
Physica A 488 (2017) 162–176

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Comparison between different adsorption–desorption
kinetics schemes in two dimensional lattice gas
V.J. Huespe b, R.E. Belardinelli a,c, V.D. Pereyra c, S.J. Manzi a,c,*
a Instituto de Física Aplicada (INFAP) - CONICET, Argentina
b Facultad de Ingeniería DETI I, Universidad Nacional de Cuyo, Mendoza, Argentina
c Departamento de Física, Universidad Nacional de San Luis, CONICET, Chacabuco 917, 5700 San Luis, Argentina

h i g h l i g h t s

• The influence of the chosen dynamics on the observables obtained from the kinetic lattice gas model is analyzed.
• It is shown that the behavior of the observables depends not only on the lateral interaction, but also on the arbitrarily chosen dynamics.
• Sticking coefficient and TPD spectra are obtained by kinetic Monte Carlo simulation.
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a b s t r a c t

Monte Carlo simulation is used to study the adsorption–desorption kinetics in the frame-
work of the kinetic lattice-gas model. Three schemes of the so-called hard dynamics and
five schemes of the so called soft dynamics were used for this purpose. It is observed
that for the hard dynamic schemes, the equilibrium and non-equilibrium observable, such
as adsorption isotherms, sticking coefficients, and thermal desorption spectra, have a
normal or physical sustainable behavior. While for the soft dynamics schemes, with the
exception of the transition state theory, the equilibrium and non-equilibrium observables
have several problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Basic research in surface science and interface is highly interdisciplinary, covering the fields of physics, chemistry,
biophysics, geographic, atmospheric and environmental sciences, materials science, chemical engineering, among others,
specifically the kinetic behavior of the gas–solid interfaces is generally the phenomenon of interest in surface science. The
knowledge of the observable behavior, such as sticking coefficient and thermal programmed desorption spectra (TPD), is a
particular topic in this area. It is well known that the Arrhenius parameters of the desorption rate constant and the sticking
coefficient to be dependent on coverage even in the case of monocrystalline surfaces [1–10]. The coverage dependence of
the activation energy for desorption and sticking coefficient is usually attributed to lateral interactions between adsorbed
particles or also explained by interactions via precursor states. The coverage dependence of the pre-exponential factor for
desorption [9,11] is other interesting problem which not completely understood so far.

The aim of the present paper is to study the influence of different dynamic schemes in the behavior of the adsorption–
desorption kinetics in a two-dimensional lattice gas model. Monte Carlo simulations are used to obtain and to analyze the
sticking coefficients and TPD spectra which have different behaviors depending on the particular dynamic scheme used.
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The outline of this work is as follows: In Section 2 the definition of the model and different observable are introduced;
In Section 3, the dynamic schemes are introduced and the rate equations which describe the adsorption and desorption
processes are derived. In Section 4, the results are presented anddiscussed. Finally, the conclusions are presented in Section 5.

2. Observables: sticking coefficient and TPD

The theory of the adsorption–desorption kinetics on homogeneous surfaces is by now well understood. One of the
methods used in analyzing the problem is the kinetic lattice gas model (KLGM) applied to the adsorbed layer. This method
is based on the approximation of the master equation. In the KLGM, adsorption, desorption and diffusion are introduced as
Markovian processes through transition probabilities, which must satisfy the detailed balance principle [12–15].

Assuming that the system can be divided into cells, labeled i, for which one introduces microscopic variables ni,j = 1 or 0
depending whether cell i is occupied by an adsorbed gas particle or not. To introduce the dynamics of the system one write
a model Hamiltonian

H = Es
∑
i,j

ni,j + V
∑
nn

ni,jnk,l. (1)

The first sum runs over all sites, while the second sum runs over all site pairs whose sites are nearest neighbors (nn). Here
Es is a single particle adsorption energy and V is the two particle interaction between nearest neighbor [16,17].

To describe the temporal behavior of the system, a function P(n, t) which gives the probability that a given microscopic
configuration n = {n1, n2, . . . , nM} exists at time t is introduced, where M is the total number of adsorption sites on the
surface. This probability satisfies a master equation:

dP (n; t)
dt

=

∑
n′

[
W
(
n;n′

)
P
(
n′

; t
)
− W

(
n′

;n
)
P (n; t)

]
, (2)

where W
(
n′

;n
)
is the transition probability that the microstate n changes into n′ per unit time. It satisfies the principle of

detailed balance (PDB)

W
(
n;n′

)
P0
(
n′

; t
)

= W
(
n′

;n
)
P0 (n; t) . (3)

P0 denotes the equilibrium probability.
Usually, the procedure introduced by Glauber is followed, and guesses of an appropriate form for W

(
n′

;n
)
are made.

