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• IGEH quantifies the statistical independence between the microvariables.
• Multivariate Gaussian distributions and quadratic Hamiltonians are one-to-one.
• IGEH is compatible with the criterium of global chaos given by the scalar curvature.
• Phase transitions in statistical models can be characterized by means of IGEH levels.
• Controlling phase transitions by external parameters of the covariance matrix.
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a b s t r a c t

We present an extension of the ergodic, mixing, and Bernoulli levels of the ergodic
hierarchy for statistical models on curved manifolds, making use of elements of the
information geometry. This extension focuses on the notion of statistical independence
between the microscopical variables of the system. Moreover, we establish an intimately
relationship between statistical models and families of probability distributions belonging
to the canonical ensemble, which for the case of the quadratic Hamiltonian systems
provides a closed form for the correlations between the microvariables in terms of the
temperature of the heat bath as a power law. From this,we obtain an information geometric
method for studying Hamiltonian dynamics in the canonical ensemble. We illustrate the
results with two examples: a pair of interacting harmonic oscillators presenting phase
transitions and the 2×2 Gaussian ensembles. In both examples the scalar curvature results
a global indicator of the dynamics.

© 2017 Published by Elsevier B.V.

1. Introduction

The possibility of that relevant features of the dynamics of a system could be obtained from the differential geometric
structure of the probabilities distributions gave place to the first encounter between differential geometry and probability
theory. In this sense, geometrization of thermodynamics and statistical mechanics constituted the most important
achievement in the subject with several approaches like the obtained by means of the internal energy as considered
Weinhold [1], or the Ruppeiner metric given by the second moments of thermodynamical fluctuations [2], among others.
With the same Riemannian character of these approaches, another formulations based in the thermodynamic of parameters
were established in the field of the statistical mechanics like the foundational works of Rao [3] and Amari [4], and also
given by Ingarden [5], Janyszek [6]. The successful application of all this vast body of approaches in characterizing several
phenomena, such as the phase transitions and their critical points in non ideal gases, gave them entity to constitute a
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discipline within the information theory, called Information Geometry. Curved statistical manifolds are the subject of study
of the information geometry, and they have associated the Fisher–Rao metric [3] which in turn is linked to the concepts
of entropy and Fisher information. Generalized extensions of the information geometry [7–9] with regard to nonextensive
formulation of statistical mechanics [10] has been also considered. The utility of information geometry is not only limited
to thermodynamics and statistical mechanics. For instance, it has been applied in quantum mechanics leading a quantum
generalization of the Fishermetric [11], and recently also in nuclear plasmas [12]. In particular, an application of information
geometry to chaos can be performed by considering complexity on curved manifolds [13–16]. In this approach, asymptotic
expressions for information measures are obtained by means of geodesic equations leading to a criterion for characterizing
global chaos on statistical manifolds [16]: the more negative is the curvature, the more chaotic is the dynamics. As usual,
chaos can be characterized in terms of diverging initially nearby trajectories [17]. For the statistical models this condition
results in the divergence of geodesic paths on the statistical manifold and constitutes a local criterion for chaos.

Besides, in dynamical systems theory, the ergodic hierarchy (EH) characterizes the chaotic behavior in terms of a type
of correlation between subsets of the phase space [18,19]. In the asymptotic limit of large times, the EH establishes that
the dynamics is more chaotic when the correlation decays faster. According to the correlation decays, the four levels of EH
are, from the weakest to the strongest: ergodic, mixing, Kolmogorov, and Bernoulli. In particular, in mixing systems any
two subsets enough separated in time can be considered as ‘‘statistically independent’’, which allows one to use a statistical
description of the behavior of the system. In addition, in quantum chaos, the statistical independence is present in the
universal statistical properties of energy levels which are given by the Gaussian ensembles [20–23]. In Gaussian ensembles
theory one assumes that in a fully chaotic quantum system the interactions are neglected in such way that the Hamiltonian
matrix elements can be considered statistically independent [24]. Related to this, in [25–27] a quantum extension of the EH
was proposed, called the quantum ergodic hierarchy, which allowed to provide a characterization of the chaotic behaviors of
the Casati–Prosen model [23] and the kicked rotator [20–22].

Inspired by the characterizations of quantum chaotic systems made in [25–29] and making use of curved statistical
models, we propose a generalization of the ergodic, mixing and Bernoulli levels of the EH in the context of the information
geometry, which we called Information Geometric Ergodic Hierarchy (IGEH). In order to use it, we define a distinguishability
measure for a 2D correlated model that allows us to give an upper bound for the correlation of IGEH. Moreover, considering
Hamiltonian systems belonging to the canonical ensemble we also give amethod for characterizing their dynamics in terms
of the statistical parameters and the levels of the IGEH.

