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Abstract
Background and Aims: Nonalcoholic fatty liver disease (NAFLD) develops from a com-
plex process, which includes changes in the liver methylome. Betaine plays a pivotal 
role in the regulation of methylogenesis. We performed a two- stage case–control 
study, which included patients with biopsy- proven NAFLD to explore circulating lev-
els of betaine and its association with the histological spectrum. We also explored the 
association between a missense rs1805074, p.Ser646Pro variant in DMGDH (dimeth-
ylglycine dehydrogenase mitochondrial) and NAFLD severity (n=390).
Results: In the discovery phase (n=48), betaine levels were associated with the disease 
severity (P=.0030), including liver inflammation (Spearman R:−0.51, P=.001), balloon-
ing degeneration (R: −0.50, P=.01) and fibrosis (R: −0.54, P=.0008). Betaine levels were 
significantly decreased in nonalcoholic steatohepatitis (NASH) in comparison with 
nonalcoholic fatty liver (NAFL). Further replication (n=51) showed that betaine levels 
were associated with advanced NAFLD (P=.0085), and patients with NASH had a 
1.26- fold decrease in betaine levels compared with those with NAFL. The rs1805074 
was significantly associated with the disease severity (P=.011).
Conclusion: NAFLD severity is associated with a state of betaine- insufficiency.
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1  | INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is characterized by abnor-
mal lipid accumulation, predominantly triglycerides in the liver. The 
histological spectrum of NAFLD extends from a relatively benign 
nonalcoholic fatty liver (NAFL) characterized by steatosis to a more 
severe form represented by liver cell injury, a mixed inflammatory 
lobular infiltrate, hepatocellular ballooning and variable fibrosis 
named nonalcoholic steatohepatitis (NASH).1 NAFLD is the leading 
cause of chronic liver disease worldwide;2 in fact, its prevalence 
has reached global epidemic proportions, both in adults and chil-
dren.3 The development of NAFLD is a complex interplay of sev-
eral processes including genetic susceptibility and environmental 
insults.4

Furthermore, emerging human data suggest that in addition to 
the metabolic syndrome (MetS)- related phenotypes, including insulin 
resistance (IR), epigenetic modifications in both genomic5–8 and mito-
chondrial DNA9 modulate NAFLD pathobiology. 7,10,11 In fact, these 
clinical studies provide robust evidence that NAFLD is associated with 
tissue- specific epigenetic modifications, which directly impact the reg-
ulation of the transcriptome.5–7,9

Recent experimental evidence also showed that NAFLD is associ-
ated with hepatic methionine deficiency and homocysteine elevation 
as a result of impaired homocysteine remethylation and an aberrancy 
in methyltransferases- mediated reactions.12 Taken together, these ev-
idences consistently demonstrate an aberrant pattern of DNA methyl-
ation in the liver of patients with NAFLD.

S- adenosylmethionine (SAM) is the major methyl donor in the 
cell. The liver is the major site for SAM-  synthesis and degradation 
and SAM is involved in the regulation of the “methylome” dynam-
ics during DNA methylation.13 Methyl groups are usually delivered 
by dietary methyl donors, which mostly include methionine, choline, 
and betaine.14 Betaine, (N,N,N- trimethylglicine, which refers to the 
amino acid glycine with three N-methyl groups) is a critical player in 
the pathway of methylogenesis. For instance, betaine controls the 
serum methionine levels by methylation of homocysteine, and also 
by producing dimethylglycine, which in turn controls the methy- group 
transference.14 Moreover, betaine modulates the rate of methyl 
donor in the synthesis of many other metabolic pathways, including 
proteins and phospholipids.14 Betaine is also an important regulator 
of SAM liver concentration; SAM availability is thought to regulate 
phosphatidylcholine (PC) synthesis by phosphatidylethanolamine 
N- methyltransferase (PEMT), the later normalizes VLDL produc-
tion rates being determinant to exporting lipids from the liver.14–17 
Betaine/choline deficiency may decrease SAM availability and PC 
synthesis, promoting liver fat accumulation14–17; for instance, PEMT 
knockout mice have fatty liver and abnormal hepatic choline metab-
olite concentrations despite ingesting a recommended dietary intake 
of choline.18 Experimental results demonstrated a protective role of 
betaine- homocysteine methyltransferase (BHMT) in homocysteine- 
induced injury in both cultured hepatocytes16 and transgenic mouse 
models.17

