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Abstract

A gauged Dirac-Weyl equation in (2+1)-dimension is considered. This equation has
the particularity to describe the states of a graphene Dirac matter. In particular we
are interested in matter interacting with a Chern-Simons gauge fields. We show that
exact self-dual solutions are admitted. These solutions are the same as those supported
by nonrelativistic matter interacting with a Chern-Simons gauge field.

PACS numbers: 11.10.Kk, 11.15.Yc, 81.05.ue

1 Introduction

The two dimensional matter field interacting with gauge fields whose dynamics is gov-
erned by a Chern-Simons term support soliton solutions[1, 18, 3, 4, 5, 6, 7]. These
models have the particularity to became auto-dual when the self-interactions are suit-
ably chosen [8, 9, 10, 11]. When this occur the model presents particular mathematical
and physics properties, such as the supersymmetric extension of the model [12], and
the reduction of the motion equation to first order derivative equation [13]. The Chern-
Simons gauge field inherits its dynamics from the matter fields to which it is coupled,
so it may be either relativistic [8] or non-relativistic [10, 11]. In addition the soliton
solutions are of topological and non-topological nature [14].
In the present Letter, we investigate Dirac-Weyl massless fermions under perpendicular
magnetic field whose dynamics is dictated by a Chern-Simons gauge field. In partic-
ular we show that this gauge theory admit soliton solutions which are analytic and
coincide with the self-dual solutions supported by Schrödinger-Chern-Simons model
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[10, 11] defined by the Lagrangian density

L =
κ

2
ǫµνρAµ∂νAρ + iψ∗D0ψ − 1

2m
|Diψ|2 +

g

2
|ψ|4 (1)

where, the first term is a Chern-Simons gauge field dynamics, which are coupled to
nonrelativistic bosonic matter, represented by the complex scalr field ψ.

2 The soliton solution

Let us start by considering a (2 + 1)-dimensional Dirac-Weyl-Chern-Simons model
coupled to two-component spinors

Ψ = (ψa, ψb)
T (2)

where ψa and ψb represent the envelope functions associated with the probability am-
plitudes. In addition, T denotes the transpose of the column vector. Then the action
is governed by

S =

∫

d3x
(κ

2
ǫµνρAµ∂νAρ +Ψ†σ0D0Ψ−Ψ†σiDiΨ

)

(3)

Here, the covariant derivative is defined as D0 = −i∂0−eA0, Di = −i∂i+eAi (i = 1, 2),
the metric tensor is gµν = (−1, 1, 1) and ǫµνλ is the totally antisymmetric tensor such
that ǫ012 = 1. Also, σµ (µ = 0, 1, 2) are 2×2 Pauli matrices, i.e.

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

(4)

The Chern-Simons term of the action (3) may be developed integrating by parts,

Scs =
κ

2

∫

d3x
(

ǫµνρAµ∂νAρ

)

= κ

∫

d2x
(

A0F12 +A2∂0A1

)

(5)

On the plane the curl of a vector is a scalar, so that the magnetic field is F12 =
∂1A2 − ∂2A1. We may also develop the Dirac-Weyl term,

Sdw =

∫

d3x
(

Ψ†σ0D0Ψ−Ψ†σiDiΨ
)

=

∫

d3x
(

− iψ†
a∂0ψa − eA0ψ

†
aψa − iψ†

b∂0ψb − eA0ψ
†
bψb − [−iψ†

a∂1ψb − ψ†
a∂2ψb

+eA1ψ
†
aψb − ieA2ψ

†
aψb − iψ†

b∂1ψa + ψ†
b∂2ψa + eA1ψ

†
bψa + ieA2ψ

†
bψa]

)

(6)

Then, the corresponding field equations for the action (3) are

− i∂0ψa − eA0ψa − [−i∂1ψb − ∂2ψb + eA1ψb − ieA2ψb]

