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a b s t r a c t

We have obtained the perturbative expressions up to sixth order
for the energy of the bound state in a one dimensional, arbitrarily
weak, short range finite well, applying a method originally devel-
oped by Gat and Rosenstein Ref. [1]. The expressions up to fifth or-
der reproduce the results already known in the literature, while the
sixth order had not been calculated before. As an illustration of our
formulas we have applied them to two exactly solvable problems
and to a nontrivial problem.
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1. Introduction

We consider the Schrödinger equation in one dimension

Ĥψ(x) = Eψ(x) (1)

with

Ĥ = −
d2

dx2
+ λV (x) (2)

where V (x) is a potential of finite depth (lim|x|→∞ V (x) = 0 and V (x) < 0 for x ∈ (−∞,∞)).
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For this problem Simon [1] has stated the necessary and sufficient conditions for a bound state to
exist for λ → 0, proving the analyticity of the lowest energy eigenvalue at λ = 0, in one dimension
(in two dimensions, on the other hand, Simon has also proved the non-analyticity of the eigenvalue).
The work of Simon was stimulated by the findings of Abarbanel, Callan and Goldberger [2], who had
obtained the expression for the lowest eigenvalue to order λ3, when V (x) is a short range potential.
Interestingly, asmentioned by Simon in a note added in proof, the leading order termof this expansion
had already been presented in the ‘‘Quantum Mechanics’’ book by Landau and Lifshitz [3]. More
recently, Patil [4] has obtained the perturbative expression for the lowest eigenvalue to order λ5 for
short range potentials, using a perturbative expansion for the inverse of the T matrix, and discussed
the case of long range potentials as well.

Of particular interest to the present work, is the method developed by Gat and Rosenstein in
Ref. [5], which relies on an appropriate modification of the unperturbed Hamiltonian, via an at-
tractive delta potential of arbitrarily small strength, which allows one to carry out the standard
Rayleigh–Schrödinger perturbation theory; the infrared divergences, which would be present in the
standard RS scheme, here identically cancel out and the result is finite when, at the end of the calcu-
lation, the strength of the delta potential is sent to zero. In this way, Gat and Rosenstein reproduced
the results of Abarbanel et al. [2], obtaining the correct expression for the energy to order λ3.

In the present work, we have extended the calculation of Ref. [5] to order λ6, reproducing all the
known results up to order λ5, contained in Ref. [4], and obtaining the exact contribution of order λ6,
which had not been previously calculated. This work is organized as follows: in Section 2 we describe
the method of Gat and Rosenstein; in Section 3 we work out the explicit expressions for the contri-
butions to the energy of the ground state to fourth, fifth and sixth order in perturbation theory; in
Section 4 we discuss three applications of the formulas obtained in this paper; finally, in Section 5 we
state our conclusions. Appendix A contains the explicit expressions for the Green’s functions, appear-
ing in the perturbative expressions. In Appendix Bwe discuss the technical details associatedwith the
application of the present method to general problems.

2. The method

The first step in the application of the method is the suitable modification of the Hamiltonian,
introducing a weak attractive delta potential:

Ĥ = Ĥ0 + λV (x) (3)

where

Ĥ0 ≡


−

d2

dx2
− 2βδ(x)


(4)

is the ‘‘unperturbed hamiltonian’’.
The eigenfunctions of Ĥ0 are

ψ0(x) =

βe−β|x|

ψ (even)
p (x) =

√
2

p2 + β2
[p cos(px)− β sin(p|x|)]

ψ (odd)
p (x) =

√
2 sin(p|x|)

and the corresponding eigenvalues are

ϵ0 = −β2

ϵ(even)p = ϵ(odd)p = p2.

In what follows we will adopt Dirac notation to denote the eigenstates of Ĥ0:

ψ0(x) → |0⟩
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ψ (even)
p (x) → |p(even)⟩

ψ (odd)
p (x) → |p(odd)⟩.