Of note, betaine is inversely associated with plasma triglycerides, 
LDL- cholesterol and apolipoprotein levels.19 Betaine is also associated 
with biomarkers of systemic inflammation,20 vascular function, and an 
overall risk of cardiovascular disease.21

Results from a recent genome- wide association study coupled 
with high- throughput metabolic profiling showed variants in the gene 
DMGDH, which encodes for the mitochondrial dimethylglycine dehy-
drogenase, are significantly associated with circulating levels of beta-
ine and betaine- related metabolites, as well as metabolites of other 
metabolic pathways, including amino acids.22

We therefore hypothesized that NAFLD severity is associated 
with a state of “betaine- insufficiency”. To test this, we performed a 
two- stage case–control study in patients with biopsy- proven NAFLD 
to explore the association between circulating levels of betaine and 
the spectrum of liver histology in NAFLD. In addition, we performed a 
candidate- gene association study on the role of a DMGDH-missense 
variant (rs1805074, p.Ser646Pro) in NAFLD severity.

2  | PATIENTS AND METHODS

2.1 | Patients and control subjects: selection criteria

This study was conducted in accordance with the guidelines of the 
1975 Declaration of Helsinki. Written consent from individuals 
was obtained in accordance with the procedures approved by the 
Ethical Committee of each institution. The protocol was approved 
by the Comite de Etica Hospital Zubizarreta (protocol number: 104/
HGAZ/09 and 89/100) and VCU- IRB (protocol numbers HM14081 
and HM14427).

The exploration of circulating levels of betaine and its relation-
ship with NAFLD severity was performed in two phases:(i) a discovery 
phase in subjects recruited in Buenos Aires, Argentina (n=48), and (ii) 
a replication phase in a cohort of subjects recruited in Richmond, VA, 

Key points
● NAFLD is associated with tissue-specific epigenetic mod-

ifications, including an aberrant pattern of DNA 
methylation.

● Betaine, (N,N,N-trimethylglicine) is a critical player in the 
pathway of methylogenesis by controlling the serum me-
thionine levels and by producing dimethylglycine, which 
in turn controls the methy-group transference.

● NASH is associated with decreased levels of betaine in 
circulation.

● The missense variant p.Ser646Pro (rs1805074) in 
DMGDH gene, which encodes for the mitochondrial di-
methylglycine dehydrogenase, was significantly associ-
ated with the disease severity and circulating levels of 
dimethylglycine.
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USA (n=51). This study design allowed us to confirm the initial find-
ings in an independent sample of patients with different environmental 
influences.

The candidate- gene association study was performed in a sample 
of 390 individuals under the same inclusion and exclusion criteria that 
of the case–control study on betaine levels. Participants included 138 
controls and 252 patients with NAFLD proven by liver biopsy and re-
cruited in Buenos Aires, Argentina. Complete details on selection cri-
teria, anthropometric and biochemical evaluation, and liver biopsy are 
given in the Supporting Information.

2.2 | Histopathological evaluation

The degree of steatosis was assessed according to the system de-
veloped by Kleiner et al., based on the percentage of hepatocytes 
containing macrovesicular fat droplets.23 NASH24 and NAFLD 
Activity Score (NAS)23 were defined as reported previously; a NAS 
threshold of 5 was used for further comparisons with variables of 
interest, NASH was defined as steatosis plus mixed inflammatory- 
cell infiltration, hepatocyte ballooning and necrosis, glycogen nu-
clei, Mallory’s hyaline, and any stage of fibrosis, including absent 
fibrosis.23

2.3 | Measurement of circulating levels of 
betaine and related metabolites

Serum metabolite measurements, including betaine and dimethylg-
lycine, from patients and controls were obtained using high perfor-
mance liquid chromatography- mass spectrometry (HPLC- MS/MS) 
method. Determinations in samples of patients from Argentina were 
performed in the Northwest Metabolomics Research Center Core fa-
cility (University of Washington, Seattle, WA, USA), while determina-
tions in samples of patients from the VCU, Richmond, were done in 
Metabolon Inc, Durham, NC, United States. Details are given in the 
Supporting Information.