= D0ψa − [D1ψb − iD2ψb] = 0 (7)
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− i∂0ψb − eA0ψb − [−i∂1ψa + ∂2ψa + eA1ψa − ieA2ψa]

= D0ψb − [D1ψa + iD2ψa] = 0 (8)

κF12 − e[ψ†
aψa + ψ†

bψb] = 0 (9)

κ(−∂0A2 + ∂2A0)− e[ψ†
aψb + ψ†

bψa] = 0 (10)

κ(∂0A1 − ∂1A0)− e[−iψ†
aψb + iψ†

bψa] = 0 (11)

The equations (7) and (8) may be expressed in a compact form as

σ0D0Ψ− σiDiΨ = 0 (12)

which is the massless Dirac-Weyl equation in (2+1)-dimensions. This equation is gauge
invariant since a gauge transformation of the potentials,

Ai → Ai −
1

e
∂iω , A0 → A0 +

1

e
∂0ω (13)

accompanied by a transformation of the spinor

Ψ → eiωΨ (14)

leaves the equation (12) unchanged.
The gauge field satisfied its dynamical equations, which are dictated by the formulas
(9), (10) and (11). These are the Chern-Simons field equations coupled to matter field

by j0 = e[ψ†
aψa + ψ†

bψb] and j
i = eψ†σiψ, which are the conserved currents associated

to gauge symmetry (14). So that,

∂µj
µ = ∂0j

0 + ∂ij
i = 0 (15)

In particular, the field equations (9), (10) and (11) may be reduced to a single equation

κ

2
ǫναβFαβ = jν (16)

Thus, the equation (9) is the time component of this equation

κF12 = j0 (17)

Then, integrating over the entire plane, we obtain the important consequence that any
field configuration with charge Q =

∫

d2xj0 also carries magnetic flux Φ =
∫

Bd2x
[15, 16, 17]:

Φ =
1

κ
Q (18)

In addition, the equations (10) and (11) are the spatial components of (16),

ji = ǫijκEj (19)
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In this note we will show that the system (3) admit a static soliton solution carrying
magnetic flux and electric charge. In order to show this we consider the stationary
points of the action which for the static field configuration reads

S =

∫

d2x
(

κA0F12 − eA0(ψ
†
aψa + ψ†

bψb)− [−iψ†
a∂1ψb − ψ†

a∂2ψb + eA1ψ
†
aψb

−ieA2ψ
†
aψb − iψ†

b∂1ψa + ψ†
b∂2ψa + eA1ψ

†
bψa + ieA2ψ

†
bψa]

)

(20)

In view of Gauss law constraint (17), the action may be rewritten as

S = −
∫

d2x
(

− iψ†
a∂1ψb − ψ†

a∂2ψb + eA1ψ
†
aψb − ieA2ψ

†
aψb

−iψ†
b∂1ψa + ψ†

b∂2ψa + eA1ψ
†
bψa + ieA2ψ

†
bψa

)

= −
∫

d2x
(

ψ†
a[D1ψb − iD2ψb] + ψ†

b [D1ψa + iD2ψa]
)

(21)

To proceed, we can use the static version of equations (7) and (8), i.e.,

ψa =
−1

eA0
[D1ψb − iD2ψb] (22)

ψb =
−1

eA0
[D1ψa + iD2ψa] (23)

So, the equation (21) reads

S =

∫

d2x
1

eA0

(

[D1ψb − iD2ψb]
†[D1ψb − iD2ψb] + [D1ψa + iD2ψa]

†[D1ψa + iD2ψa]
)

=

∫

d2x
1

eA0

(

|D1ψb − iD2ψb|2 + |D1ψa + iD2ψa|2
)

(24)

Since, A0 is a Lagrange multiplier, which does not play any role in the search of static
solution, we can choose, without loss of generality, A0 > 0. Thus, the action (24) is
non-negative and bounded below by zero. This lower bound is saturated by solutions
to the first-order self-duality equations

