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Abstract In this work we analyze a non-commutativity measure of quantum correla-
tions recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic
survey of a two-qubit system, we detected an undesirable behavior of such a measure
related to its representation-dependence. In the case of pure states, this dependence
manifests as a non-satisfactory entanglement measure whenever a representation other
than the Schmidt’s is used. In order to avoid this basis-dependence feature, we argue
that a minimization procedure over the set of all possible representations of the quan-
tum state is required. In the case of pure states, this minimization can be analytically
performed and the optimal basis turns out to be that of Schmidt’s. In addition, the
resulting measure inherits the main properties of Guo’s measure and, unlike the lat-
ter, it reduces to a legitimate entanglement measure in the case of pure states. Some
examples involving general mixed states are also analyzed considering such an opti-
mization. The results show that, in most cases of interest, the use of Guo’s measure
can result in an overestimation of quantum correlations. However, since Guo’s mea-
sure has the advantage of being easily computable, it might be used as a qualitative
estimator of the presence of quantum correlations.
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1 Introduction

Quantum information theory (QIT) is concerned with the use of quantum resources
to perform tasks of information processing which are either not feasible to be imple-
mented classically or can be performed with classical devices in a way much less
efficient. The fact that in most cases quantum protocols can outperform their classical
counterparts (if such a thing is feasible to be done) is generally attributed to the exis-
tence of quantum correlations (QCs) [1–6]. For a long time, QCs were associated with
the existence of entanglement in composite quantum systems. Besides, according to
Schrödinger himself, entanglement is “the characteristic trait of quantum mechanics”
[7,8] and has been extensively studied in connection with Bell’s inequalities [9]. On
one hand, entangled states violating Bell’s inequalities [9] contain ‘non-local’ fea-
tures which were initially considered as the necessary quantum resource to achieve a
computational speedup over the best classical algorithm [10,11]. On the other hand,
since (mixed) separable states do not violate Bell’s inequalities and can be prepared
by local operations and classical communication (LOCC), until very recently they
were considered as purely classical and, in consequence, useless for tasks of quantum
information processing. However, further research has provided a great amount of
evidence supporting the idea that this is not the case [12–18]. As a consequence, the
study of entanglement measures was extended in order to include the quantification
of more general quantum correlations [1,2]. One of the most widely used measure of
quantum correlations in bipartite systems is the so-called (standard) quantum discord
(QD) [19,20]. In few words, QD quantifies the discrepancy between the quantum ver-
sions of two classically equivalent expressions for mutual information. Even though,
from a conceptual point of view, QD is of relevance in assessing possible non-classical
resources for information processing, for a practical use it presents some drawbacks.
For example, at this moment, there is no straightforward criterion to verify the presence
of discord in a given general bipartite quantum state (i.e., a bipartite state belonging
to the product of two Hilbert spaces of arbitrary dimensions). As the evaluation of
QD involves an optimization procedure, analytical results are known only in some
particular cases [21–32]. Furthermore, in general, calculation of quantum discord is
NP-complete since the optimization procedure needs to be done sweeping a complete
set of measurements over one of the subsystems [33].

With the aim of finding a measure of QCs easier to calculate, several alternative
measures to QD have been proposed [34–39]. For example, we can mention discord-
like quantities [35], geometric measures to quantify QD [34,40], and a measure based
on Bures distance [37,38], among others. In the particular case of qubit–qudit states
it is worth mentioning that an interesting discord-type measure based on the quantum
uncertainty of local single observables, which can be (closed) analytically computed,
was introduced in [41]. However, in general, most of the alternative measures of QCs
(if not ill-defined) become difficult to calculate since they also involve an optimization
process either in a minimization or in a maximization scenario. Additionally, in some
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cases, undesired behaviors of the measures reduce the potential of their applicabil-
ity. Furthermore, the great number of measures currently found in literature makes
it difficult to progress in the study of their properties in order to assure they provide
trustful measures of QCs. Thus, at present, there is not a general agreement about
which measure of QCs is the most suitable to be used in a practical way in an arbitrary
composite quantum system. Hence, extreme caution should be exercised in devising
new practical methods to quantify QCs in order to avoid undesired behaviors and sub-
tleties in their properties. In summary, it seems that an examination of the properties of
any new promising measure of QCs should be carefully addressed. Following this last
direction, in this work we investigate various features of a non-commutativity measure
of QCs introduced by Guo in a recent work [42]. In that work, Guo introduced two
QCs measures in terms of the non-commutativity of some operators quantified by the
trace norm and the Hilbert–Schmidt norm. According to [42], the non-commutative
quantum discord (NCQD) measures can be computed directly for any arbitrary state
without requiring any previous optimization procedure, as is the case with usual dis-
cord. In this work we show that, indeed, the NCQD measures have the drawback of
depending upon the representation of the state and suggest a new measure to overcome
this undesirable feature.