2.4 | Genotype and association analysis; power and 
sample size calculation

The selection of DMGDH single nucleotide polymorphism (SNP) for 
the association analysis was based on the results from the comprehen-
sive exploration of genetic loci influencing human metabolism22 and 
The Metabolomics GWAS Server available at http://metabolomics.
helmholtz-muenchen.de/gwas/. Prioritization was given to variants 
with a minor allele frequency higher than 10%; hence, we focused 
our analysis on A>G rs1805074, a missense variant at position 646 
(p.Ser646Pro) located in the forward strain, which was significantly 
associated with betaine levels (P=7.97e−18), betaine/glutamine ratio 
(P=5.583e−19), carnitine/betaine ratio (P=1.434e−18) and tyrosine/be-
taine ratio (P=6.557e−18) (http://metabolomics.helmholtz-muenchen.
de).22

Using the CaTS power calculator for genetic association studies25 
and assuming a prevalence of NAFLD of 0.30 and a MAF of 0.30, our 

sample had 95% power for the additive genetic model. Further details 
are given in the Supporting Information.

2.5 | Statistical analysis

Complete details are given in the Supporting Information.

3  | RESULTS

The discovery study included 48 individuals, of whom 32 were pa-
tients with NAFLD and 16 were healthy controls. The participant 
characteristics are shown in Table 1. As expected, compared with the 
control group, patients with NAFLD showed most of the risk factors 
of the MetS, namely higher BMI, fasting glucose, insulin and HOMA- 
index, and CVD risk factors.

3.1 | NAFLD severity is associated with a state of 
“betaine- insufficiency”

In the discovery phase, we observed that the serum levels of be-
taine were significantly associated with the disease severity (re-
gression analysis for an ordinal multinomial distribution P=.0030); 
also, the betaine levels in circulation were significantly reduced in 
patients with NASH in comparison with NAFL (Table 1). Moreover, 
betaine levels were inversely correlated with the degree of his-
tological steatosis (Spearman R: −0.49, P=.004), inflammation 
(Spearman R: −0.51, P=.001), ballooning degeneration (Spearman 
R: −0.50, P=.01), and fibrosis stage (Spearman R: −0.54, P=.0008); 
accordingly, the serum levels of betaine were significantly and neg-
atively correlated with the NAS score (Spearman R: −0.55, P=.005).
Figure 1 shows betaine levels according to the scores of NAFLD 
histological lesions; statistical differences remain significant even 
after adjusting by BMI and HOMA- IR. Furthermore, we observed 
that circulating levels of betaine were significantly lower in NASH 
as compared with controls (P=.0037); however, there were no dif-
ferences in the comparison between NAFL and the control group 
(Table 1).

We also observed that circulating betaine levels were significantly 
and inversely correlated with systolic blood pressure (Spearman R: 
−0.34, P=.04), and other parameters associated with the MetS, includ-
ing body adiposity index (BAI) 26 (Spearman R: −0.35, P=.02) or leuco-
cyte count as surrogate of systemic inflammation (Spearman R: −0.49, 
P=.01) but not with glucose metabolism.

The replication study included 51 individuals, of whom 44 were 
patients with NAFLD, and seven were healthy controls; the partici-
pants’ characteristics are shown in Table 2. Also worthy of note are 
the serum levels of betaine, which were consistently associated with 
the histological severity of NAFLD (P=.0085); furthermore, patients 
with NASH compared with those with NAFL had a 1.26- fold reduc-
tion in serum betaine levels. The comparison between circulating 
levels of betaine between patients with NASH and healthy controls 
showed significant differences (P=.0026); however, there were no 

http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de
http://metabolomics.helmholtz-muenchen.de
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differences in the comparison between NAFL and the control group 
(Table 2).

Figure 2 depicts the results of the ROC analysis on the perfor-
mance of betaine in predicting the disease severity (NAFL vs NASH) in 
the discovery (panel A) and the replication (panel B) study, as well as in 
the joined dataset (panel C).

Of note, the decrease in circulating levels of betaine in NASH pa-
tients compared either with controls or NAFL patients remains signif-
icant after adjustment for main confounding factors, such as HOMA 
and BMI (P=.034).

3.2 | The missense variant p.Ser646Pro (rs1805074) 
was significantly associated with the disease severity

We further performed a candidate- gene association study in a larger 
sample to explore the role of the missense p.Ser646Pro (rs1805074) 
variant in the disease severity. The characteristics of patients and con-
trols are shown in Table 3. On the basis of the previous knowledge of 
the role of this variant in the modulation of betaine- intermediate me-
tabolites,22 we reasoned that rs1805074 may be involved in NAFLD 
biology.