(D1 − iD2)ψb = 0

(D1 + iD2)ψa = 0 (25)

Together with the Gauss law (17) these two equations compose the set of the field
equations whose solutions minimize the static action (20). In particular, an interesting
situation emerge when one of the spinor component is set to zero. In that case, the
set of equations reduces to the self-duality equations of the Schrödinger-Chern-Simons
model present in Ref.[10, 11],

(D1 + iD2)ψa = 0

κF12 = eψ†
aψa (26)
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with ψb = 0 or

(D1 − iD2)ψb = 0

κF12 = eψ†
bψb (27)

with ψa = 0. Both, (26) and (27) may be solved analytically. We can take the set (26).
To solve these equations is usual to decompose the scalar field ψa into its phase and
magnitude:

ψa = ρ
1

2 eiα (28)

where, ρ = ψ†
aψa. Then, multiplying the first of the self-duality equations (26) by iψ†

a

and its complex conjugate by −iψa we arrive to

iψ†
a(D1 + iD2)ψa − iψa[(D1 + iD2)ψa]

† = 2ieA2|ψa|2 − 2|ψa|2i∂2α+ i∂1|ψa|2 = 0 (29)

iψ†
a(D1 + iD2)ψa + iψa[(D1 + iD2)ψa]

† = 2ieA1|ψa|2 − 2|ψa|2i∂1α− i∂2|ψa|2 = 0 (30)

This, determines the gauge field

Ai =
1

2eρ

(

ǫij∂j(log ρ)− 2∂iα
)

(31)

everywhere away from the zeros of the scalar field. Thus, using (31) the second self-
duality equation of (26) reduces to a nonlinear elliptic equation for the scalar field
density ρ,

∇2 log ρ = −2e2

κ
ρ (32)

We can proceed in similar way and take the set (27). Then, we arrive to

∇2 log ρ =
2e2

κ
ρ (33)

These are elliptic equations, known as the Liouville equations and are exactly solvable,

ρ =
κ

e2
∇2 log

(

1 + |f |2
)

(34)

where f = f(z) is a holomorphic function of z = x1 + ix2. General radially symmetric

solutions may be obtained by taking f(z) =
(

z0
z

)N

. Then, we have

ρ =
4κN2

e2r20

(

r
r0

)2(N−1)

(

1 + ( r
r0
)2N

)2 (35)

This vanish as r → ∞ and is nonsingular at the origin for |N | ≥ 0 but for |N | > 0,

the vector potential behaves as Ai(r) ∼ −∂iα− 2(N − 1)ǫij
xj

r2
, which indicates that it
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Figure 1: Scalar field density ρ and self-dual field φ as a function of r/r0 for different values
of N and θ = 0.

has a singular contribution at r = 0. The singularity may be avoided if we choose the
phase of φ to be α = θ(N − 1). Then, the self-dual φ field is (see figure 1)

φ =

√
κ2N

er0

( ( r
r0
)N−1

1 + ( r
r0
)2N

)

e−i(N−1)θ (36)

Requiring that φ be single-valued we find that N must be an integer, and for ρ to decay
at infinity we require that N be positive.
To conclude it is interesting to comment that the solution (36) is the same as the
soliton solution discussed in Ref.[10, 11]. In fact, as we mentioned, the self-duality
equations (26) and (27) coincide with the self-duality equations of the Schrödinger-
Chern-Simons model present in Ref.[10, 11]. The reason for this lies in the fact that
the static Hamiltonian associated to the model (1) is

H =

∫

d2x
(

1
2m |Diψ|2 − g

2 |ψ|4
)

(37)

The static solutions, which are the stationary points of the Hamiltonian, may be found
in view of the Chern-Simons Gauss law B = e

κ
ρ and the identity

|Diψ|2 = |(D1 ± iD2)ψ|2 ∓ eB|ψ|2 ±mǫij∂iJj (38)

