
1. Introduction

A polymer gel is an entangled network of physically

and/or chemically linked polymers immersed in a

liquid medium and trapped in a long lived metastable

state [1–5]. This so called gel state can be achieved

using simple model interactions provided that the

range of interaction is very small when compared

with the typical size of the interacting particles [6–

10]. The physical properties of the gel are interme-

diate between those of a solid and a liquid and there

is considerable interest on them due to their numer-

ous industrial, analytical and domestic applications

[11–13]. From a modeling point of view, the under-

standing of polymeric gels is challenging because of

several factors. The fact that the gel state is not a ther-

modynamic equilibrium imposes a degree of arbi-

trariness that calls for a compromising answer be-

tween what is computationally feasible and what

reproduces the known experimental features. The

large molecular weight of polymers has to be ac-

counted for by using long enough model chains.

This, in turn, opens a number of options for the pro-

tocol used to form the systems from initial condi-

tions that are perhaps unrepresentative of realistic

situations.

In this study we focus only on physical gels [14–16].

Namely, the interaction between the polymer mole-

cules is reversible as opposed to the formation of

chemical links between initially distinguishable mol-

ecules. This kind of systems, also referred to as ther-

moreversible gels, change from polymer solution

state to gel state when the temperature changes. There

are essentially two kinds of thermoresponsive gels:

those presenting a solution-to-gel transition when

temperature decreases [17–21] and those having an

inverse behavior, for example the PEG-PLGA block
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copolymers [22]. For the first case (solution at high

T and gel at low T), when a temperature quench is

applied to a polymer solution, the attractive interac-

tions between the molecules tend to induce a sepa-

ration into a polymer rich and a polymer poor phases

(or into a solid and a very dilute solution). On the

other hand, if the cooling is sufficiently fast, the

chains form entangled domains that induce a kinetic

frustration to the phase separation process. This lat-

ter situation eventually reaches a very slow kinetic

stage resulting in what we define as a gel.

Gels undergo extraordinarily large volume changes

as a reaction to different types of stimuli like changes

of temperature, pH and ionic concentration [23–26]

and this property is exploited for many applications

such as absorbent materials, separation agents, drug

delivery systems [27, 28] , polymer dosimetry [29],

actuators [30] and sensors [31] among many other.

The phenomenon of contraction or dilatation of poly-

mer gels induced by external stimuli can be used to

make controllable membranes, as is the case in gel

permeation chromatography [32]. Without going to

the particular factors that induce the changes of vol-

ume, it is clear that the size of the porous in a polymer

gel is a determining factor for many practical appli-

cations [33, 34].

Understanding the relation between the molecular

characteristic of the polymers and solvent type with

the structural properties of the resulting gel is a com-

plex task which has not been fully explored. In this

sense computer simulations can shed light on this

issue providing an important complement to exper-

imental work and analytical theories. There are sev-

eral computational works where the polymer gel

properties have been studied choosing different mo-

lecular models and using different simulation tech-

niques [35–38]. Most of them are related with the

study of fundamental aspects of network elasticity

and of phase transitions in polymeric gels.

Here we study the structure of physical polymer gels

modeled by simplified linear chain molecules sub-

ject to a strong and short-ranged interaction between

the constituent monomers. In particular, we study

what is the effect of the polymer concentration and

chain flexibility in the structure of the gels and the

typical size of the porous after long stabilization. Ad-

ditionally, we propose a simple Monte Carlo ap-

proach to calculate the size of the resulting cavities

in the gel.

2. Computational details

The study that we present here is based in molecular

dynamics (MD) simulations performed in the NVT

ensemble on a cubic cell using periodic boundary

conditions and model polymer molecules in an im-

plicit, continuous solvent. The polymer molecules

are described using a simple, generic model consist-

ing of a chain of N beads of mass m. All non-bonded

beads interact with a shifted Lennard-Jones potential

of the form (Equation (1)):

(1)

Here, r is the distance between beads, ε and σ control 
the strength and range of the interaction potential, 
and r0 is the shifting parameter that controls the size 
of the particles.This functional form allows for the 
control of the range of attraction of the interactions 
and the particle size in an independent manner. For 
the present case, we have used ε =1 kJ/mol, σ = 0.1 
nm and r0 = 1 nm. This choice was done to ensure a 
short attractive range for the bead’s non-bonded in-

teraction so that the formation of a percolated 
metastable cluster is achieved upon a sudden reduc-

tion of the temperature, as demonstrated in our previ-

ous publications for colloidal systems [9, 10].