In this way, our main contribution is two-fold: (1) an intimately connection between statistical models and probability
distributions of the canonical ensemble which allows one to geometrize the phase transitions, and (2) an information
geometric version of the ergodic hierarchy as an alternative framework for studying the chaotic dynamics in curved
statistical models.

Thepaper is organized as follows. In Section 2,we give thenotions and concepts of information geometry used throughout
the paper, alongwith brief description of a 2D correlatedmodel. In Section 3, wemake a brief review of the levels the ergodic
hierarchy. Section 4 is devoted to an information geometric definition of the ergodic hierarchy by expressing the correlations
in terms of probability distributions instead of subsets of phase space. Next, in Section 5 we define a distinguishability
measure for the 2D correlatedmodel and anupper bound for the correlation of the IGEH is given. In Section 6,we establish the
connection between the statistical models and the family of probability distributions belonging to the canonical ensemble.
For quadratic Hamiltonian systems we show that their associated statistical models are the multivariate Gaussian ones, for
which we obtain a closed form for the covariance matrix determinant in terms of the Hessian matrix of the Hamiltonian.
Here we also give an upper bound for the IG correlation where the temperature of the heat bath is considered as an external
parameter. In Section 7, we illustrate the formalismwith two examples: a pair of interacting harmonic oscillators presenting
phase transitions in the canonical ensemble and the 2× 2 Gaussian Orthogonal Ensemble (GOE). Also, a panoramic outlook
of the IGEH is sketched. Finally, in Section 8 we draw some conclusions, and future research directions are outlined.

2. Elements of information geometry

We begin by introducing some fundamentals and concepts, following the definitions given in [4].

2.1. Statistical models

Given an abstract set X one can consider the setM of all the probability density functions (PDFs) p defined on X , i.e.

M =

p : p : X → R, p(x) ≥ 0,


X
p(x)dx


(1)

where R is the set of real numbers and the integration must be replaced by a sum when X is discrete. Consider a subset
S ⊂ M such that each element of S may be parameterized using am-real vector θ = (θ1, . . . , θm) so that

S = {pθ ∈ M : pθ = p(x; θ), θ = (θ1, . . . , θm) ∈ Θ} (2)

whereΘ is a subset ofRm. Then, if themapping θ → pθ is injective it is said that S is a statistical model on X . The dimension of
the statistical model is that of the macrospace, i.e. it ism-dimensional. The physical interpretation of X and Θ is as follows.
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Generally, X represents the microscopic variables of the system under study which typically are difficult to control, for
instance the positions of all the particles in a gas. Thus, X is called themicrospace and x are the microvariables. On the other
hand, Θ represent the macroscopic variables that can be measured in an experiment, like the mean value or the moments
of the microvariables. It is said that Θ is the macrospace and θ1, . . . , θm are the macrovariables. Since the microspace is
fixed by the system then one can only choose the macrospace, and in this way the statistical model is established. Then, the
statistical models are system-specific, fromwhich follows that a statistical model could be useful for a systemwhile that for
another not.

2.2. Metric structure of the statistical manifold

Next step is to describe the behavior of a system by means of a previously and adequately chosen, statistical model. For
this, some kind of dynamics must be introduced on the statistical model. In information geometry this is accomplished by
means of the Fisher–Rao tensor

gij(θ) =


X
dx p(x; θ)

∂ log p(x; θ)

∂θi

∂ log p(x; θ)

∂θj
i, j = 1, . . . ,m (3)

where p(x; θ) is a generic element of S. Themetric tensor gij endows the dynamics to themacrospace in terms of the geodesic
equations for the macrovariables θi, i.e. S results to be a statistical manifold. More precisely, S is a Riemannian manifold and
the statistical character is due to the elements of S are probability distributions.

Thus, the main goal of the statistical models is to obtain some relevant information about the dynamics by means of
the geodesic equations and geometrical quantities like the Ricci tensor, the scalar curvature etc. In this sense, we will
use a criteria given by Cafaro et al. [13–15] to characterize global chaos on statistical models: ‘‘the more negative is the
scalar curvature, the more chaotic is the dynamics’’. From the metric tensor (3) one can obtain the geodesic equations for the
macrovariables θ1, . . . , θm along with the following geometrical quantities that we will use throughout the paper.

