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A B S T R A C T

Autophagy is a well-known cellular process involved in many physiological and pathological processes. During
erythropoiesis, autophagy plays an important role participating in the clearance of unnecessary organelles such
as ribosomes and mitochondria (mitophagy) allowing the correct formation of mature red blood cells. The
dysfunction of autophagy proteins hamper the correct erythroid maturation, leading to anemia, the release of
immature cells from the bone marrow and other hematological abnormalities. Autophagy plays different roles
depending on the type of pathology. In leukemia cells, it has been demonstrated that autophagy could be either
detrimental, leading to an increase of the apoptosis rate, or protective, acting as a key process that augments
proliferation and survival of cancer cells. Thus, understanding the relationship between autophagy and
erythropoiesis opens new avenues for the discovery of biochemical and pharmacological targets and for the
development of novel therapeutic approaches.

Introduction

Erythropoiesis is a finely regulated process in which red blood cells
are generated from immature precursors in the bone marrow. In
humans, during the last stages of gestation, hematopoietic stem cells
(HSC) migrate from the liver to the bone marrow to initiate hematopoi-
esis [1,2]. A population of HSC, recognized as CD34+ cells, gives rise
to the megakaryocytic-erythroid progenitor, which originates the
erythroid progenitor (EP) linage [3–5]. Through the stimulation by
high levels of erythropoietin (EPO) and other cytokines (e.g. IL-3, IL-6,
IL-1), EP differentiate into the first erythropoietic cells, which are
named burst forming units (BFU-E) and colony forming units (CFU-E).
Both cell types are involved in the production and accumulation of
hemoglobin (Hb) that is necessary to proerythroblast formation. This
process is known as the proliferation stage [6,7]. For Hb biosynthesis,
cells take up iron from two major sources. One pathway for iron
acquisition is the binding of Fe3+-bearing transferrin (Tf) to the specific
transferrin receptor (TfR) or CD71, located on the cell surface.
Following clathrin-dependent endocytosis of the Tf/TfR complex, the
pH within the endosome is lowered through the action of ATP-
dependent H+ pumps [8], initiating receptor-stimulated iron release
from the Tf. Iron is then released from Tf within the endosome into the
cytosol through the divalent metal transporter 1 (DMT1), and at this
endosomal pH, apoTf remains tightly bound to the TfR with high
affinity. The apoTf/TfR complex then returns to the plasma membrane,
thus avoiding its degradation within the lysosome. ApoTf is then

released from the TfR into the plasma to bind more Fe3+ [9,10].
Another iron source is that provided by the degradation of altered RBC
by the reticuloepithelial system, in which hemoglobin is released and
the prosthetic group heme is metabolized. The latter process constitutes
the main source of iron in a ferrous (Fe2+) form. The free heme is
highly oxidative and produces reactive oxygen species (ROS), which are
toxic for all tissues. Therefore, the heme degradation by the hemo-
oxygenase (HO) into carbon dioxide, biliverdin and iron is critical
[11–13]. To achieve heme degradation, the heme-hemopexin complex
is scavenged by the low density lipoprotein receptor (LDL), the low
density lipoprotein-related protein-1 (LRP1) and megalin (LRP2),
through endocytosis via clathrin-coated pits. After heme degradation,
iron is either stored in the cell as ferritin and hemosiderin or used to
form new hemoglobin [13–15].

The heme neosynthesis occurs in the mitochondrial matrix through
an enzymatic process in which iron is incorporated into the proto-
porphyrin IX protein generating new heme. This molecule is then
exported into the cytosol and assembled with globin proteins to form
hemoglobin [16]. In direct relationship with hemoglobin formation,
two isoforms of the Feline Leukemia Virus subgroup C receptor 1
(FLVCR1) have an important function. One of them is the FLVCR1a
which is in the plasma membrane and exports heme from the cytosol to
the extracellular space, preventing its accumulation and cytotoxic
effects. The FLVCR1b isoform is in the mitochondria and exports the
synthetized heme into the cytosol. Both isoforms are directly associated
with the differentiation of erythroblasts, since the correct amount of

http://dx.doi.org/10.1016/j.blre.2017.04.001

⁎ Corresponding author at: Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
E-mail address: cfader@fcm.uncu.edu.ar (C.M. Fader).