The connectivity between neighboring beads is 
maintained using a bonding potential created by 
combining a finitely extensible nonlinear elastic 
(FENE) potential [39] and the repulsive part of UNB. 
Namely, UB(r) = UF(r) + UR(r) with (Equations (2) 
and (3)):

(2)

and

(3)

The parameters for Equation (2) are Kf =

30 kJ/mol/nm2 and rf = 1.5 nm. The rigidity of the

polymer chains is controlled using a harmonic angu-

lar potential UA(θ) = 1/2·Kθ·(θ – �)2 , where θ is the

angle between two consecutive bonds. By varying

the value of Kθ between 0 and 0.01 kJ/mol we obtain

a different persistence length for the model polymer

as shown below on Table 1.

All the simulations were carried out using the Gro-

macs package v.4.5.5 [40]. The convention used by
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Gromacs to define all the interaction parameters is

based on real physical units. Nevertheless, as it is cus-

tomary for studies that aim to find general relations

that are independent of particular chemical details

we prefer to use reduced units. For that purpose we

define the unit of length as r0 and then the correspon-

ding reduced variable is r* = r/r0. In other words, all

lengths are expressed as their ratio to r0 and therefore

they are dimensionless. All energies are measured in

terms of the Lennard-Jones parameter ε, and then the

reduced temperature is T* = kB·T/ε. Finally, the mass

of the beads is used to define the reduced time t* =

. Henceforth we will use exclusively re-

duced units and, for the sake of clarity, we will omit

the asterisks. The reduced parameters for the model

are as follow: σ = 0.1, Kf = 30 and rf = 1.5.

The leapfrog algorithm was used for the integration

of the dynamics equations, with a time-step 0.001.

A spherical cut-off at r = 7 was imposed to the non-

bonded interactions. The temperature of the system

was controlled using a V-rescale thermostat, with

time constant of 0.1.

The procedure that we followed to create the gel sys-

tems started with a high temperature simulation

(T = 3.33) in order to reach a randomized configu-

ration. Then, the formation of the gel starts by a sud-

den quenching to the target temperature. If the con-

centration is sufficiently high and the target temper-

ature sufficiently low, the system evolves to form a

percolated cluster that represents the metastable gel

structure. All gel simulations were based on chain

molecules having N = 500 beads. The majority of the

simulated systems contain M = 10 macromolecules in

the simulation box and in same cases we studied larg-

er systems with M = 100 chains. All simulations were

extended up to 20000 times units.

The rigidity of the polymer model is controlled by

the angular harmonic parameter Kθ. We carried out

simulations with five values of Kθ (0.0001, 0.0003,

0.001, 0.003 and 0.01). The persistence length λ for

the model, calculated under good solvent conditions

at T = 0.83, follows a simple linear relation with the

harmonic angular constant. The regression line be-

tween λ and Kθ, which has a correlation coefficient

of 0.999, yields (Equation (4)):

λ = 4499Kθ + 0.8568 (4)

Then, it is equivalent to describe the rigidity of the

chains by Kθ or λ. We opted to present all the results

in terms of Kθ. Our study also include four different

values for the polymer concentrations, ρ = 0.01,

0.02, 0.1 and 0.2; and three different target temper-

atures T = 0.083, 0.141 and 0.208. For M = 10 the four

densities are obtained with simulation cells of size

L = 28.0, 35.5, 60.7 and 76.5. For M = 100, the study

was performed only for ρ = 0.02 with a simulation

box of size L = 130.7.

3. Results and discussion

In order to understand the model polymers and how

they respond to temperature changes we studied the

time average squared radius of gyration, Rg
2, of iso-

lated fully flexible (Kθ = 0) chains as a function of

the number of beads N. The interaction between non-

bonded beads is short-ranged and therefore the tran-

sition between good and bad solvent conditions is

very abrupt. For large enough T, the chains behave

as self avoiding walks with the corresponding Flory

exponent ν –~ 0.6. For T ≤ 0.45 the squared radius of

gyration of the chains sharply decreases. The aver-

age equilibrium thermodynamics of the system is

well described by direct MD simulations only if the

temperature is high enough to overcome the trapping

in particular configurations of very low potential

/ /t r m0 fR W
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Table 1. Results of cavity size of all simulations of this work.