Geodesic equations :
dθk
dτ
+ Γ k

ij
dθi
dτ

dθj
dτ
= 0, ∀ k = 1, . . . ,m (4)

Christoffel symbols : Γ k
ij =

1
2
g im gmk,l + gml,k − gkl,m


(5)

Riemann curvature tensor : Riklm =
1
2


gim,kl + gkl,im − gil,km − gkm,il


+ gnp


Γ n
klΓ

p
im − Γ n

kmΓ
p
il


(6)

Ricci tensor : Rik = g lmRlimk (7)

Scalar curvature : R = g ikRik (8)

where the comma in the subindexes denotes the partial derivative operation (of first and second orders), gkl is the inverse
of gij, and τ is a scalar that parameterizes the geodesic curves.

2.3. The 2D correlated Gaussian model

Most statistical models used in the literature are the so called Gaussian models, due to its wide versatility for describing
multiple phenomena. Thismodels are obtained by choosing the subfamily S as the set ofmultivariate Gaussian distributions.
If (x1, . . . , xn) ∈ Rn are the microvariables and there is no correlations between them, then (µ1, . . . , µn, σ1, . . . , σn) ∈
Rn
× Rn

+
are the set of macrovariables, where µi and σ 2

i correspond to the mean value and the variance of the ith
microvariable. However, for a more realistic description of the system the correlations between each of the microvariables
must be taken into account. Considering the family of bivariate (binormal) distributions, one of the Gaussianmodels of lower
dimension that present correlations can be obtained, which is given by

p(x, y;µx, µy, σx, σy, r) =
1

2πσxσy
√
1− r2

× exp


−

1
2(1− r2)


(x− µx)

2

σ 2
x

+
(y− µy)

2

σ 2
y

−
2r(x− µx)(y− µy)

σxσy


(9)

where σxy = rσxσy is the covariance between x and y and r is the correlation coefficient that assumes values within
the ranges −1 ≤ r ≤ 1. Here the microspace is X = {(x, y) ∈ R2

} and the macrospace is Θ = {(µx, µy, σx, σy) ∈
R×R×R+×R+}. Nevertheless, one still can obtain a non trivial description by adding the followingmacroscopic constraint

Σ2
= σxσy (10)

where Σ is a constant belonging to R+. Mathematically, the effect of Σ is to restrict the dynamics to the submanifold
Θ∩{Σ = σxσy}. Physically,Σ resembles theminimumuncertainty relationwhen one chooses x as the position of a particle
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and y its conjugate variable. Moreover, this interpretation allows to give an explanation of the phenomenon of ‘‘suppression
of classical chaos by quantization’’ from an information geometric point of view [16]. For the sake of simplicity one also can
fix the mean value µy of y as zero. With the help of (10) then one can rewrite (9), thus obtaining the non-trivial correlated
statistical model of lower dimensionality

p(x, y;µx, σ , r) =
1

2πΣ2
√
1− r2

exp

−

1
2(1− r2)


(x− µx)

2

σ 2
+

y2σ 2

Σ4
−

2r(x− µx)y
Σ2


(11)

where we renamed σx as σ . This is the so called the 2D correlated model [16], since it present correlations between x and y
by means of Σ2

= σxσy and its macrospace Θ = {(µx, σ ) ∈ R × R+} is bidimensional. It should be noted that here r is
considered as an external parameter that does not belong to the macrospace.

Two remarks about the Eq. (11) deserve to be made. First, the assumption µy = 0 would seem to be an asymmetry in
the choice of the macrovariables of the macrospace. However, this is not the case since considering µx = 0 one gets the
same model, i.e. endowed with the same physical characteristics, due to the symmetry of the crossed term between x and
y within the exponential of (11). Second, the hypothesis of considering µx = 0 or µy = 0 is with the aim of obtaining the
minimal and relevant model presenting correlations between x and y.

For this model, from Eqs. (3)–(8) one can obtain the Fisher tensor along with the following geometrical quantities.

Fisher–Rao metric : gij(θ) =


1

σ 2(1− r2)
0

0
4

σ 2(1− r2)

 (12)

Non-vanishing Christoffel symbols : Γ 1
12 = Γ 1

21 = −
1
σ

, Γ 2
11 =

1
4σ

, Γ 2
22 = −

1
σ

(13)

Non-vanishing Ricci tensor components : R11 = −
1

4σ 2
, R22 = −

1
σ 2

(14)

Scalar curvature : R(r) = −
1
2
(1− r2), −1 ≤ r ≤ 1. (15)

From (15) one can see that the curvature has a minimum value R = − 1
2 when r = 0 (absence of correlations) while for

|r| → 1 (maximally correlated case) it has a maximum value R = 0. In terms of the criterium of global chaos this can be
interpreted as: the dynamics of the uncorrelated case is more chaotic than the corresponding to the maximally correlated
case. Moreover, the divergence of themetric observed for |r| → 1 expresses themaximally correlated case as a critical point
of the dynamics.

