple data sets, all arranged in a data matrix
via matrix augmentation strategies, giving rise the so‐called
extended MCR‐ALS method.10 In these cases, using an
appropriate design of the simultaneously analyzed experi-
ments is a powerful way to improve MCR solutions, reduce
or eliminate rotational ambiguities, and achieve uniqueness
(or at least arrive to an acceptable solution for the purposes
of the study). Multiple data matrices are available in the most
usual analytical scenario, ie, when preparing a set of analyte
standards for calibration, and each of them generates a sec-
ond‐order data array or data matrix. Joining the calibration
data matrices with those for test samples, which may contain
additional uncalibrated constituents, produces a complete set
of matrices that can be simultaneously processed with MCR‐
ALS. The effect of matrix augmentation has been previously
discussed.1,2,8 However, a discussion is still lacking on the
extent of rotational ambiguity that may remain in these cases
of high analytical interest, as those shown in the present
work, and where the full arsenal of MCR‐ALS constraints
can be applied.

Different powerful strategies and algorithms for the cal-
culation of the extension of rotational ambiguities and of
the bands of feasible solutions have been proposed in the
recent years.9 Among them, the MCR‐BANDS method is a
rather easy‐to‐use tool that gives a numerical estimation of
the extension of the remaining rotational ambiguities for a
particular MCR solution under constraints, as well as a
graphical display of feasible MCR solutions at the extreme
values of an optimization function defined for relative com-
ponents contribution to the whole measured signal.11

In the present work, the effect of matrix augmentation and
constraints in MCR‐ALS results is investigated in detail in
systems of interest to second‐order analytical calibration.
The goal of the paper is to show how the simultaneous analy-
sis of multiple data sets can improve MCR results. To show
this improvement, we evaluated the extension of the reduction
of rotational ambiguity associated with matrix augmentation
and simultaneous analysis of different simulated and experi-
mental multiple data sets using the MCR‐BANDS method.11
2 | DATA SIMULATIONS

Data have been simulated for systems having 3 components.
Noiseless profiles at unit concentration for all sample compo-
nents are shown in Figure 1A,B in both data directions and
modes: elution time and spectral, as experimentally recorded
when running chromatographic experiments with multi-
variate spectral detection (UV‐visible diode array or fast‐
scanning spectrofluorimetric detection). Using the analyte
profiles shown in Figure 1, a calibration set of samples was
built having 9 samples, with concentrations of components
1 and 2 (the calibrated analytes) following a central compos-
ite design in the range 0 to 1 concentration units.

The bilinear data matrix signal for each pure sample
component Xn is given by the product of the corresponding
concentration and spectral profiles in each mode:

Xn ¼ yn cn s
T
n; (1)

where cn and sn are the (I × 1) and (J × 1) unit‐concentration
profiles in each mode (I and J are the number of channels), yn
is the specific component concentration, and the superscript
“T” indicates matrix transposition (cn and sn profiles are all
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normalized to unit length). According to Figure 1, the size of
the data matrices is 30 × 50 data points (temporal data
points × spectral data points).

To produce the calibration data, the signal for a typical
sample is given by the sum of the contributions of both
analytes:

Mcal ¼ X1 þ X2 þ Noise; (2)

where Noise represents a matrix of numbers from a Gaussian
distribution with a standard deviation of 0.002 units,
representing 2% with respect to the maximum calibration sig-
nal of each analyte at unit concentration.

For the test sample, on the other hand, both analytes were
considered to be present at a concentration of 0.5 units, with
the presence of a single chemical interference, at a concentra-
tion of 0.75 units (to ensure a significant amount of interfer-
ence). The test matrix signal was therefore given by

Mtest ¼ X1 þ X2 þ X3 þ Noise; (3)

where X3 represents the contribution of the interferent and
Noise is as in Equation 2.

To compare the range of feasible solutions for a single
data matrix and for an augmented data matrix, we submitted
2 different data sets to bilinear decomposition by MCR‐
ALS12,13 and estimation of feasible solutions by MCR‐
BANDS.11 The first one consisted of the single matrix Mtest

in Equation 3, applying the initialization procedure and
restrictions during decomposition, which are described
below.