In cases of Kθ = 0.001 and 0.01 for M = 10 and T =

0.083, there are three numbers inside the cell, cor-

responding to the three different trajectories

*System does not form a gel and phase separation is observed

Kθ ρ

RM

M = 10 100

T = 0.083 0.141 0.208 0.083

0.0001

0.2 1.76 2.00 2.91

14.03

0.1 3.33 3.77 4.98

0.02 13.96 17.16 *

0.01 26.85 * *

0.0003

0.2 1.53

0.1 3.10

0.02 11.32

0.01 22.98

0.001

0.2 1.44 1.45 1.40 1.62 2.16

9.92

0.1 2.61 2.49 2.56 3.29 4.00

0.02 10.21 9.84 9.45 13.09 13.45

0.01 18.08 19.13 17.53 18.92 20.50

0.003

0.2 1.30

0.1 2.28

0.02 7.74

0.01 12.23

0.01

0.2 1.17 1.14 1.14 1.34 1.42

6.63

0.1 2.12 2.04 2.02 2.32 2.65

0.02 6.53 6.68 6.59 7.64 9.31

0.01 11.27 10.53 11.13 13.31 15.82



energy. Therefore for low temperatures the Rg
2 meas-

ured in an individual simulation does not correspond

to a real equilibrium quantity but to a particular

trapped state. This problem can be easily overcame

(for the single chain) by performing a replica ex-

change MD simulation study. The results are pre-

sented in Figure 1 for direct and replica exchange

simulations [41]. The transition between the swollen

and globular regimes occurs at 0.25 < T < 0.5. Analy-

sis of the dependency of Rg
2 vs. N reveals that the Θ

temperature for the fully flexible model is Θ = 0.35.

Therefore, for T > 0.5 the system is in the good

solvent, high temperature regime. For T < 0.25 the

system is in the globular, low temperature regime.

All simulations that we have performed for the gel

systems are at temperatures smaller than 0.21, which

are well in the globular region of the isolated chain

response and therefore the finite concentration sim-

ulations evolve toward an entangled, kinetically

trapped, metastable state.

The most straightforward analysis of the gelation

process can be done by monitoring the potential en-

ergy associated to the non-bonded interactions,

UNB, which directly reflects the time evolution of
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Figure 1. a) Mean square radius of gyration for fully flexible model polymer chains with N = 25 (black), 50 (red), 100 (green),

200 (blue) and 500 (magenta) beads. The open symbols connected with dashed lines correspond to results obtained

with simple MD simulations, while the filled symbols are obtained from replica exchange MD simulations in a

single run spanning all displayed temperatures. b) Rg
2 vs. N for good solvent conditions (orange, T = 0.83) and

nearly conditions (dark green, T = 0.35). The fitted straight lines represent a Flory exponent of 0.604 and 0.517 re-

spectively. The regressions' correlation coefficient are larger than 0.9 in both cases.

Figure 2. Time evolution of the non-bonding interaction for 36 simulated trajectories at T = 0.083, for N = 500 and M = 10.

The panels a), b), c), d) and e) correspond to Kθ = 0.0001, 0.0003, 0.001, 0.003 and 0.01, respectively. The different

colors represent different densities ρ = 0.2 (black), 0.1 (red), 0.02 (green) and 0.01 (blue). In the panels c) and e)

there are three curves for each density corresponding to the trajectories started with three different initial config-

urations, although in some cases the overlapping of the curves prevent the distinction between the different cases.



the contacts developing between different beads.

This is shown on Figure 2 for the four different den-

sities and five different angular potentials. These

quenching simulations correspond to a target temper-

ature of 0.083. All curves show the same qualitative

pattern that consists of an initial fast decrease repre-

senting the formation of physical links between

neighboring chains, followed by a slow evolution.

After the initial rearrangement of the polymers the

dynamics slow down and is reflected by the slope of

the potential energy curve that decreases with in-

creasing time. The final value of UNB becomes larger

as the harmonic angular constant Kθ increases.