3. The ergodic hierarchy

In classical chaos, the exponential instability implies continuous spectrum, and therefore, a decay of correlations in
such a way that for large times the measure of the intersection between two sets of phase space (separated from each
other in time) tends to the product of their measures. This is the well known mixing property, and constitutes one of the
foundations of the statistical mechanics. The main feature of mixing is that it establishes the statistical independence of
different parts of a trajectory, when sufficiently separated in time. This is the main reason for the application of probability
theory in the classical domain, which allows one to calculate statistical features such as diffusion, relaxation and distribution
functions [22]. Consequently, the description in terms of trajectories can be replaced by an equivalent one in terms of
distribution functions, which, if not singular, represent not a single trajectory but a continuum of them.

In ergodic theory, any classical system is representedmathematically by a dynamical system (X, Σ, µ, {Tt}t∈J)where X is
a set,Σ is a sigma-algebra of X ,µ ameasure defined overΣ and {Tt}t∈J a group of measure-preserving transformations. The
ergodic hierarchy ranks the chaos of a dynamical system according to a type of correlation C(TtA, B) between two subsets
A and B of X that are separated by a time t . This is defined as [18,19]

C(TtA, B) = µ(TtA ∩ B)− µ(A) µ(B). (16)

The ergodic, mixing and Bernoulli levels of the EH are given in terms of (16) in the following way. Given two arbitrary sets
A, B ∈ X , it is said that Tt is

• ergodic if

lim
T→∞

1
T

 T

0
C(TtA, B) dt = 0, (17)

• mixing if

lim
t→∞

C(TtA, B) = 0, (18)
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• Kolmogorov if for all integer r , for all A0, A1, . . . , Ar ⊆ X , and for all ε > 0 there exists a positive integer n0 > 0 such that
if n ≥ n0 one has

|C(A0, B)| < ε, for all B ∈ σn,r(A1, . . . , Ar) (19)

where σn,r(A1, . . . , Ar) is the minimal σ -algebra generated by {T kAi : k ≥ n ; i = 1, . . . , r}.
• Bernoulli if

C(TtA, B) = 0 for all t ≥ 0. (20)

In ergodic systems the correlation vanishes ‘‘in time average’’ for large times while in mixing systems C(TtA, B) vanishes for
t → ∞. In Kolmogorov systems the correlations between an arbitrary set and another one belonging to the σ -algebra
σn,r(A1, . . . , Ar) cancel for n → ∞. In Bernoulli systems the correlation is zero for all times. These levels classify the
dynamics according to Eqs. (17), (18), (19), and (20), from the weakest level (the ergodic) to the strongest (the Bernoulli).
The following strict inclusions hold:

ergodic ⊃ mixing ⊃ Kolmogorov ⊃ Bernoulli.

In order to express C(TtA, B) by means of probability distributions it is more convenient to use the definition (16) in terms
of distribution functions, which is given by [19]

C(f ◦ Tt , g) =

X
(f ◦ Tt)(x)g(x)dx−


X
f (x)dx


X
g(x)dx ∀ f , g ∈ L1(X) (21)

where f ◦ Tt denotes the composition of f and Tt , i.e. f ◦ Tt(x) = f (Tt(x)) for all x ∈ X and now the role of A, B is played by
the functions f , g ∈ L1(X). Physically, f represents any initial density function of the classical system whose value at time
t is given by f ◦ Tt with Tt the classical Liouville evolution (in Hamiltonian systems).

4. An information geometric version of the ergodic hierarchy

Following the idea of characterizing chaos by means of the ergodic hierarchy [25–27], now we consider an extension of
the EH within the context of the information geometry. In information geometry one has probability distributions pθ that
depend on a set of parameters θ , and the dynamics of themacrovariables θ is performed along the geodesics of the statistical
manifold. Moreover, in the statistical manifold the role of time variable t of dynamical systems is played by a parameter τ
along the geodesics.