The second data set involved a column‐wise augmented
data matrix D, obtained by appending the Mtest matrix with
the 9 Mcal matrices along the temporal mode, in such a way
that they share the spectral mode as the common mode:

D ¼

Mtest

Mcal;1

:::

Mcal;9

0
BBB@

1
CCCA ¼ Mtest;Mcal;1; :::;Mcal;9

� �
: (4)

The size of D was therefore 300 × 50, and the augmented
temporal data mode had 30 × 10 = 300 data points, on
account of the temporal data points for each submatrix of D
(30) and the total number of samples (10). Initialization and
decomposition constraints are described below.
3 | EXPERIMENTAL DATA

The experimental data set studied in this work has already
been reported and involves 2 analytes, benzo[b]fluoranthene
(bbf) and benzo[k]fluoranthene (bkf), and one interferent,
benzo[j]fluoranthene (bjf).14 Eight calibration samples were
used, consisting of duplicates of 4 different combinations of
concentrations of both analytes (all in ng mL−1): 0.0 and
0.0 (a blank sample), 100.0 and 2.0, 20.0 and 20.0, and
60.0 and 11.0 (the first entry corresponds to bbf and the
second to bkf). These ranges were established on the basis
of the analysis of the linear fluorescence‐concentration range
for each analyte. Test samples contained random concentra-
tions of the studied analytes and bjf in the range 40 to
600 ng mL−1.

All samples were prepared in acetonitrile/water (85:15 v/v)
and submitted to high‐performance liquid chromatography on
a liquid chromatograph equipped with a Waters (Milford,
Massachusetts) 515 HPLC pump and a Varian Cary‐Eclipse
luminescence spectrometer (Varian, Mulgrave, Australia) as
detector. All data matrices were collected with the excitation
wavelength fixed at 300 nm, using emission wavelengths
from 388 to 580 nm, each at 2 nm, and times from 2.43 to
3.38 minutes, each at 2.7 seconds. The emission‐time matri-
ces were of size 121 × 22. For additional experimental
details, see the work of Bortolato et al.14
4 | METHODS

From a mathematical point of view, the mixture analysis
problem solved by MCR methods can be described by a
bilinear model. In this model, experimental data are arranged
in a table or matrix, D, where a number of spectra (I = 1, …,
I, or other multivariate instrumental response) from a set of
samples (eg, chemical mixtures formed by multiple constitu-
ents at different concentrations or compositions) are arranged
as a row vectors of this data matrix, having wavelengths
(j = 1, …, J instrumental channels) in the columns of this
matrix. The MCR bilinear factor decomposition model can
be written using linear algebra notation as (matrix sizes are
given below each symbol):

D¼C ST þ E; (5)

I; Jð Þ I;Nð Þ N; Jð Þ I; Jð Þ;

where C (concentration profiles) and ST (spectra) are the fac-
tor matrices obtained by the bilinear decomposition of the
experimental data matrix D. This bilinear decomposition is
performed for a number of components (n = 1, …, N), which
are contributing to the observed data variance in matrix D. In
MCR methods, this bilinear decomposition implies that the
measured experimental spectra are the linear combination of
the pure spectra of the constituents (components) of the ana-
lyzed mixtures, weighted by their respective concentrations.

There are different ways of solving Equation 5, one of
them is using an alternating least squares (ALS) optimization
algorithm (MCR‐ALS method).1,2,5,10,12,13 In this method,
initial estimations of either the C or ST matrix are required
to initiate the ALS optimization algorithm. Equation 5 is
solved iteratively by linear least squares under constraints
for the profiles in C and ST matrices.12,13,15 The process is
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repeated iteratively until the data matrix D is explained ade-
quately, the residuals (E matrix of Equation 5) are the level
of the experimental noise, and the solutions C and ST are sat-
isfactory, meaningful, and interpretable from a chemical
point of view. Equation 5 is solved for a number of compo-
nents (columns and rows of factor matrices C and ST), which
are related to the number of data variance sources in D, ie,
with the number of chemical species or constituents of the
investigated mixture system having distinct concentration
and spectra profiles. Constraints are the cornerstone of
MCR iterative methods and can be defined as the systematic
properties used to bring the iterative resolution process to
optimal and chemically meaningful solutions of the con-
centration and response/spectra profiles. Typical constraints
are nonnegativity, unimodality, closure, selectivity, local
rank, and any other property known to be fulfilled by the
profiles to be resolved. See previous works12,13,15 for more
details of the MCR‐ALS method and possible constraints.
In this work, nonnegativity constraints will be considered
for the concentration and spectra profiles, and unimodality
(single peak shape) for the concentration (elution mode)
profiles. So as to avoid scale ambiguities in the model of
Equation 5, spectra of the resolved components (rows) in ST