For a two-dimensional lattice gas with nearest-neighbor interactions where only adsorption and desorption processes are
taken into account, the transition probability can be written as

Wad−des
(
n′

;n
)

=

∑
{i,j}

{wa
(
1 − ni,j

)
[A0 + A1

(
ni−1,j + ni+1,j + ni,j−1 + ni,j+1

)
+ A2(ni−1,jni+1,j + ni−1,jni,j−1 + ni−1,jni,j+1 + ni+1,jni,j−1 + ni+1,jni,j+1

+ni,j− 1ni,j+1) + A3(ni−1,jni+1,jni,j−1 + ni−1,jni+1,jni,j+1

+ ni−1,jni,j−1ni,j+1 + ni+1,jni,j−1ni,j+1) + A4ni−1,jni+1,jni,j−1ni,j+1]

+ wdni,j[D0 + D1
(
ni−1,j + ni+1,j + ni,j−1 + ni,j+1

)
+D2(ni−1,jni+1,j + ni−1,jni,j−1 + ni−1,jni,j+1 + ni+1,jni,j−1 + ni+1,jni,j+1

+ni,j− 1ni,j+1) + D3(ni−1,jni+1,jni,j−1 + ni−1,jni+1,jni,j+1

+ ni−1,jni,j−1ni,j+1 + ni+1,jni,j−1ni,j+1) + D4ni−1,jni+1,jni,j−1ni,j+1]}

× δ
(
n′

i,j, 1 − ni,j
) ∏

{l,m}̸={i,j}

δ
(
nl,m, n′

i,j

)
. (4)

With this, adsorption into site (i, j) occurs if initially ni,j = 0, with a rate controlled by prospective neighbors if Ai ̸= 0.
The Kronecker delta for sites (l,m) ̸= (i, j) excludes multiple transitions.

The PDB imposes the next set of restrictions on the coefficients Ai and Di [16–18]

wa (A0) = wd (D0) e−βEs , (5)

wa (A0 + A1) = wd (D0 + D1) e−β(Es+V ), (6)

wa (A0 + 2A1 + A2) = wd (D0 + 2D1 + D2) e−β(Es+2V ), (7)

wa (A0 + 3A1 + 3A2 + A3) = wd (D0 + 3D1 + 3D2 + D3) e−β(Es+3V ), (8)

wa (A0 + 4A1 + 6A2 + 4A3 + A4) = wd (D0 + 4D1 + 6D2 + 4D3 + D4) e−β(Es+4V ), (9)

β = 1/kBT , with kB the Boltzmann’s constant. wa and wd contain the information about the energy exchange with the
solid in the adsorption and desorption processes [16]. PDB provides only half the number of relations to fix these unknown
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coefficients in the transition probabilities. Again, the static (lattice-gas) Hamiltonian cannot completely dictate the kind
of kinetics possible in the system. As it is pointed out in Refs. [16,17,19–21], any functional relation between the Ai and
Di coefficients must be postulated ad hoc or calculated from a microscopic Hamiltonian that accounts for coupling of the
adsorbate to the lattice or electronic degrees of freedom of the substrate. In addition to the PDB, expressions in parentheses
of Eqs. (5)–(9) must be greater than zero [17] in order for the dynamic to yield physically correct results. The coverage in
KLGM is defined as

θ (t) = ⟨N⟩ =
1
M

∑
s

∑
n

nsP (n; t) , (10)

where the first sum runs over all (M) sites of the lattice. Considering Eq. (1), themotion equation for coverage can be written
as [22–27]:

dθ (t)
dt

= wa

[
A0 ⟨E⟩ + 4A1

⟨
N
E

⟩
+ 6A2

⟨
N

N E

⟩
+ 4A3

⟨N
E N
N

⟩
+ A4

⟨ N
N E N

N

⟩]

− wd

[
D0 ⟨N⟩ + 4D1

⟨
N
N

⟩
+ 4D2

⟨
N

N N

⟩
+ 4D3

⟨N
N N
N

⟩
+ D4

⟨ N
N N N

N

⟩]
. (11)

⟨
N
E

⟩
denotes the probability of finding in the lattice the correlation where a site empty have their upper site occupied, and so

on with other correlations. After straightforward calculations, this equation can be rewritten as:

dθ (t)
dt

= wa

[
wa,0

⟨ E
E E E

E

⟩
+ 4wa,1

⟨ E
N E E

E

⟩
+ 6wa,2

⟨ N
N E E

E

⟩
+ 4wa,3

⟨ N
N E N

E

⟩

+ wa,4

⟨ N
N E N

N

⟩]
− wd

[
wd,0

⟨ E
E N E

E

⟩
+ 4wd,1

⟨ E
N N E

E

⟩

+ 6wd,2

⟨ N
N N E

E

⟩
+ 4wd,3

⟨ N
N N N

E

⟩
+ wd,4

⟨ N
N N N

N

⟩]
, (12)

where

A0 = wa,0, (13)

A0 + A1 = wa,1, (14)

A0 + 2A1 + A2 = wa,2, (15)

A0 + 3A1 + 3A2 + A3 = wa,3, (16)

A0 + 4A1 + 6A2 + 4A3 + A4 = wa,4, (17)

D0 = wd,0, (18)

D0 + D1 = wd,1, (19)

D0 + 2D1 + D2 = wd,2, (20)

D0 + 3D1 + 3D2 + D3 = wd,3, (21)

D0 + 4D1 + 6D2 + 4D3 + D4 = wd,4. (22)

wa,i
(
wd,i

)
corresponding to the adsorption (desorption) probability of a particle in a particular site of the lattice which have

their i nearest neighbor sites occupied.