Blood Reviews 31 (2017) 300–305

0268-960X/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/0268960X
http://www.elsevier.com/locate/blre
http://dx.doi.org/10.1016/j.blre.2017.04.001
http://dx.doi.org/10.1016/j.blre.2017.04.001
mailto:cfader@fcm.uncu.edu.ar
http://dx.doi.org/10.1016/j.blre.2017.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.blre.2017.04.001&domain=pdf


heme in the cytosol stimulates the overexpression of globin genes to
form hemoglobin. The silencing or knockout of FLVCR1 in mice or in
zebrafish is known to cause abnormalities in the expansion and
differentiation of erythroid progenitors, leading to lower BFU-E and
CFU-E counts, anemia, and impairment in hemoglobin production
[17,18]. Proerythroblasts then undergo four mitosis events in 3–4 days
to generate the basophilic, polychromatophilic and orthochromatic
erythroblasts. In the latter stage, the expulsion of the nucleus and the
elimination of some intracellular organelles (e.g. the Golgi apparatus
and the endoplasmic reticulum) occurs to release the nascent reticulo-
cytes into the bloodstream, Reticulocytes will then complete their
maturation 1 to 2 days later [6,19,20].

As the erythroid maturation progresses, important cellular changes
such as the diminution in the cell size and the condensation of the
nucleus occur [20–22]. The remodeling of cytoplasmic and membrane
components leads to a correct differentiation of the erythroid cell.
During maturation, the plasma membrane amounts of TfR are modified
depending on the specific function that each erythroblast cell has, but
in the reticulocyte stage, this receptor is downregulated once the cell
completes the Hb production [23–25]. This change in TfR levels is
regulated through its internalization by endocytosis where TfR is
targeted to MVBs and sorted into the internal vesicles. Subsequently,
these MVBs fuse with the plasma membrane and the exosome-asso-
ciated TfRs are released outside the cell [26]. In general, most of the
cell surface proteins which function in cell-cell and cell-extracellular
matrix interaction or adhesion are highly expressed in the proerythro-
blast and in the first stages of erythroblasts. These proteins are
important for the interaction with macrophages in bone marrow
erythroid niches and, as erythropoiesis continues, they have to be
eliminated to allow the release of reticulocytes into the bloodstream.
CD44, an adhesion surface protein, is used as a maturation marker from
basophilic erythroblasts to reticulocytes. Flow cytometry and immuno-
blotting analyses have shown that the levels of CD44 are 30-fold lower
in orthochromatic blasts than in proerythroblasts; thus, the determina-
tion of CD44 expression levels allows a better differentiation between
the 5 stages of erythroblasts than TfR does [25,27]. Likewise, the α4
chain of the reticulocyte-adhesion molecule α4β1 integrin, which
participates in the formation of focal adhesions into the hematopoietic
niche, is also eliminated during the maturation process. Interestingly,
the α4 subunit downregulation allows the release of the reticulocyte
and prevents erythrocyte attachment to the vascular endothelium [28].
Other changes are associated with this differentiation process to
generate mature reticulocytes such as the activation of hemoglobin
synthesis, the remodeling of the cytoskeleton, the modifications of cell-
surface proteins and the loss of remnant internal compartments. As a
result of all these processes, the mature blood cells are finally generated
[22,25].

Autophagy and red blood cell maturation.
Autophagy is a crucial process that takes place during the final stage

of the erythroid differentiation through which cytosolic macromole-
cules, and even whole organelles are transported to the lysosomes for
degradation [29,30]. This process begins with the extension of an
specialized membrane originating mainly in the endoplasmic reticulum,
the mitochondria, and the Golgi cisternae, known as the phagophore
[31,32]. The phagophore surrounds the molecules and organelles to be
eliminated, forming a vesicle called the autophagosome when both
membrane ends connect [32,33]. This organelle interacts with endoso-
mal structures, generating a prelysosomal hybrid organelle termed the
amphisome. In previous studies, we have determined the components
of the molecular machinery required for this interaction [34]. Finally,
autophagosomes or amphisomes fuse with lysosomes, leading to
degradation of the sequestered material by an enzymatic proteolytic
process. Studies in both yeasts and mammals have allowed the
characterization of at least 40 Atg (autophagy-related) genes, which
encode proteins that participate in autophagy [35,36].