Although the lowest orders of this expansion can be found in most books on Quantum Mechanics
(Ref. [3], for instance, reports the expressions up to fourth order), the higher ordersmust be calculated
explicitly. We report the general expressions for the perturbative corrections to the energy of the
ground state of Eq. (1) up to sixth order, obtained using the NCAlgebra package for Mathematica [6]:

E(1)0 = ⟨0|V |0⟩

E(2)0 = −⟨0|V Ω̂V |0⟩

E(3)0 = ⟨0|V Ω̂V Ω̂V |0⟩ − ⟨0|V |0⟩⟨0|V Ω̂2V |0⟩

E(4)0 = ⟨0|V Ω̂V |0⟩⟨0|V Ω̂2V |0⟩ + 2⟨0|V |0⟩⟨0|V Ω̂2V Ω̂V |0⟩

− ⟨0|V |0⟩2⟨0|V Ω̂3V |0⟩ − ⟨0|V Ω̂V Ω̂V Ω̂V |0⟩

E(5)0 = −⟨0|V |0⟩3⟨0|V Ω̂4V |0⟩

+ ⟨0|V |0⟩2

2⟨0|V Ω̂3V Ω̂V |0⟩ + ⟨0|V Ω̂2V Ω̂2V |0⟩


+ ⟨0|V |0⟩


⟨0|V Ω̂2V |0⟩2 − 2⟨0|V Ω̂2V Ω̂VΩV |0⟩ + 2⟨0|V Ω̂3V |0⟩⟨0|V Ω̂V |0⟩

− ⟨0|V Ω̂V Ω̂2VΩV |0⟩


+


−2⟨0|V Ω̂2V Ω̂V |0⟩⟨0|V Ω̂V |0⟩ − ⟨0|V Ω̂2V |0⟩⟨0|V Ω̂V Ω̂V |0⟩

+ ⟨0|V Ω̂V Ω̂VΩV Ω̂V |0⟩


E(6)0 = −⟨0|V |0⟩4⟨0|V Ω̂5V |0⟩

+ 2⟨0|V |0⟩3

⟨0|V Ω̂4V Ω̂V |0⟩ + ⟨0|V Ω̂3V Ω̂2V |0⟩


+ ⟨0|V |0⟩2


−2⟨0|V Ω̂3V Ω̂V Ω̂V |0⟩ + 3⟨0|V Ω̂3V |0⟩⟨0|V Ω̂2V |0⟩

− 2⟨0|V Ω̂2V Ω̂2V Ω̂V |0⟩

− ⟨0|V Ω̂2V Ω̂V Ω̂2V |0⟩ + 3⟨0|V Ω̂4V |0⟩⟨0|V Ω̂V |0⟩ − ⟨0|V Ω̂V Ω̂3V Ω̂V |0⟩


− 2⟨0|V |0⟩

2⟨0|V Ω̂2V |0⟩⟨0|V Ω̂2V Ω̂V |0⟩ − ⟨0|V Ω̂2V Ω̂V Ω̂V Ω̂V |0⟩

+ 2⟨0|V Ω̂3V Ω̂V |0⟩⟨0|V Ω̂V |0⟩

+ ⟨0|V Ω̂2V Ω̂2V |0⟩⟨0|V Ω̂V |0⟩ − ⟨0|V Ω̂V Ω̂2V Ω̂V Ω̂V |0⟩

+ ⟨0|V Ω̂3V |0⟩⟨0|V Ω̂V Ω̂V |0⟩


+


−2⟨0|V Ω̂2V Ω̂V |0⟩ − ⟨0|V Ω̂2V |0⟩⟨0|V Ω̂V Ω̂V |0⟩

+ ⟨0|V Ω̂V Ω̂V Ω̂V Ω̂V |0⟩


where

Ω̂ ≡


∞

0

dp
2π

|p(even)⟩⟨p(even)| + |p(odd)⟩⟨p(odd)|
ϵp − ϵ0

. (5)
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Upon using the explicit expressions for the Green’s functions (reported in Appendix A) and taking
the limit β → 0+ at the end of the calculation, one can obtain the exact expressions for the
perturbative corrections to the energy of the ground state.

3. Perturbative calculation

The calculation of the corrections up to third order has been performed by Gat and Rosenstein in
their paper [5], thereforewe concentrate on the next three orders. In this sectionwe present the calcu-
lation of the fourth, fifth and sixth orders, using themethod of Gat and Rosenstein. The fourth and fifth
orders obtained here reproduce the result obtained earlier by Patil, whereas the sixth order is new.