were normalized to equal length (Frobenious norm).
The MCR analysis can be significantly enhanced when

multiple data sets arranged in different data matrices are
simultaneously analyzed using the extension of the MCR‐
ALS method,10 where the multiset data are analyzed by
MCR‐ALS via matrix augmentation schemes. The most com-
monly used is the column‐wise augmented matrices, Daug,
and the extension of the MCR bilinear model to it as

D1;D2;D3;…;DK½ � ¼ C1;C2;C3;…;CK½ � ST þ E1;E2;E3;…;EK½ �;
(6)

D1

D2

D3

:::

DK

0
BBBBBB@

1
CCCCCCA

¼

C1

C2

C3

:::

CK

0
BBBBBB@

1
CCCCCCA
ST þ

E1

E2

E3

:::

EK

0
BBBBBB@

1
CCCCCCA

¼ CaugST þ Eaug; (7)

where K is the number of matrices included in Daug. In a
more compact form,

Daug ¼ Caug ST þ Eaug: (8)

Equation 8 is solved as Equation 5 using the MCR‐ALS
method under constraints to drive the algorithm to physically
meaningful solutions. New constraints can be applied as a
consequence of the column‐wise matrix augmentation, like
the possible correspondence of components in the different
data sets (data matrices) simultaneously analyzed, and also
because of the possibility of invariability of the concentration
profiles of the same component in the different data sets as it
happens in trilinear and other multilinear type of models,
which are the extension of the bilinear model for 3‐way and
multiway type of data models (see previous works5,10,16,17

for more details about these particular situations). In this
work, however, we will only consider the possible correspon-
dence of components among different data sets.

Solving MCR models in Equation 5 and its extension in
Equation 8 by MCR‐ALS under constraints provides one
solution for C and ST (or Caug and STaug ) factor matrices,

which fits appropriately the data matrix, D (or Daug), and ful-
fills the applied constraints. However, there is no guarantee
that this solution is unique, and in fact in most cases, the only
application of soft constraints such as nonnegativity or
unimodality does not provide unique solutions. In the
absence of other stronger constraints (like selectivity or local
rank), Equations 5 and 8 have an infinite number of possible
solutions, because there are an infinite number of factor
matrices C and ST (when analyzing a single data matrix) pro-
viding the same result, the data matrix D. This indeterminacy
can be described mathematically as

D¼C ST ¼ C T−1� �
T ST
� � ¼ Cnew SnewT: (9)

According to Equation 9, any invertible matrix T (N, N)
gives a new set of equivalent solutions of the MCR model
(Cnew and Snew in Equation 9). Any linear combination of
C and ST solutions will produce new solutions of the bilinear
model, which will be equivalent from a mathematical point of
view. This type of indeterminacy in MCR methods is called
rotational ambiguity, and it is the more critical and difficult
type of ambiguity to be avoided in MCR solutions. Apart
from rotational ambiguities, there are other 2 types of
ambiguities, which are the scale and the permutation ambigu-
ities.9,11,18 However, the latter ambiguities are not prob-
lematic and can be easily handled by normalization and
reordering of columns and rows of C and ST matrices. In this
work, only rotational ambiguities will be considered. The
application of appropriate constraints in MCR methods can
limit the extension of these rotational ambiguities, and in
some cases eliminate them totally. Besides the natural con-
straints like nonnegativity or unimodality, the more powerful
strategies to avoid rotational ambiguities in MCR methods
involve the use of local rank and selectivity constraints,2 the
extension to simultaneous analysis of multiple data sets,1

including the use of multilinear models,5,10,16,17 and the use
of hard (deterministic) modeling.19,20 In this work, we will
be only concerned with the use of the strategy based on
matrix augmentation.