The canonical autophagy pathway involves the inactivation of

mammalian target of rapamycin complex 1 (mTORC1) when nutrients
are scarce. This leads to the activation, through phosphorylation, of the
Unc-51-like kinase complex (Ulk1/Ulk2), a serine-threonine kinase, and
the subsequent cascade of the other ULK complex members such as
FIP200 and Atg13 [37]. The second complex that is activated is the
Beclin1, in which one the members, named Vps34, is translocated into
the ER membranes and produces high levels of phosphatidylinositol 3-
phosphate, being this molecule necessary for the recruitment of other
effectors such as WIPI2b [38–40]. This effector interacts and recruits
Atg16L, which binds Atg5 conjugated with Atg12. The formation of
Atg5-Atg12-Atg16L complex is the preceding step to LC3 lipidation,
whose function is to determine the site where LC3 will be conjugated
and activated to LC3-II [41,42]. Atg3, an E2-like protein, is associated
to LC3-I and binds to the complex through Atg12, allowing the
conjugation of LC3-I with phosphatidylethanolamine to generate LC3-
II [43]. LC3-II, which is associated with the inner and outer membranes
of autophagosomal structures, is required for phagophore extension,
engulfment of cargo and vesicle closure to form the autophagosome
[44–46]. The elements destined to be eliminated by the autophagic
pathway bind receptor/adaptor molecules like p62, NDP52 that contain
a LC3 interacting region (LIR). This domain allows the recognition of
elements to be engulfed and eliminated by the phagophore [47,48].

Mitochondria participate in essential cellular process such as ATP
production, apoptosis regulation and hemoglobin synthesis, among
others. The metabolites produced during oxidative stress or reactive
oxygen species (ROS) generated in the respiratory chain, cause
mitochondrion aging and membrane damage, leading to the release
of cythocrome c and pro-apoptotic factors [49–51]. Therefore, the
control and clearance of altered mitochondria is detected and marked
by the autophagy machinery. When mitochondria membranes suffer
depolarization or are damaged, different membrane proteins containing
LIR, as BNIP3, NIX and FUNDC1, are exposed (see fig. 1). In this
process, mitochondria are engulfed and targeted to the lysosome for its
degradation in a process known as mitophagy [35,52,53]. In the last
step of reticulocyte maturation, when hemoglobin has been completely
synthesized, mitochondria must be eliminated for the correct function-
ing of mature red blood cells. Normally, mitophagy occurs through the
canonical autophagy pathway through the activation of the conven-
tional autophagy proteins in an Atg5-Atg7-dependent manner, allowing
the lipidation of LC3 and formation of the autophagosome. Interest-
ingly, it has been demonstrated that Atg7 is also responsible for the
clearance of mitochondria in reticulocytes during erythropoiesis. Atg7
knockout mice develop anemia, lymphopenia and reticulocytosis.
Interestingly, the knock-out of this gene produces a delayed depolar-
ization and impaired clearance of mitochondria, showing a partially
Atg7-dependent autophagy [49,50]. Moreover, Ulk1/Atg1 expression
levels correlate directly with the removal of ribosomes and mitochon-
dria by autophagy during reticulocyte maturation. Ulk1 knock-out mice
present alterations in blood cells count, and a delayed clearance in both
ribosomes and mitochondria, indicating a deficiency in the maturation
of red blood cells. Likewise, a population of CD71 negative red blood
cells bearing mitochondria has been observed in Ulk1−/− animals,
indicating the existence of an increase in immature cells release into the
bloodstream [54].

Notwithstanding, when Atg7, Atg5 and Ulk1 are knocked out, the
mitochondrial clearance is not completely hampered, suggesting that
this is not the only pathway involved in this process [49,55].
Furthermore, studies have demonstrated that non-canonical autophagy,
where unusual cytosolic proteins such as Rab9a participate, could be
activated by microorganisms or pathological processes. Commonly,
Rab9a is involved in the trafficking between late endosomes and
lysosomes. However, in an erythroid leukemic cell line, it has recently
been demonstrated that this protein is responsible for mitophagy
activation when canonical autophagy is blocked [55,56]. The knocking
down of either Atg7 or Ulk1 leads to mitochondrial clearance through a
non-canonical Rab9a-dependent autophagy, a process in which this
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protein is overexpressed, leading to the formation of autophagosomes
and elimination of mitochondria. However, this pathway is not yet
completely understood, and the recruitment of LC3 has not been
explained [56].