3.1. Fourth order

The direct substitution of the expressions for the Green’s functions inside the fourth order
correction leads to a rather lengthy expression; it is instructive to report this expression explicitly,
that reads

E(4)0 = λ4


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)
|x1 − x2| + |x2 − x3| − 2 |x3 − x4|

32β

+ λ4


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)

×


−3x21 + 6x2x1 − 8x22 − x23 + 4x24 + 10x2x3 − 8x3x4


64

+ λ4


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)F (x1, x2, x3, x4) (6)

where

F (x1, x2, x3, x4) ≡ −
5

128
|x1| |x1 − x2| −

5
128

|x2| |x1 − x2| −
1
16

|x2 − x3| |x1 − x2|

−
1
16

|x3| |x1 − x2| −
1
16

|x3 − x4| |x1 − x2| −
1
16

|x4| |x1 − x2|

+
x2 |x1| |x1 − x2|

128x1
+

x1 |x2| |x1 − x2|
128x2

−
1

128
|x1| |x1 + x2|

−
1

128
|x2| |x1 + x2| −

1
16

|x1| |x2 − x3| −
5

128
|x2| |x2 − x3|

−
5

128
|x2 − x3| |x3| −

1
128

|x2| |x2 + x3| −
1

128
|x3| |x2 + x3|

+
1
8

|x1| |x3 − x4| +
1
8

|x2| |x3 − x4| −
1
16

|x2 − x3| |x3 − x4|

+
5
64

|x3| |x3 − x4| −
1
16

|x2 − x3| |x4| +
5
64

|x3 − x4| |x4|

+
1
64

|x3| |x3 + x4| +
1
64

|x4| |x3 + x4| −
x2 |x1| |x1 + x2|

128x1

+
x3 |x2| |x2 − x3|

128x2
−

x3 |x2| |x2 + x3|
128x2

−
x4 |x3| |x3 − x4|

64x3

+
x4 |x3| |x3 + x4|

64x3
−

x1 |x2| |x1 + x2|
128x2

+
x2 |x2 − x3| |x3|

128x3

−
x2 |x3| |x2 + x3|

128x3
−

x3 |x3 − x4| |x4|
64x4

+
x3 |x4| |x3 + x4|

64x4
.
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It is easy to see that the infrared divergent term in the above expression, proportional to 1/β ,
identically vanishes, appropriately relabeling the variables:

dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4) [|x1 − x2| + |x2 − x3| − 2 |x3 − x4|]

→


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4) [|x1 − x2| + |x1 − x2| − 2 |x1 − x2|] = 0.

Let us now consider the second term, which, after a suitable relabeling reads

λ4


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)

×


−3x21 + 6x2x1 − 8x22 − x23 + 4x24 + 10x2x3 − 8x3x4


64

= λ4


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)
x1 (x2 − x1)

8

= λ4


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)
(x2 − x1)2

16
where the last line has been obtained upon symmetrization with respect to the variables x1 and x2.

The simplification of the last term requires a bit more of work; the key observation is that, since
V (x1)V (x2)V (x3)V (x4) is completely symmetric in the variables x1, x2, x3 and x4, only the completely
symmetric part of F (x1, x2, x3, x4) can contribute.

Upon symmetrization we obtain
F (sym)(x1, x2, x3, x4)

= −
1
96

|x1 − x2| |x1 − x3| −
1
96

|x2 − x3| |x1 − x3| −
1
96

|x1 − x4| |x1 − x3|

−
1
48

|x2 − x4| |x1 − x3| −
1
96

|x3 − x4| |x1 − x3| −
1
96

|x1 − x2| |x2 − x3|

−
1
96

|x1 − x2| |x1 − x4| −
1
48

|x2 − x3| |x1 − x4| −
1
96

|x1 − x2| |x2 − x4|

−
1
96

|x2 − x3| |x2 − x4| −
1
96

|x1 − x4| |x2 − x4| −
1
48

|x1 − x2| |x3 − x4|

−
1
96

|x2 − x3| |x3 − x4| −
1
96

|x1 − x4| |x3 − x4| −
1
96

|x2 − x4| |x3 − x4| .