This paper is organized as follows. In Sect. 2, we review the definition and main
properties of the NCQD measures. In Sect. 3, we discuss its representation-dependence
feature resorting to computational and Schmidt representations of pure states. We
also propose a new measure that is representation-independent and extends to the
general (mixed, d-dimensional) case. In Sect. 4, we calculate the new measure for
some typical examples, comparing it with NCQD measure introduced by Guo. Finally,
some conclusions are drawn in Sect. 5.

2 Non-commutativity measure of quantum correlations

Let us consider a bipartite system (A+ B) in an arbitrary quantum state ρ, defined on
the Hilbert space H = HA ⊗ HB . If {|i A〉} stands for an orthonormal basis of HA,
then ρ can be represented by

ρ =
∑

i, j

|i A〉〈 jA| ⊗ Bi j , (1)

where Bi j = TrA[(| jA〉〈i A| ⊗ IB)ρ] or, equivalently, Bi j = 〈i A|ρ| jA〉.
With the operators Bi j just defined, Guo [42] introduced two non-commutativity

measures as follows:

DG(ρ) :=
∑

�

||[Bi j , Bkl ]||Tr, (2)

and

D′
G(ρ) :=

∑

�

||[Bi j , Bkl ]||2, (3)
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where � represents the set of all the possible pairs (regardless of the order), and
|| · ||Tr and || · ||2 denote, respectively, the trace and the Hilbert–Schmidt norm, i.e.,
||A||Tr = Tr(

√
A†A) and ||A||2 = √

Tr(A†A).
Resorting to the fact that (usual) quantum discord D(ρ) vanishes if and only if

all the (B)-local operators Bi j are mutually commuting normal operators [34,43],
Guo proposes the non-commuting measures (2) and (3) as measures of quantum
discord. As explained in [42], DG(ρ) and D′

G(ρ) satisfy the following properties:
(i) DG(ρ) = D′

G(ρ) = 0 iff D(ρ) = 0; (ii) DG(ρ) and D′
G(ρ) are invari-

ant under local unitary operations, i.e., DG(ρ) = DG(UA ⊗ UBρ U †
A ⊗ U †

B) and

D′
G(ρ) = D′

G(UA ⊗ UBρ U †
A ⊗ U †

B), being UA and UB arbitrary unitary operators
in HA and HB , respectively. Unlike usual quantum discord and other measures of
non-classicality, according to Guo [42], the proposed measures are not based on mea-
surements performed on one of the subsystems and can be computed directly for any
arbitrary state without requiring any previous optimization procedure. Note, however,
that the Hilbert–Schmidt norm is easier to calculate (compared with the trace norm);
hence, from now on we will focus on the Hilbert–Schmidt norm measure, D′

G(ρ).

3 Pure states: representation-dependence of the non-commutativity
measure

From Eq. (1) it follows that the operators Bi j can be identified with blocks of the
matrix ρ. In a two-qubit system, for example,

ρ =
(
B00 B01
B10 B11

)
, (4)

where 0 and 1 denote each of the two (orthonormal) basis vectors {|i A〉}, put in cor-
respondence with the canonical basis |ε0〉 = (1, 0)T, and |ε1〉 = (0, 1)T. Now, let us
consider a two-qubit system in an arbitrary pure state

|ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, (5)

where a, b, c, and d are complex numbers that satisfy |a|2 + |b|2 + |c|2 + |d|2 = 1.
Thus, the density matrix ρ is given by Eq. (4), where

B00 =
(|a|2 ab∗
a∗b |b|2

)
, (6)

B01 =
(
ac∗ ad∗
bc∗ bd∗

)
, (7)

B10 =
(
a∗c b∗c
a∗d b∗d

)
, (8)
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and

B11 =
(|c|2 cd∗
c∗d |d|2

)
. (9)

After a direct calculation of the six commutators [B00, B01], [B00, B10], [B00, B11],
[B01, B10], [B01, B11], and [B10, B11], the measure D′

G(ρ) can be written as

D′
G(ρ) = C

[
1 + 1

2
√

2

(√
C2 + 4|(ρA)01|2 + 2|(ρA)01|

)]
, (10)

where ρA = TrBρ is the (reduced) density matrix corresponding to subsystem A.
Therefore, |(ρA)01| = |a∗c + b∗d| represents a measure of the coherence of ρA, and
C = 2|ad − bc| stands for Wootters’ concurrence [44] which is a measure of the
entanglement between A and B.