Some mitochondria-membrane receptor proteins participate in the
control of mitochondrial integrity and function as adaptors or markers
for autophagosomes, leading to mitochondrial clearance. NIX (a BH3-
only member of the Bcl-2 family) has been described as the major
mitochondrial protein involved in the regulation of the clearance of this
organelle [57,58]. Studies have shown that this protein is upregulated
during erythroid cell differentiation and that it is necessary for correct
mitochondrial membrane depolarization [57,59]. Likewise, when the
erythroleukemia cell line K562 is stimulated with hemin, a heme
homologous, erythroid differentiation stimuli such as hemoglobin
production and mitophagy induction are triggered [59,60]. Nix gene
knockdown mice have an impaired erythroid maturation, anemia and
erythroblasts hyperplasia [57,61]. Nix−/− mice consequently have an
impairment in mitochondrial clearance, reticulocytosis and abnormal
reticulocyte maturation, which leads to a decrease in the RBC counts
[57,58].

More recent studies have demonstrated that during starvation and
mitochondrial-membrane depolarization, the autophagy gen that en-
codes for Beclin 1 protein (BECN1) undergoes an alternative splicing
forming BECN1s, which is directly associated with selective mitophagy
[62]. In addition, PINK1 (PTEN-induced putative kinase 1), participates
in mitochondrial-integrity control, and is also involved in mitophagy of
damaged mitochondria [63]. But this selective mitophagy also occurs in
some diseases like Fanconi anemia, where FANCC, a protein involved in
macroautophagy as virophagy, interacts with Parkin in the membrane
of damaged mitochondria which is then directly bound to autophago-

somal vesicles [64].
Advanced knowledge about the complexity of the autophagy

mechanism have allowed us to understand the importance of some
proteins involved in erythropoiesis and the pathophysiology of hema-
tological diseases. This knowledge contributes to the generation of new
strategies for preventing and treating leukemia and anemia, among
other pathological processes.

Autophagy and hematological diseases.
As mentioned, autophagy has historically been considered a me-

chanism that is induced under different conditions such as cellular
stress and organelle turnover, being responsible for the maintenance of
the cellular homeostasis, the energetic balance and development.
However, several other functions of autophagy have been demonstrated
in numerous pathological processes such as infectious diseases, cardi-
omyopathy, neurodegenerative diseases, diabetes, diseases associated
to aging and cancer. Regarding the latter, autophagy has a dual
function, acting as a cell survival mechanism (favoring the growth of
established tumors) and as a tumor suppressor (preventing the accu-
mulation of damaged proteins and organelles) [65]. Moreover, several
studies have shown in cancer cell lines, that autophagy plays an
important role as a cellular mechanism mediating sensitization to
cancer therapy, being a useful strategy for the treatment of drug
resistant tumors [65–70].

Chronic myeloid leukemia (CML) is a myeloproliferative disorder
featured by a disproportionate accumulation of myeloid cells, which is
molecularly characterized by the presence of the Philadelphia (pH)
chromosome. This disease is due to a reciprocal translocation of the
ABL1 gene to the BCR gene resulting in the expression of the oncogenic
BCR-ABL1 fusion protein, which is known to be the starting point of this
kind of leukemia. The BCR-ABL1 fusion protein has a constitutively

Fig. 1. Canonical mitophagy: Exogenous or endogenous stimulation can produce mitochondrial depolarization with the concomitant liberation of reactive oxygen species (ROS). This
process activates signaling transduction through AMP-activated protein kinase (AMPK), which inactivates the mammalian target of rapamycin (mTOR). On the other hand, this process
activates canonical autophagy proteins such as ULK1 and Beclin-1, leading to membrane nucleation and phagophore formation. In turn, in an enzymatic process which involves Atg7 and
Atg5, the activation of LC3 is achieved by conformational changes of the LC3 protein by lipidation with phosphatidylethanolamine forming LC3-II. LC3-II anchors to the phagophore
membrane. Depolarized or damaged mitochondria expose proteins on its surface which have a LC3 interacting region (LIR). This allows the interaction with LC3 and the phagophore
leading to the surrounding of the organelle and total engulfing when the autophagosome is completely formed. Autophagosomes with the cargo continue a maturation process to finally
fuse with the lysosomes for content degradation.
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active tyrosine kinase activity that is able to mimic the growth factor
stimulation, generating an increased cellular proliferation and de-
creased apoptosis [71–73]. The K562 human CML cell line has been
frequently used to study the erythropoiesis and the red blood cell
differentiation process [74–76]. In K562 cells, Chiariello et al. have
demonstrated that BCR-ABL is able to modulate autophagy via
MAPK15, through its ability to interact with LC3-family proteins and
in a LIR-dependent manner [77]. Moreover, the artificial depletion or
the pharmacological inhibition of endogenous MAPK15 has proved to
inhibit the BCR-ABL1-dependent autophagy, suggesting the ability of
this kinase to control autophagy and cell proliferation. Interestingly,
some studies have shown that active BCR-ABL is engulfed into the
autophagosomes, indicating that cancer cells are able to use autophagy
to regulate the levels of this oncogenic protein [78,79]. These results
suggest the potential role of MAPK15 as a feasible therapeutic target in
hyperproliferative human diseases such as CML [77].