Different methods have been proposed in the literature for
the evaluation of rotational ambiguities, including the calcu-
lation of the boundaries of the so‐called feasible bands.9,11,18

Feasible MCR solutions include the whole range of linear
combinations of a particular MCR solution that fit the
experimental data equally well and fulfill the constraints of
the system, as defined by appropriate rotation matrices T in
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Equation 9. Although different approaches have been pro-
posed to calculate the full range of feasible solutions, most
of them cannot be applied to systems with more than 4
components.9

Consider the possibility to define maximum and mini-
mum values of these rotation matrices, Tmax and Tmin, which
should fulfill the following equation:

D¼Cinit STinit ¼ Cinit Tmin Tmin
−1 STinit ¼ Cmin STmin

¼ Cinit Tmax Tmax
−1 STinit

¼ Cmax STmax: (10)

In Equation 10, initial values of C and ST matrices, Cinit

and STinit, are known, while Cmin, STmin and Cmax, STmax corre-
spond toTmin and Tmax values, respectively. A possible algo-
rithm to determine the extension of rotational ambiguities
associated to a particular solution Cinit STinit; obtained for
instance by MCR‐ALS method, is based on the definition
of an objective function, which should be maximized and
minimized as a function of T to find Tmax and Tmin values
for every resolved component. This objective function should
be a scalar function of the variables and should have well‐
defined boundaries (maximum and minimum). For a good
performance of the optimization algorithm, this optimization
function is scaled, for instance, between 0 and 1. The pro-
posed optimization function is defined as follows18:

f n Tð Þ¼ jjcn Tð ÞsTn Tð Þjj
jjCSTjj : (11)

This function gives the ratio between the contribution of a
particular nth species (the numerator of Equation 11) with
respect to the total contribution for all the components of
the mixture (the denominator of Equation 11). The optimiza-
tion (either maximized or minimized) of this objective func-
tion under constraints (see below) for each component
n = 1, …, N, will give an estimate of its maximum and min-
imum solutions (fn(T) max and min values respectively),
from which the corresponding Tmax and Tmin matrices will
be obtained, as well as the corresponding cn,max, sTn ;max

and

cn,min and sTn ;min
profile dyads, for each of the resolved compo-

nents n = 1, …, N. These extreme solutions should fulfill the
constraints of the problem and give the relative maximum,
fn,max, and minimum, fn,min, signal contribution of every
component according to the function defined by fn(T) in
Equation 11, ie, the ratio of the norm of cnsTn over the norm
of the whole signal contribution from all components, CST.
In the MCR‐BANDS method,18 the optimization (maximum
and minimum) of the function given by Equation 11 under
constraints is performed using a nonlinear constrained nonlin-
ear optimization problem, based on a sequential quadratic
programming algorithm implemented in the MATLAB
optimization toolbox fmincon function.21
The above optimization procedure produces 2 important
outputs: (1) the profiles of every component in the 2 modes
corresponding to the maximum, fn,max, and minimum, fn,min,
contribution to the whole signal, which can be plotted for
visual inspection; and (2) the difference between the maxi-
mum and minimum (fn,max − fn,min) of the component contri-
bution (scaled between 0 and 1), which gives a measure of
the extension of rotational ambiguity associated to this
component. A value of 0 means no rotational ambiguity,
while a value close to 1 corresponds to total ambiguity for
this component. The effect of constraints is normally
evaluated as leading to decreasing values of the difference
(fn,max − fn,min). The MCR‐BANDS procedure can be applied
to any number of components and has already been imple-
mented for a number of constraints, and also for the case of
augmented data matrices. More details about the procedure,
its implementation, and application can be found in the work
of Jaumot and Tauler.11

In this work, the MCR‐BANDS procedure is used for
the evaluation of the extension of rotational ambiguities
associated to a particular MCR solution. More specifically,
the reduction of rotational ambiguities has been evaluated
through the effect of matrix augmentation and constraints
derived from this augmentation in the species correspon-
dence between matrices.
5 | SOFTWARE