2.1. Sticking coefficient

Alternatively to themaster equation treatment, the rate equation for coverage can bewritten through of the phenomeno-
logical formulation, as a difference between adsorption and desorption terms:

dθ
dt

= Ra − Rd. (23)
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The adsorption term can be specified as a product of the particles flow that reaches the surface from gas phase with
pressure P and temperature T , hitting the area as of an adsorption cell, and adsorbing with a probability equal to S (θ, T ),
i.e.:

Ra = S (θ, T )
asPλ

h
. (24)

S (θ, T ) is called the sticking coefficient [16,17], λ is the thermal wavelength, and h is the Planck’s constant. Sticking
coefficient cannot be obtained by thermodynamic arguments andmust be calculated fromamicroscopic theory or postulated
from a phenomenological approach based on experimental evidence for a particular system.

Considering that wa = wd = w0, and by comparison with the phenomenological expression for adsorption [28], one can
identify it as

w0 = S0 (T )
asPλ

h
, (25)

where S0 (T ) is the temperature-dependent sticking coefficient at zero coverage.
From the rate equation for coverage (Eq. (12)), the sticking coefficient in a square latticewith nearest neighbor interaction

is [16,17,29,30]:

S (θ, T ) = A0

⟨ E
E E E

E

⟩
+ 4 (A0 + A1)

⟨ E
N E E

E

⟩
+ 6 (A0 + 2A1 + A2)

⟨ N
N E E

E

⟩

+ 4 (A0 + 3A1 + 3A2 + A3)

⟨ N
N E N

E

⟩
+ (A0 + 4A1 + 6A2 + 4A3 + A4)

⟨ N
N E N

N

⟩
. (26)

2.2. Thermal programmed desorption spectra

Thermal desorption is one of the most important experimental techniques to study the properties of the adsorbed layer
on solid surfaces through the determination of kinetic and thermodynamic parameters of the desorption process. Analyzes
of this type provide very useful information for understanding the mechanisms involved in the processes occurring in the
system, when the spectra are analyzed using appropriate models. This can be done by simulation techniques and different
kinetic Monte Carlo approaches, which have proven to give satisfactory results in the interpretation of thermal desorption
experiments on surfaces [6,24,31].

Thermal desorption can be studied from the kinetic equations, annulling the adsorption process and letting the system
evolve. Thus it is possible to change surface coverage versus time. Considering a dependence between time and temperature,
it is possible to obtain desorption spectra depending on the temperature. When the proposed dependence is linear, the
proportionality constant is called heating rate. In this paper two cases of thermal desorption, depending on whether the
adsorbate remainsmobile or immobile, are going to be studied. For mobile adsorbate, it is considered that during desorption
the diffusion process is faster than the other processes involved. Under this condition, the adsorbate remain in a state of
quasi-equilibrium during desorption [4].

For a mobile TPD, it should be allowed that the system is always in equilibrium. In general, it is assumed that the
desorption is an activated process.

3. Dynamic schemes

The choice of dynamic scheme in the description of surface processes is very important. Such schemes can be classified
into non-conservative dynamic or soft (soft dynamic), in which the transition probabilities can be factored into a dependent
term of the energies of lateral interaction and other energy-dependent field and conservative dynamic or hard (hard
dynamic) where such factorization is not possible. For calculating sticking coefficient and TPD, it is imperative to know
the adsorption (Ai) and desorption (Di) coefficients.

3.1. Soft dynamics

3.1.1. Interaction kinetics
This scheme was introduced by Payne and Kreuzer [12,16,20,21], assuming a linear relation between the adsorption and

desorption coefficients:
Ai

A0
= γ

Di

D0
, (27)

where γ is a proportional coefficient, and usually A0 = 1. The PDB imposes that the adsorption and desorption coefficients
for two dimensional lattice gas are given by

A1 = γ

(
eβV

− 1
1 − γ eβV

)
, (28)
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A2 = γ

(
e2βV − 1
1 − γ e2βV

)
− 2A1, (29)

A3 = γ

(
e3βV − 1
1 − γ e3βV

)
− 3A1 − 3A2, (30)

A4 = γ

(
e4βV − 1
1 − γ e4βV

)
− 4A1 − 6A2 − 4A3, (31)

D0 = eβEs , (32)

D1 = D0

(
eβV

− 1
1 − γ eβV

)
, (33)

D2 = D0

(
e2βV − 1
1 − γ e2βV

)
− 2D1, (34)

D3 = D0

(
e3βV − 1
1 − γ e3βV

)
− 3D1 − 3D2, (35)

D4 = D0

(
e4βV − 1
1 − γ e4βV

)
− 4D1 − 6D2 − 4D3. (36)

3.1.2. Transition state theory (TST)
The TST provides a way to obtain the constant rates of the involved processes through the knowledge of the appropriate

kinetic equations [17,18,32–37]. For a two dimensional KLGM with nearest neighbor lateral interaction, the corresponding
adsorption and desorption coefficients are given by:

A0 = e−β

(
Es
2 +ϵ∗

0

)
, (37)

A1 = e−β
Es
2

(
e−βϵ∗

1 − e−βϵ∗
0

)
, (38)

A2 = e−β
Es
2

(
e−βϵ∗

2 − 2e−βϵ∗
1 + e−βϵ∗

0

)
, (39)

A3 = e−β
Es
2

(
e−βϵ∗

3 − 3e−βϵ∗
2 − 3e−βϵ∗

1 + e−βϵ∗
0

)
, (40)

A4 = e−β
Es
2

(
e−βϵ∗

4 − 4e−βϵ∗
3 − 6e−βϵ∗

2 − 4e−βϵ∗
1 + e−βϵ∗

0

)
, (41)

D0 = eβ

(
Es
2 −(ϵ∗

0−ϵ0)
)
, (42)

D1 = eβ
Es
2

(
e−β(ϵ∗

1−ϵ1) − e−β(ϵ∗
0−ϵ0)

)
, (43)

D2 = eβ
Es
2

(
e−β(ϵ∗

2−ϵ2) − 2e−β(ϵ∗
1−ϵ1) + e−β(ϵ∗

0−ϵ0)
)

, (44)

D3 = eβ
Es
2

(
e−β(ϵ∗

3−ϵ3) − 3e−β(ϵ∗
2−ϵ2) − 3e−β(ϵ∗

1−ϵ1) + e−β(ϵ∗
0−ϵ0)

)
, (45)

D4 = eβ
Es
2

(
e−β(ϵ∗

4−ϵ4) − 4e−β(ϵ∗
3−ϵ3) − 6e−β(ϵ∗

2−ϵ2) − 4e−β(ϵ∗
1−ϵ1) + e−β(ϵ∗

0−ϵ0)
)

. (46)

where ϵi and ϵ∗

i are the lateral interactions (with i first neighbors occupied) in the initial state (or base) and activated (or
transition) state, respectively. If the Brönsted–Polanyi relation for interaction energies in initial and final state [17,38] is
considered, the coefficients reduce to:

Ai = e−β
Es
2

(
e−β V

2 − 1
)i

, (47)

Di = eβ
Es
2

(
eβ V

2 − 1
)i

, (48)

with i = 1, 2, 3, 4.

3.1.3. Inverse relation
The adsorption and desorption coefficients defined by

Ai = e−β

(
Es
2 +iV

)
, (49)

Di = eβ

(
Es
2 +iV

)
, (50)

where i = 1, 2, 3, 4, fulfill the PDB for two dimensional lattice gas with nearest neighbor lateral interaction.
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3.1.4. Soft Glauber
In this scheme, the adsorption and desorption coefficients take the following forms:

A0 =

(
1

1 + eβEs

)
, (51)

A1 =
e−βV(

1 + eβEs
) (

1 + eβV
) , (52)

A2 =
eβV

(
2 − eβV

+ e2βV
)(

1 + eβEs
) (

1 + eβV
) (

1 + e2βV
) , (53)

A3 =
−eβV

(
3 − 6eβV

+ 7e2βV − 3e3βV + e4βV
)(

1 + eβEs
) (

1 + e2βV
) (

1 + e3βV
) , (54)

A4 =
eβV

(
4 − 10eβV

+ 12e2βV − 5e3βV + 6e4βV − 11e5βV + 11e6βV − 4e7βV + e8βV
)(

1 + eβEs
) (

1 + e2βV
) (

1 + e3βV
) (

1 + e4βV
) , (55)

D0 =

(
1

1 + e−βEs

)
, (56)

D1 =
−e−βV(

1 + e−βEs
) (

1 + e−βV
) , (57)

D2 =
e−βV

(
2 − e−βV

+ e−2βV
)(

1 + e−βEs
) (

1 + e−βV
) (

1 + e−2βV
) , (58)

D3 =
−e−βV

(
3 − 6e−βV

+ 7e−2βV
− 3e−3βV

+ e−4βV
)(

1 + e−βEs
) (

1 + e−2βV
) (

1 + e−3βV
) , (59)

D4 =
e−βV

(
4 − 10e−βV

+ 12e−2βV
− 5e−3βV

+ 6e−4βV
− 11e−5βV

+ 11e−6βV
− 4e−7βV

+ e−8βV
)(

1 + e−βEs
) (

1 + e−2βV
) (

1 + e−3βV
) (

1 + e−4βV
) . (60)

3.1.5. One step dynamic (OSD)
The adsorption and desorption coefficients are

Ai = e−βUe−β
Es
2

(
e−β V

2 − 1
)i

, (61)

Di = e−βUeβ
Es
2

(
eβ V

2 − 1
)i

, (62)

respectively. Here, i determines the amount of occupied nearest neighbor sites, andU is the energy barrier between final and
initial state. Note thatwhenU = 0, this dynamic scheme gets the same results as those obtained by applying the relationship
Brönsted–Polanyi in TST scheme.