In order to introduce the tools of information geometry, we propose the following approach by defining a correlation
between functions as themacrovariables θ evolve along the geodesics. Given N functions f (xi), each one of them in terms of
the variable xi for all i = 1, . . . ,N , we define the information geometric correlation (IG correlation) C(f1, . . . , fN , τ ) between
f1, . . . , fN at time-like parameter τ as

C(f1, . . . , fN , τ )
.
=


p(x1, . . . , xN; θ(τ ))f1(x1) · · · fN(xN)dx1 · · · dxN −

N
i=1


pi(xi; θ(τ ))fi(xi)dxi (22)

where θ(τ ) = (θ1(τ ), . . . , θM(τ )) is the M-dimensional vector of the macrovariables at ‘‘time’’ τ and,

pi(xi; θ(τ )) =


p(x1, . . . , xN; θ(τ ))


j≠i

dxj, i = 1, . . . ,N (23)

are themarginal distributions of p(x1, . . . , xN; θ(τ )). From (22) one can see that C(f1, . . . , fN , τ )measures how independent
the variables x1, . . . , xN are at time-like τ . This can be considered as a sort of information geometric generalization of the
EH correlation.

Having established C(f1, . . . , fN , τ ) and taking into account the ergodic, mixing and Bernoulli levels given by Eqs. (17),
(18) and (20), we define the information geometric ergodic hierarchy (IGEH) as follows. For the sake of simplicity and since
we focus mainly on the ergodicity and mixing properties (which are the fundamentals of statistical mechanics), in this
contribution we do not extend the Kolmogorov level that involves a σ -algebra.1 Given a set of N arbitrary functions
f1(x1), . . . , fN(xN) we say that now the statistical model is

• IG ergodic if

lim
T→∞

1
T

 T

0
C(f1, . . . , fN , τ )dτ = 0, (24)

1 In fact, the extension of the Kolmogorov level requires a more careful treatment than the rest of the levels, due to the presence of the σ -algebra
σn,r (A1, . . . , Ar ), that is out of the technical scope of this work.
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• IG mixing if

lim
τ→∞

C(f1, . . . , fN , τ ) = 0, (25)

• IG Bernoulli if

C(f1, . . . , fN , τ ) = 0 for all t ∈ R. (26)

As in the ergodic hierarchy, the following strict inclusions hold:

IG ergodic ⊃ IG mixing ⊃ IG Bernoulli.

For instance, a statistical model that is IG ergodic can be given by assuming that C(f1, . . . , fN , τ ) is proportional to
sin(ατ)∥f1∥1 . . . ∥fN∥1 with α ∈ R. Making this replacement in (24) one obtains that limT→∞

1
T

 T
0 C(f1, . . . , fN , τ )dτ is

equal to zero. Since sin(ατ)∥f1∥1 . . . ∥fN∥1 oscillates, then this model cannot be IG mixing nor IG Bernoulli. Examples of
statistical models that are IG mixing and IG Bernoulli will be illustrated in Section 7. Our approach, thus, deals with ergodic
hierarchy in statistical models from an information geometry point of view.

5. A measure of distinguishability for the 2D correlated model

In order to use the levels of the IGEH for characterizing the dynamics of statistical models one should have a manner
of determining the decay of the correlation C(f1, . . . , fN , τ ) in Eqs. (24), (25) or (26). For the family of the 2D correlated
probabilities p(x, y|µx, σ ; r) of (11), we define a distinguishability measure F : {p(x, y;µ, σ , r) | µx ∈ (−∞,∞), σ ∈
(0,∞), − 1 ≤ r ≤ 1} −→ R, given by

F(p) .
= ∥p(x, y;µx, σ , r)− p1(x)p2(y)∥∞ = max

(x,y)∈R2
|p(x, y;µx, σ , r)− p1(x)p2(y)| (27)

where p1(x), p2(y) are the marginal distributions of p(x, y;µx, σ , r). Furthermore, if f1(x), f2(y) ∈ L1(R) are arbitrary
functions of x and y, then we have

|C(f1, f2, τ )| =


R2

p(x, y;µx, σ , r)f1(x)f2(y)dxdy−


R
p1(x)f1(x)dx


R
p2(y)f2(y)dy


≤


max

(x,y)∈R2
|p(x, y;µx, σ , r)− p1(x)p2(y)|

 
R2

dxdyf1(x)f2(y)
 ≤ F(p)∥f1f2∥1. (28)

Eq. (28) expresses that F(p)∥f1f2∥1 is an upper bound for |C(f1, f2, τ )|. Therefore, it is convenient to find an analytic
expression for (27). After some algebra one can obtain that2

F(p) = |r|


1− r2(1+ |r|)
−1− 1

|r|
for all r ∈ [−1, 1]. (29)

The behavior of F(p), which is independent of µx and σ , is shown in Fig. 1. Two relevant regions, corresponding to the
limiting cases r → 0 and r →±1, can bewell distinguished. The region r → 0 corresponds to the zonewhere the statistical
model is characterized by the IG mixing and IG Bernoulli levels, with the particularity that the variables of microspace are
uncorrelated. Moreover, one can see that near to r = 0 the decay is linear in r . The curve F(p) also shows that, if r → 0
when τ →∞, then the statistical model is IG mixing.