MATLAB22 was used for producing the simulated data. The
MCR‐ALS was applied using the graphical interface MCR‐
ALS GUI 2.0 available at http://www.mcrals.info/,12,13 which
includes the MCR‐BANDS11 utility for estimating the feasi-
ble solution bands.
6 | RESULTS

6.1 | Simulation results: single data matrix

A single simulated data matrix having 3 components was first
studied, built as described above from the profiles in both
data modes shown in Figure 1A,B. The initial profiles for
starting MCR‐ALS decomposition were estimated by com-
puting the purest variables,23 assuming the presence of 3
sample components. During the least squares optimization
to retrieve the final profiles, the applied constraints were
nonnegativity in all profiles in both data modes, unimodality
in the 3 elution time profiles, and normalization to unit norm
in spectral profiles. Using the same restrictions, MCR‐
BANDS was used to compute the feasible solution bands.
The results are shown in Figure 2A (elution time profiles) and
Figure 2B (spectral profiles), which can be compared with
the known pure profiles (Figure 2C,D). As can be seen, sig-
nificant rotational ambiguity is present in both data modes,
with the only exception of component 1 in the spectral mode

https://doi.org/10.1002/cem.2875


TABLE 1 Summary of foptim MCR‐BANDS values for fmax, finit, fmin, and
the difference (fmax − fmin) (see Equation 11)

Componentsa
foptim

fmax finit fmin fmax − fmin

Single Data Matrix (Simulated)

1 0.603 0.461 0.409 0.194

2 0.460 0.412 0.327 0.134

3 0.576 0.449 0.372 0.204

Augmented Data Matrix (Simulated)

1 0.581 0.579 0.579 0.002

2 0.572 0.571 0.571 <0.001

3 0.242 0.242 0.242 <0.001

Single Data Matrix (Experimental)

bkf 0.782 0.674 0.404 0.315

bbf 0.282 0.277 0.123 0.159

bjf 0.537 0.368 0.225 0.311

Augmented Data Matrix (Experimental)

bkf 0.452 0.443 0.419 0.033

bbf 0.664 0.644 0.595 0.069

bjf 0.038 0.037 0.037 0.001
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(Figure 2B), which was recovered with low ambiguity
because of its selectivity in the chromatographic mode
(region with local chemical rank equal to 1 in Figure 2C),
at the beginning of its chromatographic elution. This higher
selectivity in the chromatographic mode did not imply a bet-
ter recovery of its elution profile, but a better recovery of its
spectrum, in agreement with the application of resolution
conditions described in previous works.2,6

Table 1 shows the differences between the maximum and
minimum values of the optimization function (fmax − fmin),
estimated by MCR‐BANDS and scaled between 0 and 1.
They are relatively large for the 3 components, confirming
the presence of significant rotational ambiguities when only
nonnegativity and unimodality constraints are applied in the
analysis of the single data matrix simulated using profiles in
Figure 1A,B. Moreover, from the quantitative perspective, it
is the area of the elution time profile, which is proportional
to the analyte concentration, and thus, significant uncertainty
would exist in the calculation of the concentration from this
elution profile area for both calibrated analytes 1 and 2.
aExperimental components are as follows: bbf, benzo[b]fluoranthene; bjf,
benzo[j]fluoranthene; bkf, benzo[k]fluoranthene.
6.2 | Simulation results: augmented data matrix

In the case of the augmented data matrix, column‐wise aug-
mentation was performed along the columns or spectral
mode, as is customary in MCR‐ALS analysis of chromato-
graphic‐spectral matrix data sets. In this particular case, 1 test
sample (sample 1 having both analytes and the interferent, as
in the previous example of Figure 2) and 9 calibration sam-
ples having one or both analytes are simultaneously analyzed
by MCR‐ALS using the matrix column‐wise augmentation
strategy. The MCR‐ALS initialization was also performed
by estimating the profiles comprising the purest variables in
the spectral mode, and optimization proceeded under the
following simultaneous constraints: (1) nonnegativity in all
3 profiles in both data modes, (2) normalization to unit norm
in spectral profiles, and (3) correspondence between compo-
nents, which enforces the solution to have zero elements
(selectivity) in the subprofiles corresponding to the absence
of specific components in each submatrix. For example, the
interferent (component 3) is only present in the test sample
(the first subprofile from the left of Figure 3A) and absent
from the calibration samples, and components 1 and 2 are
FIGURE 2 A, Profiles retrieved by multivariate
curve resolution–alternating least squares study of
a single simulated sample containing 3
components in the elution time mode (circles
joined by dashed lines). B, Profiles in the spectral
mode. In both (A) and (B), the solid lines are the
feasible solution bands estimated by MCR‐
BANDS. Component numbers are indicated as in
Figure 1. Simulated profiles from Figure 1 are
repeated in plots (C) and (D) for comparison