Therefore, it could be that the percolated structure

obtained with flexible polymer has larger cavities

than those of the semi-flexible chains. Namely, the

possibility of easy bending allows for the association

of many chains in thick threads, therefore the num-

ber of threads in the system is small and that results

in large free spaces between them. This observation

can be quantitatively confirmed by measuring the

size of the resulting cavities, as explained below.

For two Kθ values (0.001 and 0.01) we have simu-

lated three trajectories starting from a different initial

condition, in order to sample different routes for the

gelation process. For the lower value of Kθ we observe

a smaller dispersion between the equivalent curves

than for the less flexible case, although three curves

are perhaps insufficient to draw a solid conclusion.

Nevertheless, it is likely that the competition be-

tween the non-bonding and bending interactions is

more important to determine the system evolution

for the molecules with longer persistence length.

A series of snapshots exemplifying a system as it

evolves is displayed on Figure 3. The system re-

quires approximately 1000 time units in order to reach

a conformation that remains essentially unchanged

during the rest of the trajectory. For the represented

case, which corresponds to Kθ = 0.0003 and ρ = 0.02,

one can clearly observe the association between dif-

ferent chains. The conformation reached at the end

of the simulation runs, i.e. for t = 20000, for all the

different Kθ and for ρ = 0.01 are represented in Fig-

ure 4. In these snapshots it is possible to appreciate

the qualitative difference emerging as the chains be-

come less flexible. The polymer network covers more

uniformly the space for the higher values of Kθ leav-

ing a gel with smaller cavities.

The size of the cavities can be determined by a Monte

Carlo procedure based on moving a test sphere in the

final configuration of each simulation. The method

consists of the following steps:
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Figure 3. Snapshots corresponding to N = 500, M = 10, T = 0.083 and different times during the simulation corresponding to

Kθ = 0.0003 and ρ = 0.02. From a) to d): t = 2, t = 20,t = 200 and t = 2000. The evolution after the last frame is

minimal. The simulation box is represented by the thin white square that frames the individual polymer chains that

are distinguished by different colors. A partial view of the image system is represented displaying the polymers in

gray.

Figure 4. Final configurations corresponding to Kθ = 0.0001, 0.0003, 0.001, 0.003 and 0.01 (a) to e)). Different chains are

represented in different colors. The density is ρ = 0.01 and the target temperature T = 0.083.



1. Define the radius R of the test sphere.

2. Select a randomly chosen trial initial position for

the test sphere in the simulation box. Check the

overlap of the sphere with the gel, using a critical

distance R + r0/2 + σ. Note that r0/2 + σ is an ap-

proximation for the bead’s radius. In case of over-

lap, select a new position and check again for

overlap. Continue until a position with no overlap

is obtained. The selected coordinates are r1 =

(x1, y1, z1). Set i = 1.

3. Generate a random displacement δ = (δx, δy, δz)

and test rt = ri + δ for overlap. If there is no over-

lap: define ri+1 = rt and i = i + 1. If there is over-

lap: define ri+1 = ri and i = i + 1.

4. Repeat step 3.

This procedure generates a quasi diffusive process

for the test sphere. Generating many initial trial po-

sitions the method is able to average the whole struc-

ture of the system. By plotting the mean square dis-

placement vs. the Monte Carlo step i we can com-

pute an average effective diffusion constant D that

decreases in value as the radius R of the test sphere

is increased. For all the final configurations we ap-

plied this method using 1000 initial positions, and

evolved each one of them for 50 000 steps. In Fig-

ure 5 we show D as a function of R for all the simu-

lated systems. In order to determine a quantitative

value for the largest size RM of the cavities we ex-

trapolate the final portion of the curves to determine

the intersection with the R axis (D = 0). The results

are summarized in Table 1 and plotted in Figure 6

using a double logarithmic scale. The dependency of

RM with the polymer concentration and angular

rigidity constant can be fitted and is very well rep-

resented by the Equation (5):

lnRM = – 0.1427·lnKθ – 0.8264·lnρ – 1.9527 (5)

Equation (5) shows that increasing the chain bending

constant the maximum cavity size decreases follow-

ing a weak power law. The relation with the polymer

concentration is also a power law, but with a stronger

dependency.