The fact that D′
G(ρ) depends upon a parameter related to ρA ensues from the fact

that ρ has been decomposed in the form (1), associated with the bipartition A|B. The
bipartition B|A corresponds to the decomposition [cf. Eq. (1)]

ρ =
∑

i, j

Ai j ⊗ |iB〉〈 jB |, (11)

where Ai j = TrB[(IA ⊗ | jB〉〈iB |)ρ] or, equivalently, Ai j = 〈iB |ρ| jB〉. If instead of
considering the bipartition A|B we consider the bipartition B|A, the term (ρA)01 in
Eq. (10) must be replaced by (ρB)01 = |a∗b+ c∗d|, i.e., the coherence of the reduced
density matrix ρB . This means that the correlation between A and B and the correlation
between B and A, as measured by D′

G(ρ), do not coincide in general. This is an
undesirable feature since, even though discord is known to be a non-symmetric measure
of quantum correlations, for pure states—as the one considered here—it should reduce
to an entanglement measure which should be symmetric under the exchange A ↔ B
(e.g., Wootters’ concurrence C). On the other hand, the coherence term present in
Eq. (10), unlike the concurrenceC , depends upon the specific representation ofρ. Thus,
D′

G(ρ) becomes representation-dependent, which is another undesirable property for
an entanglement measure. Therefore, we are led to conclude that for pure states D′

G(ρ)

does not reduce to a good entanglement measure (i.e., symmetric and representation-
independent). This fact puts at stake its adequacy when dealing with general (mixed)
states. In what follows we discuss how these disadvantages can be surmounted.

According to the aforementioned observations, it is precisely the coherence term
appearing in Eq. (10) what introduces the inconvenient properties in D′

G(ρ). Thus, as
a first step, we require that (ρA)01 and (ρB)01 shall reduce to zero for all ρ = ρ2. This
condition is met only when both ρA and ρB are both diagonal, which holds irrespective
of the state whenever |ψ〉 is decomposed into its Schmidt form

|ψ〉 =
∑

n=0,1

√
λn|vA

n 〉 ⊗ |uB
n 〉, (12)
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where λn stands for the eigenvalues of ρA and ρB , so that λ0 + λ1 = 1, and {|vA
n 〉},

{|uB
n 〉} are the corresponding (orthonormal) eigenvectors. Thus, the measure D′

G
reduces (in the Schmidt representation) to

D′
G(ρSch) = 2

√
λ0λ1 + √

2λ0λ1, (13)

in agreement with Guo’s result. Using the fact that C2 = 4λ0λ1, we get

D′
G(ρSch) = D′

G(ρ)|(ρA)01=0 = C

(
1 + 1

2
√

2
C

)
, (14)

as follows from Eq. (10) with (ρA)01 = 0. Thus, resorting to the Schmidt represen-
tation (the only one considered in [42]), we see that D′

G(ρ) reduces to a monotonic
function of concurrence—hence to a measure of entanglement—whose maximum
value is attained for maximally entangled states (i.e., C = 1). However, in any other
representation this ceases to be the case (of course, this is due to the coherences
aforementioned). In addition, it is straightforward to see that Eq. (10) (or the analo-
gous equation corresponding to the bipartition B|A) is minimized, with C fixed, for
(ρA)01 = 0 (or (ρB)01 = 0). This means that Eq. (10) attains its minimum (and
symmetric) value whenever ρ is expressed in its Schmidt representation, whence

D′
G(ρSch) = min D′

G(ρ), (15)

where the minimum is taken over all decompositions of |ψ〉. Consequently, the quantity

d ′(ρ) := min
R

D′
G(ρ), (16)

being R the set of all possible representations of ρ, constitutes a non-commutativity
measure that inherits the main properties of Guo’s measure D′

G but, unlike the lat-
ter, reduces to a legitimate entanglement measure for pure states. Notice that d ′(ρ)

applies for general (mixed and pure) states of bipartite systems of arbitrary dimen-
sions. However, this measure requires a minimization procedure—as is the case with
usual discord—which can be difficult to calculate for general mixed states. In the next
section we analyze some examples involving the evaluation of d ′(ρ) in the case of
mixed states.