In the region r → ±1 the measure F(p) diverges corresponding to the maximally correlated case, which physically
means that the system presents strong correlations between the variables of microspace. Due to the correlations are strong
in this regime the statistical model cannot be IG mixing nor IG Bernoulli.

Finally, it should be noted that F(p) does not allow one to distinguish between two probability distributions having r and
−r respectively. The symmetry respect to the axis r = 0 is due to the mathematical form of the infinite norm ∥.∥∞ in the
definition (27). That is, with other choices of F(p) one could distinguish states (probability distributions) with correlation
coefficients r and−r .

6. Geometrizing the canonical ensemble by means of statistical models and the IGEH

On the basis of the above characterization of the dynamics of the macrospace in terms the IGEH, our next aim is to give
a method for studying the dynamics of a system belonging to the canonical ensemble.

2 The demonstration can be found in the Appendix.
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strong
correlations

strong
correlations

F (p)
3.5

3.0

2.5

2.0

1.5

1.0

0.5

IG mixing,
IG Bernoulli

null correlations

-1.0 -0.5 0.5 1.0r

Fig. 1. Behavior of F(p) in terms of the correlation coefficient. Near to the region r = 0 the statistical model belongs to the IG mixing level while for r = 0
it is IG Bernoulli. When r → ±1 one has that F(p) diverges with the presence of strong correlations. The discontinuity of the slope of F at r = 0 is due to
the particular form of F(p), i.e. the maximum operation of infinite norm can present discontinuities in its derivatives.

6.1. Canonical ensembles in the context of the information geometry

Beyond the relationship between statisticalmodels and statistical physics has been already established [4,30], extensions
in several directions have been recently introduced [31–38], with a particular focusing on the exponential families since
they represent mathematically the Liouville densities of the statistical ensembles. Relevant consequences from these
researches such as the connection betweenHessian structures and exponential families [37], nonextensive statisticalmodels
[33–35,38] and other extensions [31,32,36] has been reported.

In order to apply the IGEH to the canonical ensemble, here we obtain some explicit formulas that relate the statistical
parameters of multivariate Gaussian distributions (which are a special case of exponential family) with the physical
parameters of quadratic Hamiltonians. In the present contribution we only focus on the multivariate Gaussian distributions
and we will omit the definition of exponential families of a more general character. We begin by considering the family of
probability density functions given by the classical canonical ensemble

p(q, p; θ) =
1

Z(θ)
exp {−βE(q, p, θ)} (30)

where Z(θ) =

p(q, p; θ)dqdp is the well known partition function, β = 1

kBT
is the Boltzmann factor, E(q, p, θ) is the

energy of the system expressed in terms of the phase space coordinates (q, p) ∈ Γ (with Γ the phase space), and θ are
the macrovariables of the system. The function p(q, p; θ) represents the probability density of the microstate (q, p) of the
system, corresponding to the macrostate given by the macroscopic parameters θ , when contacted in thermal equilibrium
with a heat bath at a fixed temperature T . In this way, one can see that there is a biunivocal correspondence between
statistical models and statistical ensembles: each pair of microvariables (q, p) corresponds to a microstate of the ensemble,
and each value of the macrovariable θ is associated to a macrostate of the system.

Assuming a 2n-dimensional phase space Γ and am-dimensional macrospace Θ , from (30) and using (3) one obtains the
Fisher tensor for the canonical ensemble

gij(θ)CE =
β2

Z(θ)


dqdp exp {−βE(q, p, θ)}

∂E(q, p; θ)

∂θi

∂E(q, p; θ)

∂θj

= β2

∂E(q, p; θ)

∂θi

∂E(q, p; θ)

∂θj


CE

i, j = 1, . . . ,m (31)

where q and p are a short notation for (q1, . . . , qn) and (p1, . . . , pn), and the suffix CE stands for the canonical ensemble. The
formula (31) is the expression of the canonical ensemble in the context of the information geometry. All the dynamics over
the macrospace can be derived by means of the Eqs. (4)–(8), thus obtaining a geometrical characterization of the canonical
ensemble.