TABLE  1 Clinical and biochemical evaluation of patients with NAFLD and healthy controls enrolled in the discovery study on circulating 
levels of betaine

Variable (mean ± SD) Control NAFL NASH
P value* 
P<

P value** 
P<

P value#

P<

Number of subjects 16 16 16 – – –

Female/male, % 50/50 50/50 59/41 NS NS NS

Age, years 47.5 ± 13 52 ± 8 51.7 ± 9 NS NS NS

BMI, kg/m2 25 ± 2.5 30 ± 4.3 32 ± 7 .0008 NS .001

Waist circumference, cm 85 ± 13 102 ± 9 107 ± 14 .0005 NS .0002

Fasting plasma glucose, mg/dL 74 ± 7 97 ± 15 98 ± 22 .00004 NS .0004

Fasting plasma insulin, mg/dL 6 ± 2 10 ± 6 14 ± 7 .05 NS .001

HOMA- IR index 1.1 ± 0.4 2.4 ± 1.4 3.5 ± 2 .001 NS .0003

SABP, mm Hg 113 ± 8.5 126 ± 17 127 ± 14 .03 NS .01

DABP, mm Hg 69 ± 7.6 79 ± 9 81.5 ± 10 .01 NS .008

Total cholesterol, mg/dL 221 ± 45 212 ± 48 228 ± 45 NS NS NS

HDL- cholesterol, mg/dL 55 ± 12 57 ± 29 48 ± 10 NS NS NS

LDL- cholesterol, mg/dL 143 ± 34 120 ± 40 133 ± 52 NS NS NS

Triglycerides, mg/dL 117 ± 68 161 ± 76 198 ± 117 .07 NS .010

ALT, U/L 22 ± 8.5 53 ± 37 92 ± 84 .0004 .04 .000006

AST, U/L 19.5 ± 4.6 34 ± 14 58 ± 42 .0006 .03 .000002

GGT, U/L 39 ± 42 74 ± 48 71 ± 72 .02 NS .02

AP, U/L 139.5 ± 57 237 ± 117 222 ± 127 .001 NS .007

Histological features

Degree of steatosis, % – 38 ± 14 61 ± 18 – .001 –

Lobular inflammation (0- 3) – 0.64 ± 0.67 1.09 ± 0.7 – NS –

Hepatocellular ballooning (0- 2) – 0.0 ± 0.0 0.82 ± 0.6 – .01

Fibrosis Stage – 0.0 ± 0.0 1.06 ± 1.34 – .02

NAS – 2.3 ± 1.1 5.75 ± 1.7 – .0001

Circulating betaine levels (normalized 
data from the peak areas detected 
by HPLC- MS/MS)

0.25 ± 0.90 0.44 ± 0.71 −0.61 ± 0.98 NS .0016 .01

Circulating dimethylglycine levels 
(normalized data from the peak areas 
detected by HPLC- MS/MS)

0.17 ± 0.61 0.47 ± 1.02 −0.30 ± 1.03 NS .04 NS

ALT and AST, serum alanine and aspartate aminotransferase, respectively; AP, alkaline phosphatase; BMI, body mass index; GGT, gamma- glutamyl- 
transferase; HDL- C, high- density lipoprotein cholesterol; HOMA- IR, homeostatic model assessment- insulin resistance; LDL- C, low- density lipoprotein 
cholesterol; NAFL, nonalcoholic fatty liver or simple steatosis; NAFLD, nonalcoholic fatty liver disease; NAS, NASH activity score; NASH, nonalcoholic 
steatohepatitis.
Results are expressed as mean ± SD. *Indicates comparisons between NAFL and controls, **denotes NAFL vs. NASH comparisons, and # pertains to the 
comparisons between NASH and controls. The P value reflects the statistical significance calculated using the Mann–Whitney U- test, with the exception 
of the female/male ratio, where the P value reflects the statistical significance calculated via a Chi-squared test. NS: nonsignificant.
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For this purpose, we performed an ordinal multinomial distribu-
tion with Probit function by coding the histological grade as control 
subjects (NAFL and NASH), and observed that rs1805074 was sig-
nificantly associated with the disease severity (P=.011), independent 
of sex and HOMA- IR. The allelic cumulative OR for the allele G: 
0.693 95% CI: 0.509- 0.944 (Cochran–Armitage test for trend P=.020, 
chi- sq.=5.391). This effect is mostly explained by the protection of the 
G allele on NASH vs. control risk (OR per allele: 0.88, 95% CI: 0.66- 
0.98, P=.0275).