3.2. Hard dynamics

3.2.1. Two-steps transition dynamic approximation (TDA)
Introduced to explain different problems in surface science [17,19,39–41], the adsorption and desorption coefficients are

given by

A0 =

(
1

1 + eβ

(
Es
2 +U

)
)(

1

1 + eβ

(
Es
2 −U

)
)

, (63)

A1 =

(
1

1 + eβ

(
Es+V

2 +U
)
)(

1

1 + eβ

(
Es+V

2 −U
)
)

− A0, (64)

A2 =

(
1

1 + eβ

(
Es+2V

2 +U
)
)(

1

1 + eβ

(
Es+2V

2 −U
)
)

− 2A1 − A0, (65)

A3 =

(
1

1 + eβ

(
Es+3V

2 +U
)
)(

1

1 + eβ

(
Es+3V

2 −U
)
)

− 3A2 − 3A1 − A0, (66)
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A4 =

(
1

1 + eβ

(
Es+4V

2 +U
)
)(

1

1 + eβ

(
Es+4V

2 −U
)
)

− 4A3 − 6A2 − 4A1 − A0, (67)

D0 =

(
1

1 + e−β

(
Es
2 +U

)
)(

1

1 + e−β

(
Es
2 −U

)
)

, (68)

D1 =

(
1

1 + e−β

(
Es+V

2 +U
)
)(

1

1 + e−β

(
Es+V

2 −U
)
)

− D0, (69)

D2 =

(
1

1 + e−β

(
Es+2V

2 +U
)
)(

1

1 + e−β

(
Es+2V

2 −U
)
)

− 2D1 − D0, (70)

D3 =

(
1

1 + e−β

(
Es+3V

2 +U
)
)(

1

1 + e−β

(
Es+3V

2 −U
)
)

− 3D2 − 3D1 − D0, (71)

D4 =

(
1

1 + e−β

(
Es+4V

2 +U
)
)(

1

1 + e−β

(
Es+4V

2 −U
)
)

− 4D3 − 6D2 − 4D1 − D0. (72)

3.2.2. Ising kinetics
Considering the next relations between adsorption and desorption coefficients [20]:

Ai = γDi, (73)

with i = 1, 2, 3, 4 and considering A0 = 1, PDB gives the next expressions for desorption coefficients:

D0 = eβEs , (74)

D1 = D0

(
eβV

− 1
1 − γD0eβV

)
, (75)

D2 = D0

(
e2βV − 1

1 − γD0e2βV

)
− 2D1, (76)

D3 = D0

(
e3βV − 1

1 − γD0e3βV

)
− 3D1 − 3D2, (77)

D4 = D0

(
e4βV − 1

1 − γD0e4βV

)
− 4D1 − 6D2 − 4D3. (78)

3.2.3. Standard Glauber dynamics
This dynamic scheme is one of the most well known and widely used [42], and their corresponding adsorption and

desorption coefficients are given by:

A0 =

(
1

1 + eβEs

)
, (79)

A1 =

(
1

1 + eβ(Es+V )

)
− A0, (80)

A2 =

(
1

1 + eβ(Es+2V )

)
− 2A1 − A0, (81)

A3 =

(
1

1 + eβ(Es+3V )

)
− 3A2 − 3A1 − A0, (82)

A4 =

(
1

1 + eβ(Es+4V )

)
− 4A3 − 6A2 − 4A1 − A0, (83)

D0 =

(
1

1 + e−βEs

)
, (84)

D1 =

(
1

1 + e−β(Es+V )

)
− D0, (85)
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D2 =

(
1

1 + e−β(Es+2V )

)
− 2D1 − D0, (86)

D3 =

(
1

1 + e−β(Es+3V )

)
− 3D2 − 3D1 − D0, (87)

D4 =

(
1

1 + e−β(Es+4V )

)
− 4D3 − 6D2 − 4D1 − D0. (88)

Note that, using Eqs. (13)–(22), it is possible to obtain the adsorption and desorption probabilities for each dynamic
scheme.

4. Results

The results are obtained doing Monte Carlo simulations in 120 × 120 square lattices with periodic boundary conditions.
To evaluate sticking coefficient the simulations are carried out in Grand Canonical Ensemble, where each point is the average
over 106 Monte Carlo step (MCS). To obtain TPD spectra, a n-Fold way algorithm is used [43]. In these simulations, an initial
thermalization at low temperature is carried out over 106 MCS, and final spectrum is the average over 1000 independent
spectra. In all TPD simulations the adsorption is considered as an activated process, with an activation energy of 25 kcal/mol,
a pre-exponential factor of 1010 s−1, an initial coverage θ0 = 0.9, and a heating rate of 1 K/s.

4.1. Sticking coefficient

4.1.1. Soft dynamics
In Fig. 1 the normalized sticking coefficient for different dynamic schemes and values of the lateral interaction is showed.