6.2. Dynamics of the canonical ensemble in terms of the IGEH levels

The particular dependence of the energy E(q, p; θ) on the microvariables (q, p) determines the correlations between
them, which are reflected in the probability distribution p(q, p; θ). Since the IG correlation C(f1, . . . , fN , τ ) measures the
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degree of statistical independence between the microvariables of the microspace at time-like parameter τ , then for a given
expression of the energy it is desirable to know what is the form of C(f1, . . . , fN , τ ). We focus on a particular form of the
energy, i.e. when E(q, p; θ) is a quadratic function of (q, p). The physical relevance of this assumption lies, among other
things, in the fact that it allows one to study the dynamics of the system near of an equilibrium point. In this case, the
formula of the energy is given by

E(q, p; θ) = (q− q0, p− p0) G (q− q0, p− p0)T

Gij =
1
2

∂2E
∂xi∂xj

(q0, p0), i, j = 1, . . . , n (32)

(x1, . . . , xn, xn+1, . . . , x2n) = (q1, . . . , qn, p1, . . . , pn)
withG the Hessian of E around at a point (q0, p0) and (q−q0, p−p0)T the transposed of (q−q0, p−p0). Then, the probability
distribution p(q, p; θ) adopts the form

p(q, p; θ) =
1

Z(θ)
exp


−β(q− q0, p− p0) G (q− q0, p− p0)T


(33)

with Z(θ)−1 the normalization factor. From (33) one can see that p(q, p; θ) is nothing but a 2n-multivariate Gaussian
distribution on the microvariables q1, . . . , qn, p1, . . . , pn. At this point it is convenient to recall the expression of the 2n-
multivariate Gaussian distribution p(x;µ, 6)

p(x;µ, 6) =


1
2π

n 1
√
|6|

exp

−

1
2
(x− µ) 6−1 (x− µ)T


(34)

with x = (x1, . . . , x2n) the vector of microvariables, µ = (µ1, . . . , µ2n) the mean value vector, 6 the covariance matrix and
6 its inverse, and |6| the determinant of 6. Moreover, the marginals pi(xi;µi, 6ii) of p(x;µ, 6) are given by

pi(xi;µi, 6ii) =
1

√
2π6ii

exp

−

1
2

1
6ii

(xi − µi)
2


, i = 1, . . . , 2n (35)

where 6ij stands for the ijth matrix element of 6 with i, j = 1, . . . , 2n.
Let us consider 2n arbitrary functions f1(x1), . . . , f2n(xn) ∈ L1(R). Then, replacing (34) and (35) in (22) one has that

C(f1, . . . , f2n, τ )
.
=


R2n


1
2π

n 1
√
|6|

exp

−

1
2
(x− µ) 6−1 (x− µ)T


f1(x1) · · · f2n(x2n)


dx1 · · · dx2n

−

2n
i=1


R


1

√
2π6ii

exp

−

1
2

1
6ii

(xi − µi)
2

fi(xi)


dxi (36)

is the IG correlation for the family of 2n-multivariate Gaussian distributions. As in the 2D correlated model, one can obtain
an upper bound for C(f1, . . . , f2n, τ ) as follows.

|C(f1, . . . , f2n, τ )|

≤ max
x∈R2n


1
2π

n 1
√
|6|

exp

−

1
2
(x− µ) 6−1 (x− µ)T


−

2n
i=1

1
√
2π6ii

exp

−

1
2

1
6ii

(xi − µi)
2


×


R2n

f1(x1) · · · f2n(x2n)dx1 · · · dx2n


≤ max

x∈R2n


1
2π

n 1
√
|6|

exp

−

1
2
(x− µ) 6−1 (x− µ)T


−

2n
i=1

1
√
2π6ii

exp

−

1
2

1
6ii

(xi − µi)
2


×∥f1(x1) · · · f2n(x2n)∥1. (37)
This inequality expresses an upper bound of the IG correlation for the family of the 2n-multivariate Gaussian distributions,
where the maximum is a measure of distinguishability, and the parameters µ = µ(τ), 6 = 6(τ ) are dependent on τ along
the geodesics by means of the application of Eqs. (3)–(5) to p(x;µ, 6).