With a suitable relabeling it is possible to reduce F (sym)(x1, x2, x3, x4) to a simpler form:

F (sym)(x1, x2, x3, x4) → −
1
8

|x1 − x2| |x2 − x3| −
1
16

|x1 − x2| |x3 − x4| .

Combining the contributions above one finally obtains the expression for the fourth order

E(4)0 = −
λ4

16


V (x1)dx1

2 
V (x2)|x2 − x3|2V (x2)dx2dx3


−
λ4

8


V (x1)dx1


V (x2)|x2 − x3|V (x3)|x3 − x4|V (x4)dx2dx3dx4


−
λ4

16


V (x1)|x1 − x2|V (x2)dx1dx2

2

(7)

which agrees with the expression calculated by Patil.1

1 Note the different convention that we are using for the kinetic term.
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3.2. Fifth order

The calculation of the higher order contributions is performed in the similar way as for the fourth
order; in the case of the fifth order contribution the expression contains potentially infrared divergent
terms of order 1/β3, 1/β2 and 1/β . Upon symmetrization and suitable relabeling of the integration
variables one can show that each of these contributions identically vanishes, as expected.

As a result, only the term of order β0 survives and, upon simplification, it takes the form

E(5)0 = −
λ5

96


V (x1)dx1

3 
V (x2)|x2 − x3|3V (x2)dx2dx3


−
λ5

16


V (x1)dx1

2 
V (x2)|x2 − x3|V (x3)|x3 − x4|2V (x4)dx2dx3dx4


−
λ5

16


V (x1)dx1


V (x2)|x2 − x3|V (x3)|x3 − x4|V (x4)|x4

− x5|V (x5)dx2dx3dx4dx5)

−
λ5

16


V (x1)dx1


V (x2)|x2 − x3|V (x3)dx2dx3


V (x4)|x4

− x5|2V (x5)dx4dx5


−
λ5

16


V (x1)|x1 − x2|V (x2)dx1dx2


V (x3)|x3 − x4|V (x4)|x4

− x5|V (x5)dx3dx4dx5) (8)

that agrees with the fifth order contribution calculated by Patil.

3.3. Sixth order

The calculation of the sixth order contribution is considerably more involved than the fifth order,
although it can be performed along the same lines. In this case, there are divergent contributions
of order 1/β4, 1/β3, 1/β2 and 1/β . Once again, one finds that each of these contributions identically
vanisheswhen a symmetrization of the integrands and a suitable relabeling of the integration variable
is carried out.

After performing all the algebra, the simplest form that we have obtained for the sixth order term
is

E(6)0 = λ6


dx1dx2dx3dx4V (x1)V (x2)V (x3)V (x4)

×


−

x41
96

+
1
24

x2x31 −
5
64

x22x
2
1 +

3
32

x2x3x21 −
3
64

x2x3x4x1


×


V (x5)dx5

2

+ λ6


dx1dx2dx3dx4dx5dx6V (x1)

× V (x2)V (x3)V (x4)V (x5)V (x6)

×


−

1
48
(x1 − x2)2 −

1
32
(x2 − x3) (x1 − x2)−

1
32
(x3 − x4) (x1 − x2)

−
1
48
(x4 − x5) (x1 − x2)−

1
96
(x5 − x6) (x1 − x2)−

1
48
(x2 − x3)2 −

1
32
(x3 − x4)2

−
1
24
(x4 − x5)2 −

1
32
(x5 − x6)2 −

1
32
(x2 − x3) (x3 − x4)

−
1
48
(x2 − x3) (x4 − x5)−

1
24
(x3 − x4) (x4 − x5)−

1
96
(x2 − x3) (x5 − x6)
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−
1
48
(x3 − x4) (x5 − x6)−

1
24
(x4 − x5) (x5 − x6)


|x1 − x2| |x2 − x3|

+


−

1
32
(x1 − x2)2 −

3
64
(x2 − x3) (x1 − x2)−

5
128

(x3 − x4) (x1 − x2)

−
1
32
(x4 − x5) (x1 − x2)−

1
64
(x5 − x6) (x1 − x2)−

3
64
(x2 − x3)2

−
1
16
(x3 − x4)2 −

1
16
(x4 − x5)2 −

3
64
(x5 − x6)2

−
5
64
(x2 − x3) (x3 − x4)−

1
16
(x2 − x3) (x4 − x5)−

3
32
(x3 − x4) (x4 − x5)