In the interaction kinetics, as Fig. 1(a) shows, for repulsive lateral interactions all curves are below for non-interacting curve
(V = 0, dashed line in Fig. 1) S(θ, T )/S(0, T ) = (1 − θ ). For βV ≫ 0: A1

A0
→ −1, A2

A0
→ 1, A3

A0
→ −1 and A4

A0
→ 1, then

S(θ, T )/S(0, T ) is independent of γ , and it is given by the correlation
⟨

E
E E E

E

⟩
. With increasing coverage, this correlation

fell sharply and thus also the sticking coefficient. When the lateral interaction grows in positive values (attractive lateral
interaction), the normalized sticking coefficient reaches a limit curve and then decrease to limit curve (1 − θ ). This is, the
normalized sticking coefficient shows the same behavior both null lateral interaction as large attractive lateral interaction.
Taking account that the sticking coefficient is proportional to the first parenthesis in Eq. (11), and that for βV ≪ 0,

⟨
N
N

⟩
→ θ ,⟨

N
E

⟩
→ 0, adding that all ratios Ai/A0 are finite, then this scheme gives a normalized sticking coefficient equal to (1 − θ ) for

large attractive lateral interaction.
In Fig. 1(b), the sticking coefficient for TST is shown. For large repulsive lateral interaction the behavior is similar to

the Interaction Kinetics. While for attractive lateral interaction, sticking coefficient growth monotonically with it (ratios
Ai
A0

→ ∞ for βV ≪ 0). For V = 0, the expected behavior S(θ, T )/S(0, T ) = (1 − θ ) is obtained, agree that the sticking
probability depends only on the probability of an empty site to be found.

In Fig. 1(c) the normalized sticking coefficient for Inverse Relation kinetics, with different values of the lateral interaction
is shown. For V = 0, all ratios Ai/A0 = 1, and taking into account that the coverage of each site is independent of the coverage
of their nearest neighbor sites, therefore each correlation in Eq. (26) can be replaced by the product θ s(1 − θ )r , where s (r)
is the number of occupied (empty) sites in the corresponding correlation. With this, the normalized sticking coefficient for
non-interacting case can be expressed by:

S (θ, T )

S (0, T )
= (1 − θ)

[
1 + 4θ + 6θ2

+ 4θ3
+ θ4] . (89)

Note that this expression differs of the normal behavior for null interaction (should be proportional to (1−θ )). For attractive
lateral interaction, normalized sticking coefficient increases with the increasing of the interaction. For large repulsive lateral
interaction all coefficients Ai converge to the same value of A0, whereby the normalized sticking coefficient ranges from
Eq. (89) to (1 − θ ) with the increasing of the lateral interaction.

In Soft Glauber dynamic scheme, the normalized sticking coefficient converge to upper limit curve (1 − θ ) for large
attractive lateral interaction (see Fig. 1(d)). In order to explain this, for βV → −∞ the adsorption coefficients Ai

A0
→ 0 given

the proposed limit for sticking coefficient. For V = 0, adsorption coefficients are A1
A0

=
A3
A0

= −
1
2 and A2

A0
=

A4
A0

=
1
2 , and

considering that the occupation of a site is independent of their neighboring, the normalized sticking coefficient for null
interaction is:

S (θ, T )

S (0, T )
= (1 − θ)

[
1 − 2θ + 3θ2

− 2θ3
+

1
2
θ4
]

. (90)

Normalized sticking coefficient decreases from this curve with increasing repulsive lateral interaction. Regardless of the
value of U , the sticking coefficient normalized to the OSD has the same behavior as that obtained by the TST. The sticking
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Fig. 1. Normalized sticking coefficient as a function of coverage θ for soft dynamics. (a) Interaction kinetic, bottom to top at θ = 0.5,βV = 3, 0, −4, −1, −2;
(b) TST: bottom to top βV = 10, 2, 0, −1, −4, −10, −20; (c) Inverse relation: bottom to top βV = 2, 1, 0.3, 0, −0.3, −1; (d) Soft Glauber: bottom to top
βV = 2, 1, 0.5, 0, −0.5, −1, −2.

coefficient calculated with the standard Glauber dynamics presents the same behavior that the corresponding to the Ising
dynamic.

4.1.2. Hard dynamics
As seen in Fig. 2(a), the normalized coefficient sticking for Ising kinetics increases with increasing attractive lateral

interaction, while it decreases for repulsive lateral interaction. The minimum in sticking coefficient is due to when the
system is in the ordered phase c(2 × 2) the adsorption of new particles is not allowed until the chemical potential growths
enough so that new particles can be adsorbed in the system (In hard dynamics, sticking coefficient depends on chemical
potential.). From repulsive lateral interactions βV = 4 no differences were observed in the sticking coefficient. When lateral
interaction is equal to zero, the expected dependence (1 − θ ) is obtained. The normalized sticking coefficient for the TDA is
shown in Fig. 2(b) and (c) for a fixed value of the transition state energy U , the behavior of S(θ, T )/S(0, T ) can be explained
as follows. As the lateral interaction increases, the normalized sticking coefficient increases monotonically in the range,
0 < θ < 1, dropping to zero at monolayer. This occurs because all ratios Ai/A0 diverge for large attraction lateral interaction
(βV ≪ 0). For large repulsive lateral interaction (βV ≫ 0) and coverages θ < 1

2 , we have the following limits for the ratios
A1
A0

→ −1, A3
A0

→ −1 and A2
A0

→ 1, A4
A0

→ 1, making the normalized sticking coefficient reaches a limit curve (this is because⟨
N

N E N
N

⟩
→ 0).