In Fig. 1 we show the effect of the representation-dependence of D′
G. We generated

106 two-qubit random pure states distributed according to the Haar measure [45,46]
and computed D′

G(ρ) using both, the computational and the Schmidt representations.
We plotted D′

G as a function of the square of the concurrence C . Notice that, as
expected, the values obtained in the Schmidt representation (purple squares) are in all
cases lower than those corresponding (for the same state) to the computational repre-
sentation (orange dots). The maximum value of D′

G(ρSch) is 1.3535 and corresponds
to states with C = 1, though D′

G(ρComp) attains its maximum value (1.3964), i.e., not
for a maximally entangled state but for a state with concurrence C = 0.9725.
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Fig. 1 (Color online) Representation-dependence of D′
G(ρ) for 106 randomly generated two-qubit pure

states as a function of the square of the concurrence C . Orange symbols (circles) correspond to D′
G in the

computational representation, and purple symbols (squares) to the Schmidt basis. All plotted quantities are
dimensionless

Finally, notice that for states |ψ〉 maximally entangled, the reduced density matrices
ρA and ρB do coincide and the coherence terms reduce to zero. Hence, for maximally
entangled pure states any decomposition will display the same value of D′

G(ρ).

4 Representation-independent measure: some examples for mixed states

In Ref. [42], DG and D′
G were computed and compared with the usual discord for

several families of mixed states, namely Werner, isotropic, and Bell-diagonal states.
Here we will focus our discussion on general (mixed) states of two qubits. In what
follows, we briefly discuss how D′

G(ρ) depends upon the representation and compare
it with the measure d ′(ρ) introduced earlier in Sect. 3 [cf. Eq. (16)].

Let |i ′A〉 = UA|i A〉 be an arbitrary orthonormal basis of HA. Then, the state ρ can
also be represented as [cf. Eq. (1)]

ρ =
∑

i j

|i ′A〉〈 j ′A| ⊗ B ′
i j . (17)

In this new representation, the operators B ′
i j take the form

B ′
i j = TrA{(| j ′A〉〈i ′A| ⊗ IB)ρ}

= 〈i ′A|ρ| j ′A〉 = 〈i A|U †
Aρ UA| jA〉; (18)

hence, the B ′
i j can be identified with the block components of the matrix [cf. Eq. (4)]

U †
AρUA =

(
B ′

00 B ′
01

B ′
10 B ′

11

)
. (19)
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Fig. 2 (Color online) D′
G(ρ) in the computational basis (solid orange line), and d ′ (dashed purple line)

as a function of the parameter p for the state (20), with |ψ〉 = 1/
√

3(|00〉 + |01〉 + |10〉). The orange dot
represents the measure for the pure state in the Schmidt representation. The minimization was performed
over arbitrary representations of ρ associated with orthonormal local basis. Inset D′

G(ρ) for a Werner state,
i.e., the state given by Eq. (20) with |ψ〉 the Bell state β00 [see below Eq. (22)]. In this case the measure is
representation-independent. All plotted quantities are dimensionless

Now, with these primed operators we can compute D′
G in the new representation.

The optimization procedure in (16) is then reduced to search the minimum of D′
G over

the set of all possible basis of HA, that is, over all transformations belonging to SU (2)

[47].
In order to be more general than in [42] we will consider a mixed state ρ of the

form

ρ = (1 − p)
I

4
+ p|ψ〉〈ψ |, (20)

where |ψ〉 is any arbitrary pure state. If |ψ〉 corresponds to a Bell state, the state ρ

becomes symmetric under the interchange of the subsystems, the measure D′
G becomes

symmetric in both bipartitions (A|B and B|A), and also representation-independent
(see inset of Fig. 2). However, if we take for instance |ψ〉 = 1/

√
3(|00〉 + |01〉 +

|10〉), the measure becomes dependent upon the representation. In Fig. 2 we show
this fact explicitly by plotting D′

G as a function of p considering the computational
representation (solid curve), and the measure d ′ introduced in Eq. (16) (dashed curve).
As p goes from p = 0 to p = 1 [i.e., as the state (20) goes from being a maximally
mixed state to a pure state] the difference between D′