−
1
32
(x2 − x3) (x5 − x6)−

3
64
(x3 − x4) (x5 − x6)

−
1
16
(x4 − x5) (x5 − x6)


|x1 − x2| |x3 − x4|


+ λ6


dx1dx2dx3dx4dx5dx6V (x1)V (x2)V (x3)V (x4)V (x5)V (x6)

×


−

1
32

|x1 − x2| |x2 − x3| |x3 − x4| |x4 − x5|

−
1
64

|x1 − x2| |x2 − x3| |x5 − x6| |x4 − x5|

−
1
32

|x1 − x2| |x2 − x3| |x3 − x4| |x5 − x6|

. (9)

4. Applications

We have applied this expression to two exactly solvable problems, the finite square well2

v(x) =


0, |x| > a

−v0, |x| < a

and the Pösch–Teller potential [7]

v(x) = −
v0

cosh2 x
.

In both cases we have reproduced the results obtained from the exact result, expanding to order
λ6.

For the finite square well we obtain

ϵ = −v20 +
4v30
3

−
92v40
45

+
1072v50
315

−
84752v60
14175

+ O

v70


whereas for the Pösch–Teller potential we obtain

ϵ = −v20 − 2v30 − 5v40 − 14v50 − 42v60 + O

v70

.

We have also applied this formula to the case of a gaussian well

V (x) = −v0e−x2 .

2 We assume v0 > 0.



260 P. Amore, F.M. Fernández / Annals of Physics 378 (2017) 253–263

To order v60 we have

ϵ = −
1
4
πv20+

πv30

2
√
2

−


π

8
+

√
3π
8

+
π2

12


v40 +


7π
96

+
1
8


3
2
π +

3π2

8
√
2

+


∞

−∞

F(x)dx


v50

+


−

3π
64

−
7π

96
√
2

−
7π

96
√
5

−
5π2

16
−

π2

64
√
3

−
7
√
3π2

64
−

2π3

45

+


∞

−∞

G(x)dx

v60 + O(v70)

≈ −0.785398v20 + 1.11072v30 − 1.89534v40 + 3.56727v50 − 7.1374v60 + O(v70) (10)

where

F(x) ≡
π3/2e−2x2

128


ex

2
x(2erf(x)− 1)


4
√
2xerf

√
2x


−
√
πerf(x)2


− 2erf(x)2


G(x) ≡

π2e−x2xerf(x)3

64
√
2

+

π2e−x2xerf
√

2x

erf(x)2

32
√
2

+
1
64
π3/2e−3x2erf(x)2

+
π3/2e−2x2erf(x)2

64
√
2

−
1
16
π3/2e−x2x2erf

√
2x

erf(x)−

1
16
π3/2e−x2x2erf

√
2x
2
.

In this case we do not dispose of the exact result to compare with, since the problem is not exactly
solvable. However, we can easily apply a Padé approximant to the perturbative expression above, after
having singled out the asymptotic behavior for v0 → ∞; the resummed expression reads

ϵ̃ = −v0 +
v0 + 2.60002v20 + 1.2553v30

1 + 3.38542v0 + 2.80348v20 + 0.336931v30
. (11)

In Fig. 1 we compare the energy estimated with Eq. (11) (solid green line), with the perturbative
expression to sixth order of Eq. (10) (dashed blue line), and with two variational estimates obtained
with the trial wave functions

ψ(x) = e−αx2 (12)

and

ψ(x) = e−α
√
β2+x2 (13)

which are respectively represented by the orange dotted line andby the red rhombi. Finally the crosses
are accurate numerical results obtained by means of the Wronskian method [8].

The second wave function has the correct decay at |x| → ∞: we observe an excellent agreement
between the variational energy obtained in this case,minimizingwith respect to the parametersα and
β , and the energy obtained in Eq. (11), using the Padé approximant of the perturbative expression
to sixth order. Notice that the Padé approximant is completely analytical and does not require to
introduce additional parameters.