4.2. Thermal programmed desorption spectra

4.2.1. Soft dynamics
Figs. 3–7 show TPD spectra for soft dynamics, in all spectra initial coverage is θ0 = 0.9. In Fig. 3 TPD spectra for

Interaction Kinetics with γ = −1 and different values of the lateral interaction are shown. For attractive lateral interaction
the temperature of the peaks shifts to higher temperatures for immobile adsorbate. This is due to the mobility disperses
particles in the lattice by decreasing desorption energy, so they leave the surface at lower temperatures. The mobile TPD is
formed from those particles desorbing with one, two, and no-nearest neighbor sites occupied, while the immobile case is
formed almost exclusively from particles with two nearest neighbors occupied, which come from the edge of single cluster
which decreases in size during desorption. For repulsive lateral interaction, TPD spectra present a weak dependence with
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Fig. 2. Normalized sticking coefficient as a function of coverage θ for hard dynamics. (a) Ising kinetic, bottom to top βV = 6, 2, 1.5, 1, 0.5, 0, −0.5, −0.8,
−1, −1.5; (b) TDA: bottom to top at θ = 0.5, βV = 0, −1(βU = 10), −1(βU = 2), −1(βU = 0); (c) TDA: bottom to top at θ = 0.8, βV = 2(βU =

10), −1(βU = 2), −1(βU = 0), 0.

it, reaching a limit curve when V ∼ 4 kcal/mol. Note that the desorption coefficients Di are independent of V for large
values of V (see Eqs. (32)–(36)). Here, the double peak for the mobile case can be explained through the surface order of
adsorbate due to lateral repulsive interaction. While for the immobile case, this ordered structure is not observed. TPD
spectra for TST dynamic are shown in Fig. 4. For attractive lateral interaction, the peak of the immobile TPD has a lower
temperature than mobile TPD. Note that both TPD have the same beginning. In the immobile case appear particles with
different amount of occupied nearest neighbor sites, while adsorbate can be realign in a compact cluster for the mobile TPD,
requiring higher temperature for desorb. When lateral interaction is repulsive, the immobile TPD spectra present five peaks
(provided that the initial coverage is greater than 0.5). They are made sharper at higher values of the lateral interaction. The
lower temperature peak corresponds to those particles that desorb and have their four nearest neighbor sites occupied. The
next peak, is formed by the desorbing particles with three nearest neighbor sites occupied, and so on for other peaks. The
higher temperature peak is formed by desorbing isolated particles, note that this peak temperature is the same as for the
non-interacting TPD spectrum. Mobile TPD spectra present only two peaks (again, initial coveragemust be greater than 0.5).
The highest temperature peak is formed by desorbing particles with their four nearest neighbor sites occupied, the valley
between peaks (there are not desorbing particles) evidences an ordered structure (c(2 × 2) phase) where the adsorbate
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Fig. 3. TPD spectra as a function of temperature T for Interaction Kinetics with initial coverage θ0 = 0.9. From right to left V (kcal/mol) = −4 (immobile),
−4 (mobile), 0, 2 (mobile), 2 (immobile).

Fig. 4. Mobile (dash line) and immobile (line) TPD spectra as a function of temperature T for TST dynamic with initial coverage θ0 = 0.9 and different
values of the lateral interaction, left to right V (kcal/mol) = 4, 0, −2. For V = 0, mobile and immobile spectra coincide.

like a chessboard. Finally, the highest temperature peak is, principally, due to those isolated particles that desorb from
lattice.

The TPD spectra for Inverse Relation scheme are shown in Fig. 5. For repulsive lateral interaction, TPD spectra present the
same behavior as the TST dynamic. When lateral interaction is null, the mobile and immobile TPD do not match. Explicitly,
writing Eq. (12)without adsorption term for this schemewithV = 0, desorption rate depends on amount of nearest neighbor
occupied sites. While for the mobile TPD this amount is a function of the coverage; for the immobile TPD there is a greater
amount of isolated particles which they need more temperature for desorb due to their greater desorption energy and they
form the last part of the spectrum. For attractive lateral interaction, TPD spectra shift to higher temperature only slightly, and
for upper of 3 kcal/mol, they are independent of the lateral interaction and the mobility. This last can be deduced making
V → −∞ in Eqs. (18)–(22), and taking account Eqs. (48). Fig. 6 shows TPD spectra for Soft Glauber Dynamic. The main
characteristic of these TPD is that immobile and mobile TPD spectra does not match for non-interacting case. Both large
attractive and large repulsive lateral interactions, TPD spectra does not show any difference. The Fig. 7 shows the effect of
U on immobile TPD spectra for One-Step Dynamic with repulsive lateral interaction. The temperature difference between
the last and first peaks is independent on U . This energy barrier U shifts the whole spectra to lower (higher) temperatures
when their value is negative (positive). In this case, the number of the peaks does not changes, except that the peaks become
wider with temperature, overlapping on each other. For the attractive lateral interactions, the shifting of the spectra with U
have similar behavior that repulsive lateral interaction.