FIGURE 3 A, Profiles retrieved by multivariate
curve resolution–alternating least squares study of
a simulated augmented data matrix containing 3
components, built with 1 test sample and 9
calibration samples, in the augmented elution time
mode (circles joined by dashed lines). B, Profiles
in the nonaugmented spectral mode. The solid
lines are the feasible solution bands estimated by
MCR‐BANDS. Component numbers are indicated
as in Figure 1. Simulated spectral profiles from
Figure 1 are repeated in plot (C) for comparison
with (B)
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absent in calibration samples 1 and 3, respectively (second
and fourth subprofiles from the left of Figure 3A), because
they had only one of the 2 analytes.

Results of the MCR‐ALS decomposition and of the appli-
cation of MCR‐BANDS are shown in Figure 3A,B, including,
for comparison purposes, the known pure spectra in Figure 3C.
The elution profiles shown in Figure 3A are presented in
greater detail in Figure 4A for the test sample (having 2
analytes and 1 interferent), and in Figure 4B for the calibration
sample 2, which only has the 2 analytes. Figure 4C,D shows the
corresponding time profiles expected for the latter 2 samples,
built from the known pure temporal profiles for the 3
components and their specific concentrations. It is clear
that as a consequence of the matrix augmentation strategy
(simultaneous analysis of multiple data matrices having
FIGURE 4 Selected subprofiles from the
augmented profiles in Figure 3A. A, Test sample
profiles. B, Calibration sample 2. Component
numbers are indicated as in Figure 1. Simulated
spectral profiles from Figure 1 are repeated in
plots (C) and (D) for comparison with (A) and (C),
respectively. In plots (C) and (D) the simulated
profiles were scaled to the appropriate vertical
intensity according to the component
concentrations
complementary information) and of the application of further
constraints, which were not possible in a single matrix (such
as the correspondence among components and samples), the
solution obtained in this case is much closer to the true one,
and therefore, rotational ambiguity was drastically reduced. In
Figure 3B, the spectra of the 3 components (including the
interferent) at the extreme values of the MCR‐BANDS optimi-
zation function were practically the same, showing that there is
nearly no ambiguity in their recovery. In Figure 4A, the elution
profile of analyte 2 has still some small degree of ambiguity,
because the 2 profiles corresponding to the maximum and min-
imum of the MCR‐BANDS function did not coincide totally.
The elution profile for analyte 2 in sample 1 is the most difficult
to recover without ambiguity, because it is embedded in the
other 2 elution profiles (from analyte 1 and the interferent).
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These results are confirmed in the MCR‐BANDS results
shown in Table 1 for the analysis of the augmented data
matrix. The MCR‐BANDS values of (fmax − fmin) drastically
decreased when compared with those obtained for the indi-
vidual analysis of the first single data matrix.
6.3 | Experimental results: single data matrix

The experimental system consists of 3 chemical components,
and the data matrices are of chromatographic‐spectral type,
with detection proceeding by measuring fluorescence emis-
sion spectra at a fixed excitation wavelength. Thus, conceptu-
ally, it is analogous to the simulated system described above
for UV diode array detection. However, in this particular
case, the experimentally recorded data had an additional
signal arising from an almost constant background signal,
which was modeled along with those from the 3 chemical
constituents (ie, a total of 4 components were present during
MCR‐ALS resolution).