Furthermore, the rs1805074 was significantly associated with cir-
culating levels of dimethylglycine in both the additive (Spearman R: 
−0.353, P=.0148) and dominant (Spearman R: - .034, P=.0189) models 
of inheritance; in addition, an exploration of serum levels of dimethyl-
glycine was performed in the subjects recruited in the discovery study. 
The distribution of genotypes according to the disease status in the 
candidate- gene association study is shown in Table 3.

4  | DISCUSSION

In this study, we demonstrated that NASH is associated with de-
creased levels of betaine in circulation, and this observation was 
validated in an independent study that included subjects who did not 
share environmental, ethnic and dietary habits (Figure 2D).

While the aim of this study was not focused on the role of betaine 
as potential biomarker, the area under the ROC to predict the pres-
ence of NASH was 0.755 in the joined analysis, which is comparable 
to other biomarkers used in the clinical setting to predict the pres-
ence of advanced liver disease, including the plasma levels of CK18 
(caspase- cleaved cytokeratin 18 fragments: pooled sensitivity of 66% 
and a specificity of 82% in diagnosing NASH) 27 or circulating miR- 122 
(area under the ROC curve 0.714).28

Our findings are consistent with previous studies on animal mod-
els of diet- induced NAFLD. For instance, accumulated evidence from 

experimental studies in rodents consistently showed that betaine 
supplementation is able to ameliorate or even reverse fatty liver dis-
ease.15,29–33 Furthermore, betaine supplementation was associated 
with increased SAM levels,15 the improvement of inflammation and 
liver injury,33 and the reversal of insulin resistance.34

The results from a randomized placebo- control study of 55 pa-
tients with a biopsy- proven NASH who had received either oral be-
taine (20 g daily) or a placebo for 12 months indicated that although 
betaine administration was not associated with changes in the non-
alcoholic fatty liver disease activity score (NAS) or fibrosis stage, 
patients randomized to betaine had a decrease in steatosis grade.35 
From these results, it is then reasonable to suggest that betaine par-
ticipates in the pathogenesis of NAFLD by modulating the transmeth-
ylation cycle and maintaining SAM levels, which probably explains the 
differences in the methylation state of genes involved either in fi-
brogenesis 6,8 or the metabolic pathways associated with the disease 
severity.7,9

Unfortunately, we do not have data on dietary habits or estimates 
of betaine dietary intake, which would have been of major interest to 
our study. Nevertheless, it was shown that betaine content in foods is 
not only variable but is dependable of different cooking methods, in-
testinal absorption and kidney function.21 Results from a large cross- 
sectional study that involved 1628 participants from China, whose 
dietary pattern differ from those in the western populations and so 
their effect on the risk of the MetS,36 showed that the severity of 
liver fat accumulation – as detected by liver ultrasound – was neg-
atively correlated with serum betaine levels.37 Together, these data 
suggest that – tough important – diet or dietary habits seem not to 
be involved in the association between betaine levels and the risk of 
NAFLD.

On the other hand, we observed that the missense p.Ser646Pro 
(T/C, rs1805074) variant located in the DMGDH locus was significantly 
associated with the disease severity and circulating levels of dimethyl-
glycine. While the association between rs1805074 and NAFLD severity 

F IGURE  1 The association between 
circulating betaine levels and the 
histological severity of Nonalcoholic Fatty 
Liver Disease. Circulating betaine levels 
stand for normalized data (Z scores) from 
the peak areas detected by HPLC- MS/MS; 
each bar represents mean ± SE values. 
NAFLD histological lesions were scored 
as described in methods section23,24; for 
assessing the levels of betaine according 
to liver histology, were grouped the 
histological variables as follows: NAFLD 
activity score (NAS) threshold of 5: <5 vs 
≥5; liver fibrosis: absent or mild (F0- F1) vs. 
moderate or severe (F2- F3); intra- acinar 
(lobular) inflammation and ballooning 
degeneration: absent (0) vs. present (1). 
P stands for values adjusted for log- 
transformed HOMA and BMI
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is a novel finding of our study, the association with dimethylglycine lev-
els was previously reported in a large combined GWAS and exome anal-
ysis (P value=1.65×10−19).38 DMGDH encodes an enzyme involved in 

the catabolism of choline, which catalyzes the oxidative demethylation 
of dimethylglycine to form sarcosine. DMGDH is found as a monomer 
in the mitochondrial matrix, and uses flavin adenine dinucleotide and 