In general, chemotherapy or radiotherapy, mediate their effects by
stimulating a programmed cell death. Moreover, it has been described
that cancer cells have the ability to develop resistance to primary
cancer chemotherapy, generating drug resilience with poor clinical
prognosis. CML had been considered a fatal disease until de introduc-
tion of first and/or second generation tyrosine kinase inhibitors (TKI),
which block the enzymatic activity of the BCR-ABL1. These drugs are
imatinib, dasatinib, and nilotinib [80]. Although these drugs have
changed the therapy against CML, other alternative pharmacological
approaches are still necessary to achieve a successful treatment. Several
studies have shown that autophagy is essential for the development of
the BCR-ABL-triggered leukemogenesis [73,81,82], and also to protect
cancer cells from apoptosis induced by the TKI [48,83–87]. In addition,
it has been proposed that the treatment of K562 cells or primary CML
stem cells with imatinib induces autophagy, favoring the cancer cell
survival [83]. On the other hand, it has been largely argued that the
heme oxygenase-1 (HO-1), the main enzyme responsible for heme
catabolism, plays an important role in the development of resistance to
imatinib by chronic myeloid leukemia (CML) cells. A recent work has
demonstrated that the overexpression of HO-1 induces autophagy in
CML cells, while the inhibition of this pathway sensitizes the cells to
imatinib. Likewise, imatinib-resistant CML patients became signifi-
cantly sensitive to this drug when HO-1 expression was inhibited
[17]. In this context, the molecular or pharmacological autophagy
inhibition, by either Atg5 or Atg7 knock down or hydroxychloroquine
treatment has been used to enhance the TKI-induced apoptosis in CML
[73,83]. In line, recent reports have demonstrated that celecoxib, a
cyclooxygenase-2 (COX-2) inhibitor, is able to induce necrosis and
apoptosis by inhibiting autophagy in CML and acute leukemia cell lines
[88,89]. This autophagy inhibitory effect of celecoxib is due to the
impairment of the lysosome function, which hampers the autophagic
flux. Interestingly, imatinib was tested in combination with celecoxib,
showing that the COX-2 inhibitor could reinforce the cytotoxicity of
imatinib in imatinib-resistant CML cells [89]. In contrast to the cancer
cell survival effect of autophagy induction by some chemotherapy
drugs, it has been demonstrated that desatinib (a second-generation
tyrosine kinase inhibitor) induces autophagy in mice with Bcr-Abl-
positive leukemia, being one of the mechanisms underlying cell death
in the leukemic cells that infiltrate the central nervous system (CNS)
[90].

As mentioned above, mitophagy degrades damaged mitochondria
under diverse stress conditions such as hypoxia, caloric restriction, or
during certain developmental processes. Mitophagy is one of the
mitochondrial quality control and surveillance mechanisms that is
impaired in some pathologies leading to mitochondrial dysfunction.
Likewise, several pathologies such as cancer development or progres-
sion are closely linked to abnormal mitophagy, being this intracellular
mechanism a promising target for anticancer treatment [91,92].
Interestingly, our research group has demonstrated that hemin (a
natural regulator of erythropoiesis) is able to induce mitophagy in

K562 cells in a NIX-dependent manner. These results suggest that
hemin favors erythroid maturation, inducing mitochondrial clearance
[59]. On the other hand, it has been demonstrated that hematopoietic
stem cell (HSC)-derived early progenitors from mice with decreased
autophagy develop many symptoms of human myelodysplastic syn-
drome (MDS) and acute myeloid leukemia (AML). In addition, these
autophagy-deficient HSCs showed a disrupted mitophagy, increased
mitochondrial mass and higher proliferation and apoptosis levels [93].
As with CML, similar results have been obtained in autophagy impaired
AML cells, where the knockdown of Atg7 leads to a marked increase of
apoptosis and DNA damage during the treatment with cytarabine and
idarubicin. These results suggest that autophagy and its microenviron-
ment play an important role in AML chemoresistance, being the
inhibition of Atg7 a possible strategy to enhance chemosensitivity
and to improve outcomes in AML therapy [94,95]. Other authors have
determined in adult patients with AML and acute lymphoblastic
leukemia (ALL) that Beclin-1 and MAB1LC3B expressions were sig-
nificantly down-regulated whereas the hypoxia-inducible factor-1α
(HIF-1α) was upregulated. These changes in the Beclin-1, LC3 and
HIF-1 α proteins levels have been associated with poor survival,
indicating the essential role of these proteins in the development and
progression of acute leukemia [96].