To perform a similar comparison to that discussed above
for the simulated cases, we analyzed a single test sample data
matrix by applying MCR‐ALS, using the same initialization
FIGURE 5 Circles joined by dashed lines, profiles retrieved by multivariate
curve resolution–alternating least squares study of a single experimental
sample containing 3 components: A, elution time mode; B, spectral mode.
Solid lines, feasible solution bands estimated by MCR‐BANDS. Component
labels are indicated
method and constraints as those used during simulations.
The results of retrieved component profiles and feasible solu-
tion bands are shown in Figure 5 for the analysis of a single
data matrix. Only the results for the chemical components
are shown, implying a significant degree of rotational ambi-
guity, especially in the elution time profiles, which define
the relative component concentrations, as was the case for
the analogous simulated single data matrix.

Figure 5 shows the MCR‐ALS resolved elution and spec-
tral profiles of the 3 fluorescent components, together with
those furnished by MCR‐BANDS according to fmin and fmax

results. Ambiguity is present in the elution profiles of the 3
components, and especially for the spectra of 2 of them
(bkf and bbf), and much lower for the spectrum of the third
one (bjf), again because its elution profile had higher selectiv-
ity at the beginning of the chromatographic elution. In this
particular case, there was no need of explicitly using a selec-
tivity constraint,1,2,18 in this chromatographic region, because
only using the nonnegativity constraint already favored the
presence of unique resolution conditions, as has been also
shown in other situations in previous works.24,25 In Table 1,
these results are again confirmed: MCR‐BANDS values of
FIGURE 6 Circles joined by dashed lines, profiles retrieved by multivariate
curve resolution–alternating least squares study of an experimental
augmented data matrix containing 3 components, built with 1 test sample and
8 calibration samples: A, augmented elution time mode; B, nonaugmented
spectral mode. Solid lines, feasible solution bands estimated by MCR‐
BANDS. Component labels are indicated as in Figure 5
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(fmax − fmin) for the 3 components are rather high, as a
consequence of the remaining ambiguity, especially in the
elution profiles.
6.4 | Experimental results: augmented data matrix

In this case, the augmented data matrix includes the experi-
mental chromatographic determinations of the test sample
(bbf and bkf as analytes and bjf as interferent) and of 8 cali-
bration samples (2 blank samples and 6 samples having bbf
and bkf as analyte standards). Figures 6 and 7 show respec-
tively the MCR‐ALS and MCR‐BANDS results obtained
for the whole set of elution and spectra profiles obtained in
the simultaneous analysis. Specifically, Figure 7 includes
the elution profiles for the test and for one of the calibration
samples, which were included in the analysis of the aug-
mented data matrix. Recovery of the elution and spectra pro-
files improved significantly, compared with those given
previously for Figure 5. The MCR‐BANDS results obtained
and shown in Figures 6 and 7 corroborate the fulfillment of
our previous results,1,2 and of Manne resolution theorems.6

Because of the experimental design used to perform the
different chromatographic experiments, which included the
FIGURE 7 Selected subprofiles from the augmented profiles in Figure 6A.
A, Test sample profiles. B, Calibration sample 3. Component labels are
indicated as in Figure 5. Multivariate curve resolution–alternating least
squares solutions are represented by circles joined by solid lines
presence and absence of interferent species, rotation ambigu-
ities were drastically reduced.

In particular, the elution profiles in Figure 7 are shown in
detail for the test sample (with bbf, bkf, and bjf elution
profiles) and for one of the calibration samples (only with
bbf and bkf, but not bjf as interferent). In Table 1, MCR‐
BANDS (fmax − fmin) values did drastically decrease com-
pared with those obtained for the previous single data matrix
analysis. This again confirms the improvement of the MCR‐
ALS results when the simultaneous analysis of multiple data
sets is compared with MCR‐ALS results of the single data
matrix analysis, because of the reduction of rotational ambi-
guities in the latter case.
7 | CONCLUSIONS

Application of the MCR‐BANDS method to MCR profiles
(concentration and spectra) obtained by simultaneous analy-
sis of multiple data sets having common constituents showed
that rotational ambiguities are drastically reduced compared
with those obtained by individual analysis of each data set
separately. Conditions for better resolution results with
improved profiles and reduced ambiguities are more easily
achieved when the matrix augmentation strategy of joint
MCR analysis of multiple data sets is applied. This demon-
stration opens the possibility to improve MCR solutions
using a proper design of the experimental conditions that give
better local rank and selectivity resolution constraints.
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