Variable 
(mean ± SD) Control NAFL NASH P value

Number of subjects 7 13 31

Male/female, % 57/43 54/46 77/23 NS

Age, years 47.6 ± 9.8 54.7 ± 10 58.1 ± 9.2 .03

BMI, kg/m2 29.0 ± 7.3 31.7 ± 6.3 34.2 ± 4.1 .05

Waist circumfer-
ence, cm

92.3 ± 18.8 99.7 ± 19.3 105.5 ± 10.6 NS

Fasting plasma 
glucose, mg/dL

92.6 ± 8.5 95.2 ± 3.7 145.8 ± 62.6 .02

Fasting plasma 
insulin, Units

9.0 ± 4.6 15.6 ± 8.8 30.4 ± 14.9*,** .001

HOMA- IR Index 1.2 ± 0.6 2.0 ± 1.1 4.2 ± 1.9*,** .0004

SABP, mm Hg 126 ± 6.4 132 ± 13 138 ± 13.6 NS

DABP, mm Hg 77 ± 7.9 77 ± 10.3 73 ± 9.1 NS

Total cholesterol, 
mg/dL

187 ± 47 171 ± 34 189 ± 39 NS

HDL- C, mg/dL 55.7 ± 16.3 52.6 ± 15.1 45.1 ± 11.1 .09

LDL- C, mg/dL 117 ± 45 100.9 ± 27.6 116 ± 38.6 .48

Triglycerides, mg/dL 140.4 ± 53 106 ± 48.9 199 ± 131.5 .06

ALT, U/L 31.3 ± 17.6 42.1 ± 13 54.8 ± 27.5 .05

AST, U/L 25.4 ± 9.7 35.5 ± 27.4 40.3 ± 12 NS

AP, U/L 89 ± 16.1 74 ± 22.6 86 ± 30.9 NS

Histological features

Degree of steatosis, 
grade

1.5 ± 1.0 1.9 ± 0.8 NS

Lobular inflamma-
tion (0- 3)

1 ± 0.0 1.21 ± 0.6 NS

Hepatocellular 
ballooning (0- 2)

0.2 ± 0.4 1.2 ± 0.5 <.0001

Fibrosis Stage 0.6 ± 0.96 2 ± 1.14 .0005

NAS 2.7 ± 0.85 4.3 ± 1.1 <.0001

Circulating betaine 
levels (normalized 
data from the peak 
areas detected by 
HPLC- MS/MS)

0.85 ± 0.55 0.46 ± 0.78 −0.35 ± 0.96*,** .02

Circulating 
dimethylglycine 
levels (normalized 
data from the peak 
areas detected by 
HPLC- MS/MS)

0.04 ± 1.09 0.25 ± 0.87 −0.11 ± 1.00 NS

ALT and AST, serum alanine and aspartate aminotransferase, respectively; AP, alkaline phosphatase; 
BMI, body mass index; HDL- C, high- density lipoprotein cholesterol; HOMA- IR, homeostatic model 
assessment- insulin resistance; LDL- C, low- density lipoprotein cholesterol; NAFL, nonalcoholic fatty 
liver or simple steatosis; NAFLD, nonalcoholic fatty liver disease; NAS, NASH activity score; NASH, 
nonalcoholic steatohepatitis.
Continuous variables are reported as mean ±SD. Categorical variables are reported as counts (%). 
*Significant difference when compared with controls (Tukey’s pairwise comparison P<.05). ** Significant 
difference when compared with NAFL (Tukey’s pairwise comparison P<.05).

TABLE  2 Clinical and biochemical 
evaluation of patients with NAFLD and 
healthy controls enrolled in the replication 
study on circulating levels of betaine
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folate as cofactors. Moreover, DMGDH is highly expressed in the liver 
http://www.proteinatlas.org/ENSG00000132837-DMGDH/tissue. 
Therefore, it is plausible to suggest that a variant that modulates di-
methylglycine levels indirectly modifies the susceptibility to advanced 
disease by influencing the methyl- group metabolism. In agreement with 
our observations, the results from a recent experimental study showed 
that diseased animals had decreased levels of dimethylglycine that re-
sulted in a decrease in the ratio between dimethylglycine and betaine.12