Polycythemia vera (PV) is one of the Philadelphia chromosome–-
negative myeloproliferative neoplasms, characterized by an overactive
Janus kinase (JAK)-(STAT) pathway. PV is estimated to transform into
acute leukemia in 5–15% of cases over the course of 10 years. In
general, this disease is featured by the development of erythrocytosis
and presents significantly elevated levels of the transcription factor
nuclear factor-erythroid 2 (NF-E2) [97,98]. This transcription factor
plays an essential role in erythroid maturation and is a critical regulator
of globin gene expression [98]. Moreover, it has been demonstrated
that NF-E2 has an important role in the regulation of mitophagy and
ribosome clearance during erythropoiesis. Likewise, it has been re-
ported that the expression of the autophagy proteins NIX and Ulk1 are
upregulated in transgenic mice and in granulocytes from PV patients.
Furthermore, it has been demonstrated that elevated NF-E2 levels
retards mitochondrial depolarization and delays mitochondrial elim-
ination, thus altering erythrocyte maturation [99]. These results
provide a crucial role for NF-E2 as a mitophagy regulator in the
erythropoiesis.

Acquired aplastic anemia (AA) is a hematologic syndrome featured
by pancytopenia and bone marrow hypoplasia in which a profound
reduction in hematopoietic stem and progenitor cells occurs. Some
studies have demonstrated that autophagy is active in murine CD34+
hematopoietic progenitor cells (HPCs) [100–102]. In contrast, a con-
siderably decreased level of autophagy in CD34+ cells from patients
with AA was observed. Likewise, inhibition of autophagy in CD34+
HPCs leads to a decreased proliferation and survival, sensitizing the
cells to death and apoptosis [103]. These evidences support the role of
autophagy in the hematopoiesis.

Conclusions

The studies discussed in this review support the fairly established
role of autophagy in erythropoiesis as well as the role of this pathway in
leukemia cells survival and protection against chemotherapy. During
red blood cell maturation, cellular remodeling in the reticulocyte occurs
due to two main processes, which are overlapped at cellular and
molecular levels: vesicular trafficking and autophagy. It has been
demonstrated that autophagy inhibition during erythroid differentia-
tion leads to deficient erythroid maturation, demonstrating that this
intracellular pathway is an essential process required for erythroid
differentiation. For these reasons, understanding the action of autop-
hagy modulators during erythropoiesis could prevent hematopoietic
disorders. During the last decades, increasing efforts have been made to
develop new strategies for the treatment of leukemia, such as the TKIs
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in CML. It has been widely argued that autophagy has an important role
in the treatment resistance in leukemia, being considered a cytoprotec-
tive mechanism in these tumor cells. However, inhibition of chemother-
apy-induced autophagy sensitizes leukemia cells to chemotherapy,
leading to programmed cell death. Molecular or pharmacological
inhibition of autophagy might serve as a useful strategy for the
treatment of drug and radiation resistant leukemia. Therefore, autop-
hagy has been an important target for future treatment of hematologic
pathologies, being its inhibition a possible therapeutic strategy, which
could improve the efficiency of currently approved therapies.

Practice Points:

• Autophagy is a key catabolic pathway of blood cells involved in cell
differentiation.

• Erythroid maturation is deficient when autophagy is impaired.
• Autophagy has an important role as a cell survival mechanism
(favoring the growth of established tumors) and as a tumor
suppressor (preventing the accumulation of damaged proteins and
organelles).

• Modulation of autophagy in normal and pathologic erythropoiesis
may facilitate

prevention and treatment of red blood cell-related disorders.

• Autophagy plays an important role as a cellular mechanism
mediating sensitization to cancer therapy.

Research Agenda:

• Autophagy in erythroid maturation physiology.
• Molecular components of autophagy for prognosis and diagnosis of
leukemia.

• Relationship between autophagy, erythropoiesis and hematological
disorders.

• Development of autophagic targets as coadjuvant therapies.
• Genic studies that contribute to the diagnosis of cancer and other
blood cell malignances.
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