4.2.2. Hard dynamics
Thermal desorption spectra for hard dynamics are shown in Figs. 8 and 9. In the Ising kinetic, the immobile spectrum

presents the five characteristic peaks corresponding to the number of neighbors occupied by the desorbing particle, which
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Fig. 5. Mobile (dash line) and immobile (line) as a function of temperature T for Inverse Relation spectra for TST dynamic with initial coverage θ0 = 0.9
and different values of the lateral interaction, left to right V (kcal/mol) = 4, 0, −1. For V = 0, mobile and immobile spectra coincide.

Fig. 6. Mobile (symbol) and immobile (line) TPD spectra as a function of temperature T for Soft Glauber Dynamicwith initial coverage θ0 = 0.9 and different
values of lateral interaction V (kcal/mol) = 0, (thick lines), 2 (dash lines), 4 (fine lines).

Fig. 7. Effect of energy barrierU on immobile TPD spectra as a function of temperature T for One-Step Dynamic with initial coverage θ0 = 0.9 and repulsive
lateral interaction V = 4 kcal/mol, left to right U (kcal/mol) = −6, 2, 10, 15.

are more separated (and thus sharper) with increased the repulsive lateral interaction. The overtaking in temperature of
the second peak of the spectrum with respect to the last peak of the immobile DTP is due to the fact that it is composed
of particles that desorb with two, one and no first occupied neighbor, the system is not in the ordered phase and therefore
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Fig. 8. Mobile (dash line) and immobile (line) TPD spectra as a function of temperature T for Ising kinetics with initial coverage θ0 = 0.9, TPD spectrum
for V = 0 (dot line) is also include. (a) Repulsive lateral interaction, left to right V (kcal/mol) = 2, 1, 0; (b) Attractive lateral interaction, left to right
V (kcal/mol) = 0, −1, −2.

Fig. 9. Mobile (dash line) and immobile (line) TPD spectra as a function of temperature T for TDA with initial coverage θ0 = 0.9. (a) Non-interactive case
V = 0, and different values of energy barrier U in kcal/mol; (b) Repulsive lateral interaction, V = 2 kcal/mol, and different values of U in kcal/mol.

the particles are not necessarily isolated. For mobile adsorbate, two peaks appear and the valley between them corresponds
to the formation of the ordered phase c(2 × 2) (see Fig. 8(a)). Fig. 8(b) shows the DTPs for attractive lateral interactions,
the system starts from an ordered structure formed by a large compact cluster. In the case of immobile spectra, the DTP is
formed mainly by those particles that desorb having one and two occupied neighbors. Due to the presence of the ordered
phase forced by the immobility of adsorbate, these particles are at the edge of the cluster. However, in the case of mobile
spectra, the increase in temperature and mobility contribute to the disorder of the phase, due to that the desorption is
composed by desorbed particles without occupied neighbors.

In Fig. 9 the DTP spectra for the kinetics of TDA are shown. It is interesting to analyze the effect of the value of the U
parameter on the shape of TPD spectra. For a repulsive lateral interaction V = 2 kcal/mol the behavior of the spectrum



V.J. Huespe et al. / Physica A 488 (2017) 162–176 175

is similar to that of the Ising kinetics, however the increase of the U value impacts on the shape of the spectrum for the
same interaction lateral, being also responsible for the drift of the DTP to higher temperatures, this shift of the spectrum
is evidenced independently of the adsorbate mobility and both attractive and repulsive lateral interactions, with greater
impact as the value of that parameter increases.

5. Conclusions

In this article, a study by Monte Carlo simulation on the influence of the different dynamic schemes proposed in
adsorption–desorption kinetics applied to a two-dimensional system was presented.

The observables obtained with the soft dynamics have dissimilar behaviors, and sometimes are not consistent with the
logical behavior for a lattice gas with nearest neighbor lateral interaction. In this sense, the TST has been the dynamic that
best represents an adsorbed gas, showing that both the sticking coefficient and the TPD spectra give the same conclusion
regarding the lateral interaction and the particle distribution for the system. As for the hard dynamics, the observables have a
behavior similar to that of TST, with the exception of the sticking coefficient, which has amaximumbetween 0.5 < θ < 1 for
repulsive lateral interactions, this effect is due to the dependence of the sticking coefficient respect to the chemical potential.
That is, this behavior in sticking coefficient is indicative of the influence of the external field (gas pressure) on the system.

The choice of dynamics is arbitrary and only requires that the PDB be fulfilled. If, in addition, both members of the
Eqs. (14)–(22) are positive, the same adsorption isotherms are obtained, regardless of the dynamics chosen. To analyze
the dynamics, two other observables have been studied: sticking coefficient and TPD spectra. As shown in this article, this
arbitrariness in the dynamic choice leads to that a given observable have different behaviors for the same value of lateral
interaction. Some dynamics give anomalous behaviors in some cases, i.e. results that are not physically compatible with the
value of the lateral interaction. Therefore, with a single observable it is not possible to determine the dynamics governing
the processes of adsorption and desorption, and a careful analysis must be performed to determine the correct dynamic for
each particular system.
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