We continue our analysis by studying the effect of a

different target temperature, in particular increasing

the temperature closer to 0.25, the upper bound of

the globular regime (see Figure 1). These new cases

include T = 0.141 and 0.208, Kθ = 0.0001, 0.001 and

0.01 and all the previously studied densities. In some

cases, which correspond to the most flexible chains

with Kθ = 0.0001, we observed that resulting

structure obtained after the simulation has lost the

connectivity in one Cartesian direction, implying the

triggering of a phase separation process that would

prevent the formation of the gel. All these anomalous

cases are noted with an asterisk in Table 1. A simple

visual inspection of the remaining cases that do show

the formation of a gel reveals that the size of the cav-

ities slightly increases with increasing target temper-

ature. The larger cavity size for warmer temperature

can be explained for the fact that the polymers are

allowed to flow to get more links until the kinetic

frustration occurs, resulting in a more porous struc-

ture. Correspondingly, the potential energy reached at

the end of the trajectory is smaller for the higher tem-

perature cases. The quantitative values for the result-

ing cavity size RM is included in fourth and fifth

columns of Table 1.

It could be argued, by comparing the size of the sim-

ulation box with that of the constituent polymer
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Figure 5. D as a function of R (see the explanation in the

text). Each panel corresponds to different rigidi-

ties, Kθ = 0.0001 (a), 0.0003 (b), 0.001 (c), 0.003 (d)

and 0.01 (e). Each color corresponds to different

densities, ρ = 0.2 (black), 0.1 (red), 0.02 (green)

and 0.01 (blue).



chains, that there could be an important effect of the

size of the simulation cell in the structure of the gels.

To investigate this issue, we have carried out extra

simulation runs with a system ten times larger than

the previous ones. Namely, in these new simulations

we represent the system using M = 100 polymer

chains of N = 500 monomers each. We limit this study

to only three representative cases with Kθ = 0.0001,

0.001 and 0.01 with ρ = 0.02 and T = 0.083. In Fig-

ure 7 we show the final conformations of these three

new cases along with previous corresponding results

obtained with the smaller simulation cell. The simil-

itude between the small and large system can be

clearly appreciated. Moreover, the quantitative cav-

ity size analysis included in Table 1 confirms that the

small system is indeed a good representation that

captures sufficiently well the conformational com-

plexity of the polymeric gels.

4. Conclusions

In summary, we have performed a molecular dynam-

ics simulation study of the gelation process starting

from a hight temperature polymer solution. We stud-

ied the effect of polymer density, persistence length

of the individual chains and quenching temperature.

We also investigated the appropriateness of our sim-

ulation system by performing a few test cases using

much larger simulation cells. We have characterized

the gel porosity using a single parameter and we have

investigated its dependency with the three model

parameters. The inverse relation of the cavity size

RM with the density ρ is expected assuming a uni-

form expansion of the system. The exact relation that

we found is a power law dependence RM ~ ρ–0.83.

The dependence of RM with the chain rigidity can be

rationalized in terms of the difficulty for the poly-

mers to bend in order to make bundles as Kθ increas-

es. This results in a net effect of the polymer cover-

ing the space in a more homogeneous way as the

rigidity increases, and consequently leaving an intri-

cate tunnel network. In order to achieve a more ho-

mogeneous space covering with the same number of

chains, it is necessary to have less links between the

different molecules. Nevertheless, this effect follows

a weak power law RM ~ Kθ
–0.14. The quenching tem-

perature also affects the size of the resulting structure

by inducing larger pores for higher temperatures, pro-

vided that the system does not start a phase separation
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Figure 6. Cavity size vs. system density and rigidity parameter. a) RM vs Kθ. b) RM vs ρ. Different color of the symbols cor-

respond to different values of ρ (black: 0.2, red: 0.1, green: 0.02 and blue: 0.01). Different symbols correspond to

different values of Kθ (solid square: 0.0001, open square: 0.0003, solid circle: 0.001, open circle: 0.003 and triangle

up: 0.01). For the cases Kθ = 0.001 and 0.01 the point showed is the average of RM of the three trajectories. The

segmented straight lines are result of a least square fitting of data.



process. As stated in the Introduction, the character-

ization of the porosity in gels is important for many

applications. This paper is a first step in our long

term goal of having a comprehensive picture relating

polymer properties and the resulting gel structure.
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