5. Conclusions

The calculations contained in the present paper on one hand confirm the soundness of the method
originally developed by Gat and Rosenstein, reproducing the perturbative corrections to the energy
of the ground state in a weak short range finite well, previously calculated with different tech-
niques, while on another hand they provide the contribution to sixth order, which had not been
calculated before. In our view, this method has the attractive feature of allowing to apply the usual
Rayleigh–Schrödinger perturbation theory to a problem with a mixed (discrete–continuum) spec-
trum, which is intractable if one uses the free hamiltonian as the unperturbed hamiltonian Ĥ0, due to
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Fig. 1. Energy of the gaussian as a function of the depth. The solid green line is the Padé approximant (11), whereas the dashed
blue line is the perturbative expression of Eq. (10), the orange dotted line and the red rhombi are the variational energy obtained
with the wave functions (12) and (13) respectively. Finally the crosses are the precise results obtained with the Wronskian
method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

the presence of infrared singularities. In the scheme of Gat and Rosenstein, these singularities mani-
fest as terms proportional to inverse powers ofβ (the strength of the artificial delta potential) and turn
out to exactly vanish at each perturbative order. We have applied the formula to sixth order to two
exactly solvable examples, reproducing the results obtained from the exact expressions, upon expan-
sion in the perturbative parameter. For the case of the (not-exactly solvable) gaussian well, we have
compared the analytic expression obtained applying a Padé approximant to the perturbative results
with the precise numerical results obtained variationally and with the method of Ref. [8], observing
an excellent agreement.

Although the focus of the present work has been on weakly attractive short range potentials in
one dimension, the method can be also applied to problems in quantum field theory (QFT) or in many
body theory (MBT), for which there exists a threshold bound state, with the energy being an analytical
function of the coupling. The Thirringmodel and the polynomial QFTmodel considered in the original
paper by Gat and Rosenstein, are just two examples of possible applications and it would be certainly
interesting to extend the present calculation to them. A further example of application of this method
to higher orders comes from Ref. [9], where one of the present authors has calculated the exact fourth
order contribution to the energy of a threshold state in a weakly heterogeneous two dimensional
waveguide. It is clear that the complexity of the expressions depends on the nature of the problem
considered and it rapidly increases with the orders of the perturbative calculation,3 but the use of
symbolic algebra software (in our case Mathematica [10]) allows one to handle in an efficient way
calculations to high orders.
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Appendix A. Green’s functions

In analogy with Ref. [9] we define the operator

Ω̂γ ≡


∞

0

dp
2π

|p⟩⟨p|
ϵp − ϵ0 + γ

(A.1)

3 For instance, the fourth order calculated in Ref. [9] is considerably more complex than the fourth order in the present
calculation.
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where ϵp = p2 and ϵ0 = −β2. The Dirac bra-ket notation is used for the eigenstates of Ĥ0 belonging
to the continuum.

In terms of this operator we define the Green’s function

Gγ (x1, x2) ≡ ⟨x1|Ω̂γ |x2⟩

=
θ (x1) θ (x1 − x2) θ (x2) e(x1+x2)(−(β+Γ ))


eβ(x1+x2)


(β + 1)Γ + γ


e2Γ x2 − 1


− 2βΓ eΓ (x1+x2)


2γ

√
Γ

+
θ (−x1) θ (x1 − x2) θ (−x2)


eΓ (x1+x2)(βΓ − γ + Γ )− 2βΓ eβ(x1+x2) + γ eΓ (x2−x1)


2γ

√
Γ

+

√
Γ θ (x1 − x2) θ (x1) θ (−x2) ex1(−(β+Γ ))


β

eβx1+Γ x2 − 2eβx2+Γ x1


+ eβx1+Γ x2


2γ

+
θ (x1) θ (x2) θ (x2 − x1) e(x1+x2)(−(β+Γ ))


γ eβ(x1+x2)+2Γ x1 + eβ(x1+x2)(βΓ − γ + Γ )− 2βΓ eΓ (x1+x2)


2γ

√
Γ

+
θ (−x1) θ (−x2) θ (x2 − x1)


eΓ (x1+x2)(βΓ − γ + Γ )− 2βΓ eβ(x1+x2) + γ eΓ (x1−x2)


2γ

√
Γ

+

√
Γ θ (−x1) θ (x2) θ (x2 − x1)