G and d ′ increases continuously.
At p = 1, d ′ reduces to D′

G(ρSch) (orange dot), i.e., to the measure considered in
Ref. [42] for pure states. Nevertheless, D′

G does not coincide with such a value, which
means that, unless the minimization in Eq. (16) is performed, the measure D′

G(ρ) will
in general exhibit discontinuities when a mixed state transforms into a pure one.
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Fig. 3 (Color online) The graphs pertain to the states given by Eqs. (21) and (22). a D′
G (solid orange line)

and d ′ (dotted blue line) as a function of p for ρ1. b D′
G (solid orange line) and d ′ (dotted purple line) as

a function of p for ρ2. All plotted quantities are dimensionless

As a second example we will compute d ′ for some of the Bell-diagonal states
analyzed in Ref. [42]. Specifically we will consider the states

ρ1 = p|β11〉〈β11| + 1 − p

2
(|β01〉〈β01| + |β00〉〈β00|), (21)

and
ρ2 = p|β11〉〈β11| + (1 − p)|β01〉〈β01|, (22)

where {|βab〉} are four Bell states |βab〉 ≡ 1√
2
[|0, b〉 + (−1)a |1, 1 ⊕ b〉].

In Fig. 3a, b we plotted D′
G in the computational representation as in Ref. [42],

and d ′ as a function of the parameter p for the states ρ1 and ρ2, respectively. For
both states the optimization was numerically performed on SU (2). Here, unlike the
previous example, in both cases D′

G and d ′ do coincide for p = 1, i.e., when the states
become pure states. Of course, this is so because for p = 1 both ρ1 and ρ2 reduce to a
maximally entangled pure states for which all representations give the same measure
(see last paragraph in Sect. 3). However, for intermediate values of p, D′

G(ρ1) and
D′

G(ρ2) overestimate the amount of QCs. For ρ1, the difference is quite significant
and the larger discrepancy is reached at p = 0.5. Thus, D′

G(ρ2) works as a tight upper
bound for d ′(ρ2) and at p = 0.5 both measures do coincide. This is so because for
p = 0.5 ρ2 is classically correlated (or zero discordant). Note that ρ2 becomes a pure
state also when p = 0. Although D′

G nearly coincides with d ′ for ρ2, our examples
show that the measure is still representation-dependent when arbitrary mixed states are
considered. At this point, it is important to realize that, given a state ρ represented in a
given fixed basis, the measure D′(ρ) will be invariant under local unitary operations.
However, given two different representations of the state ρ, the two values of D′(ρ)

will be in general different from each other.
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5 Concluding remarks

In this work, we analyzed the measure D′
G of quantum correlations recently proposed

by Guo [42]. The measure D′
G is based on the amount of non-commutativity quantified

by the Hilbert–Schmidt norm. Our results show that, in general, the measure D′
G

depends upon the representation of the state. First, we focused our study on pure
states and, by resorting to the computational representation, we showed that D′

G is
a function of both, Wootters’ concurrence C of the pure state and the coherence of
the reduced density matrix. In addition, due to this latter dependence, D′

G becomes
a representation-dependent quantity which, in most cases of interest, yields different
results when the bipartition A|B or B|A is considered. These are undesirable features
for any measure of QCs in pure states, since the measure does not reduce to a good
measure of entanglement. Based on this findings, in order to overcome this undesirable
behavior, we suggested an alternative measure d ′, which inherits the main properties of
Guo’s measure D′

G. The proposed measure d ′ involves a minimization procedure over
the set of all local basis that, in the case of pure states, can be analytically performed.
In that case, the optimal representation turns out to be that of Schmidt. In addition,
unlike D′

G, d ′ reduces to a legitimate entanglement measure in the case of pure states.
Next, we numerically computed the new measure d ′ for some typical arbitrary (mixed)
states and explicitly showed that also for mixed states D′

G is representation-dependent.
As a consequence, in most cases of interest, our results indicate that the use of D′

G can
result in an overestimation of quantum correlations. Nevertheless, regarding arbitrary
mixed states, it is worth to mention that the optimization procedure involved in the
calculation of d ′ can be difficult to perform. As a final comment, we would like to point
out that, since the NCQC measure introduced by Guo has the advantage of being easily
computable, it might be used as a qualitative estimator of the presence of quantum
correlations.
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