While the specific mechanisms by which the rs1805074 or any 
other variant in linkage disequilibrium (LD) regulates the levels of di-
methylglycine are not entirely known, it is plausible to hypothesize that 
the variant in DMGDH might be associated with changes in the enzy-
matic activity. To test this hypothesis, we explored in silico the protein 
domain(s) that could be possible affected by the missense rs1805074 
variant. Interestingly, we found two protein domains in DMGDH that 
are predicted to have significant functional impact on the protein func-
tion (pfam01571 P value=8.2e- 79 and COG0404 P value=3.8e- 117) 
(http://bioinf.umbc.edu/dmdm/). The pfam01571 domain is indeed an 
“aminomethyltransferase folate- binding domain” known as GcvT do-
main or “glycine cleavage system T protein” (T protein is an aminomethyl 
transferase); COG0404 also belongs to a glycine cleavage system T pro-
tein. Moreover, the explored rs1805074 and the missense rs1805073 
(p.Ala530Gly), which is in strong LD with the rs1805074 (R2=0.957), 
both share the same predicted domains. Hence, as dimethylglycine is 
the product of betaine demethylation,14 it is plausible to suggest that 
the potential protective effect of the variant on NASH could indeed be 
explained by avoiding the development of a “methyl- deficient state”.

Furthermore, as dimethylglycine acts as a feed- back regulator of 
betaine- homocysteine methyltransferase,14 it is reasonable to suggest 
that either homocysteine levels or the ratio between betaine/homo-
cysteine could be affected by the rs1805074. To answer this ques-
tion, we searched in the Metabolomics GWAS Server for this putative 
association; unfortunately, there was no evidence for the rs1805074 
or any other variant in LD to be possible associated with circulating 
homocysteine levels (the search was done on all the variants with a 
R2=1 with the rs1805074). Surprisingly, significant associations were 
found with betaine/amino acid ratios, including, betaine/glutamine (P 
value=9.474e- 19) or tyrosine/betaine (P value=4.048e- 18).22 Hence, 
the potential protective effect of the rs1805074 on NASH could be 
additionally explained by the effect/s on other metabolites or meta-
bolic parameters not explored in our work.

Likewise, gene variants in BHMT might also account for changes in 
serum levels of betaine or dimethylglycine. Accordingly, we searched 
into the Metabolomics GWAS Server and we found 10 intronic SNPs 
located in BHMT associated with betaine levels (Table S1). Remarkably, 
two of 10 variants in BHMT, including rs6860801 and rs6881725, are 
in strong linkage disequilibrium (R2: 0.957) with the missense DMGDH 
rs1805074 explored in our research and then the signal may not be 
assigned to one of these two genes.

Potential limitations of our study should be highlighted, includ-
ing the cross- sectional design, which cannot demonstrate causality. 
Moreover, it would have been valuable to have measured SAM con-
centrations, SAM/S- adenosylhomocysteine (SAH) ratio, and PEMT 
and/or BHMT enzymatic activities to fully understand the role of 

F IGURE  2 NAFLD severity is 
associated with a state of “betaine- 
insufficiency”. Figure displays receiver 
operating characteristic (ROC) plot for 
circulating betaine levels in differentiating 
nonalcoholic steatohepatitis (NASH) from 
nonalcoholic fatty liver (NAFL) in the 
discovery (panel A) and replication study 
(panel B), and the joined dataset (C). The 
cut- off for normalized betaine values to 
rule- out NASH are −0.1589, −0.087 and 
−0.158 in the discovery, replication and 
joined dataset respectively. PPV, positive 
predictive value; NPP, negative predictive 
value. AUROC, area under the receiver- 
operator curve. Panel D shows that 
betaine levels (Z scores) in circulation are 
significantly reduced in patients with NASH 
in comparison with controls and NAFL; 
graph displays results of the joined dataset
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betaine in human NASH development. Finally, genetic variation in the 
entire betaine/methionine transmetilation pathway is worth to be fur-
ther examined, including variants in PMET.39

In conclusion, the role of betaine in the modulation of the methy-
lome is particularly relevant as the process of methylogenesis, includ-
ing SAM as the major methyl donor, is specifically active in the liver; 
moreover, the liver is one of the largest reservoirs of betaine in the 
body.40 Whether betaine depletion is the cause or the consequence 
of the progression of NAFLD cannot be confirmed by this study; nev-
ertheless, the present observation supports the notion that NAFLD 
disease severity is associated with changes in the levels of metabolites 
that modulate the liver methylome, which can be modified by thera-
peutic intervention.
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