β

eΓ (x1−x2) − 2eβ(x1−x2)


+ eΓ (x1−x2)


2γ

(A.2)

where

Γ ≡


β2 + γ . (A.3)

We have

Gγ (x1, x2) =

∞
n=0

(−1)ℓγ ℓG(ℓ)(x1, x2) (A.4)

where

G(ℓ)(x1, x2) = ⟨x1|Ω̂ℓ+1
|x2⟩ (A.5)

are the Green’s functions needed in the application of the perturbative method.
The explicit expressions for the first few Green’s functions are

G(0)(x1, x2) =
1
4β

+
1
4
(− |x1| − 2 |x1 − x2| − |x2|)+ O(β)

G(1)(x1, x2) =
1

16β3
−

|x1| + |x2|
16β2

+
2 |x1| |x2| − 3x21 + 8x1x2 − 3x22

32β

+
1
96


8 |x1 − x2| (x1 − x2)2 + 3 |x2|


3x21 + x22


+ 3 |x1|


x21 + 3x22


+ O(β)

G(2)(x1, x2) =
1

32β5
−

|x1| + |x2|
32β4

−
−2 |x1| |x2| + x21 − 4x1x2 + x22

64β3

+
(|x1| + 3 |x2|) x21 + (3 |x1| + |x2|) x22

192β2

+
5x41 − 24x31x2 + 30x21x

2
2 − 24x1x32 + 5x42 − 4 |x1| |x2|


x21 + x22


768β

+
−16 |x1 − x2| (x1 − x2)4 − 5 |x2|


5x41 + 10x21x

2
2 + x42


− 5 |x1|


x41 + 10x21x

2
2 + 5x42


3840

+ O(β)

G(3)(x1, x2) =
5

256β7
−

5 (|x1| + |x2|)
256β6

+
10 |x1| |x2| − 3x21 + 16x1x2 − 3x22

512β5

+
(|x1| + 3 |x2|) x21 + (3 |x1| + |x2|) x22

512β4
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+
5x41 − 32x31x2 + 30x21x

2
2 − 32x1x32 + 5x42 − 12 |x1| |x2|


x21 + x22


6144β3

−
(|x1| + 5 |x2|) x41 + 10 (|x1| + |x2|) x21x

2
2 + (5 |x1| + |x2|) x42

6144β2

+
−7x61 + 48x51x2 − 105x41x

2
2 + 160x31x

3
2 − 105x21x

4
2 + 48x1x52 − 7x62 + 2 |x1x2|


3x21 + x22

 
x21 + 3x22


36864β

+
128 |x1 − x2| (x1 − x2)6 + 35 |x2|


7x61 + 35x41x

2
2 + 21x21x

4
2 + x62


+ 35 |x1|


x61 + 21x41x

2
2 + 35x21x

4
2 + 7x62


1290240

+O(β). (A.6)

Appendix B. Technical details

In this appendix we wish to discuss some of the technical details which are associated with the
implementation of thismethod for general problems.While the specific expressions for Ω̂ will depend
on the nature of the hamiltonian, the procedure to extract the finite contributions to a given order will
be the same for all models.

The method requires the following steps:

1. Obtaining the general expressions for the perturbative corrections in the Rayleigh–Schödinger
scheme to a desired order (in our case we have worked up to sixth order);

2. Work out the explicit expressions for the Green’s functions ⟨x|Ω̂n
|y⟩, with n = 1, 2, . . . (these

expressions are specific to the problem treated);
3. Determine the infrared behavior of the Green’s functions for β → 0 (β being the parameter

associated with the attractive delta potential);
4. Substitute the expressions obtained in part (3) inside the general matrix elements of part (1) and

isolate the contributions of order β0, 1
β
, . . ., verifying that the infrared divergent contributions

exactly cancel out;
5. Simplify the expressions for the contributions of order β0.

Just to give an idea, in the present calculation the sixth order correction, before simplification,
contains 114364 terms, of which 15442 corresponding to the behavior 1/β , 2506 to the behavior
1/β2, 334 to the behavior 1/β3 and 37 to the behavior 1/β4. After simplification, all the divergent
terms completely cancel out, while the 96045 terms of order β0 reduce to the 38 terms reported in
Eq. (9)!
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