Then, (37) reads as

H =

∫

d2x
(

1
2m |(D1 ± iD2)ψ|2 ± ǫij

2 ∂iJj + [− g
2 ∓ e2

2mκ
]|ψ|4

)

(39)
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Here, the second term in (39) is a surface term. To see this, we can apply the Stokes’
theorem, then we have,

∫

d2xǫij∂iJj =

∮

|x|=∞
Jjdx

j (40)

where, Jj = − i
2m

(

φ∗Djφ−(Djφ)
∗φ

)

. The requirement that the energy be finite states

that the covariant derivative must vanish asymptotically. This fixes the behavior of
the field at infinity. In the case of a nontopological theory such as the Jackiw-Pi model
[10, 11], this implies the following boundary condition,

lim
r→∞

φ(x) = 0 (41)

whereas the gauge field, at infinity, is a pure gauge. Hence, Jj → 0 as x → ∞. Thus,
with the self-dual coupling

g = ∓ e2

mκ
(42)

and sufficiently well behaved fields so that the integral over all space of ǫij∂iJj vanishes,
the energy becomes

E =

∫

d2x 1
2m |(D1 ± iD2)ψ|2 (43)

If we compare this expression with (24) we note that they are very similar. So, the
fields that minimize the energy (43) are the same as minimize (24) and therefore obey
the equations (26) and (27). Thus, the identity (38) plays and important role in order
to connect the Dirac model with a non-relativistic model.
In summary, we show that the Dirac-Weyl field interacting with gauge fields governed
by Chern-Simons dynamics, support analytic static self-dual solutions. The solutions
that we found are the same as the solution supported by nonrelativistic matter inter-
acting with a Chern-Simons gauge fields. In addition, it well know [18]-[26] that in
the low energy electronic excitations of graphene, an expansion around any of the two
fermi points gives an effective Hamiltonian linear in momentum which reduces to the
massless Dirac equation in two dimensions derived from the Hamiltonian,

H = υF

∫

d2x
(

Ψ†σi∂iΨ
)

(44)

where υF = 8 × 105m/sec is the Fermi velocity. This Hamiltonian is associated to a
static field configuration and therefore it can be derived from a more general Hamilto-
nian for time dependent fields

H = υF

∫

d3x
(

−Ψ†σ0D0Ψ+Ψ†σiDiΨ
)

(45)

which is the Hamiltonian for the description of a graphene layer in presence of electric
and magnetic fields (see for instance [27, 28, 29, 30, 31, 32, 33, 34]).
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On the other hand, Chern-Simons term becomes important in the description of frac-
tional quantum Hall effect (FQHE) in graphene [35, 36, 37, 39, 40, 41, 42, 43]. A way
to understand the nature of these states is provided by the composite Fermion(CF)
theory [44] in which the state of the system is described in terms of CF quasiparti-
cles which correspond to electrons bound to an even number (2k) of vortices of flux
quantum Φ0 = hc

e
. Such a flux attachment can also be understood by carrying out

Chern-Simon (CS) transformation on the electron field operators, which leads to the
introduction of a topological CS vector potential a resulting in a CS magnetic field,
which is proportional to the electron density j0 = e[ψ†

aψa + ψ†
bψb] [45, 46]. In other

words, the dynamics of the magnetic field is dictated by the Chern-Simons Gauss law
(17). Thus, the Chern-Simons term is important because allows us to introduce a
general flux tied to the electrons, and then it has its own dynamics. In particular,
many works have been done in the study of graphene Dirac electrons interacting with
an external magnetic field [47]-[56]. In general numerical computation is required and
some simple cases for an electron in the presence magnetic field are solve analytically
[54, 56]. In this direction, we think that our result may be important because consti-
tutes an exact solution for the description of graphene Dirac electrons in a magnetic
field with its own gauge dynamics dictated by a Chern-Simons term.
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