Nowwe can set the upper bound of (37) in the language of the canonical ensemble. By simple inspection of Eqs. (32)–(35),
if one makes the following replacements

x = (x1, . . . , x2n) −→ (q, p) = (q1, . . . , qn, p1, . . . , pn)
µ = (µ1, . . . , µ2n) −→ (q0, p0) = (q10, . . . , qn0, p10, . . . , pn0)

|6|−1 −→ |2βGij| = (2β)2n|Gij|

6−1ij −→ 2βGij = β
∂2E

∂xi∂xj
(q0, p0), i, j = 1, . . . , 2n

(38)
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in (37) then one obtains

|C(f1, . . . , f2n, τ )CE |

≤ max
(q,p)∈Γ


β

π

n 1
|G−1|

exp

−β(q− q0, p− p0) G (q− q0, p− p0)T


−

n
i=1

β

π


(G−1)ii(G−1)n+in+i
exp


−β


1

(G−1)ii
(qi − qi0)2 +

1
(G−1)n+in+i

(pi − pi0)2


×∥f1(q1) · · · fn(qn)fn+1(p1) · · · f2n(pn)∥1. (39)

The inequality (39) is an upper bound of the IG correlation for a system in the canonical ensemblewhose energy is a quadratic
form, expanded around a point (q0, p0) of the phase space. Since themacrovariables (q0, p0) and G are functions of the time-
like parameter τ then the utility of (39) is that, according to the way the IG correlation cancel for large values of τ , one can
classify the statistical model as belonging to some of the levels of the IGEH. In this way, one can study phase transitions in
terms of the IGEH levels as the macrovariables vary. For instance, if the dynamics in macrospace is such that the maximum
in (39) tends to zero when τ →∞, then one has that the canonical ensemble behaves as an IG mixing statistical model.

It should be noted that the multivariate Gaussian distribution only exists if the covariance matrix 6 is positive, which
implies that 6−1 must be also positive. Then, it follows that ∂2E

∂2xi
(q0, p0) > 0. In particular, the stable equilibrium points of

the system satisfy this condition.
Now we are in a position to reach one of our main contributions of this work. By the Eq. (38) and using the definition of

the tensor G, one finally obtains

|6|

 ∂2E
∂xi∂xj

(q0, p0)
 = (kBT )2n. (40)

This equation expresses an intimate relationship between the canonical ensemble and the statistical models, which one can
express in words as follows:

‘‘given a quadratic form of the energy, the determinant of the covariance matrix, which measures the correlations between
the microvariables, is proportional to a power (the dimension of the phase space) of the temperature of the heat bath’’.

Moreover, since the determinant of covariance matrix is a decreasing function of the correlations, as the temperature
of the heat bath increases the correlations tend to be suppressed, as expected statistically. This result will be useful for
characterizing phase transitions, as we shall see below.

7. Models and results

In order to illustrate the relevance of the IGEH we consider two examples belonging to different topics: an interacting
bipartite system presenting phase transitions in the canonical ensemble, and the 2×2 Gaussian orthogonal ensemble. Next,
we give a panoramic outlook of the IGEH and of the relationship between statistical models and Liouville densities of the
canonical ensemble.

7.1. Phase transitions in a pair of interacting harmonic oscillators

Let us consider a pair of unidimensional and interacting harmonic oscillators in the canonical ensemble whose total
energy is given by

E(q1, q2, p1, p2; q10, q20,m1,m2, ω1, ω2, r) = T (p1, p2;m1,m2)+ V (q1, q2; q10, q20,m1,m2, ω1, ω2, r)

T (p1, p2;m1,m2) =
p21
2m1
+

p22
2m2

V (q1, q2; q10, q20,m1,m2, ω1, ω2, r) =
1
2
m1ω

2
1(q1 − q10)2 +

1
2
m2ω

2
2(q2 − q20)2

− r
√
m1m2ω1ω2(q1 − q10)(q2 − q20)

where qi, pi, qi0, mi, and ωi are the position, the momentum, the equilibrium position, the mass, and the frequency of the
ith particle with i = 1, 2. Here T (p1, p2;m1,m2) is the kinetic energy and V (q10, q20,m1,m2, ω1, ω2, r) is the potential
energy which is composed by three terms: the first two are the potential energy of each oscillator separately while the term
−r
√
m1m2ω1ω2(q1 − q10)(q2 − q20) represents the interaction between the oscillators, and the coefficient r ∈ [−1, 1]

measures the strength coupling. For instance, when r = 0 the oscillators are uncoupled, and therefore, their motions are
independent of each other.
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Now, in order to use the analysis made about the 2D correlated model one must reduce the number of microvariables
and macrovariables, and also impose some type of constraints. In this sense, we fix the massesm1,m2 and set q20 = 0. Also,
we consider the following constraint

Σ2
=

kBT0
√
m1m2ω1ω2

(41)

whereΣ is a real constant, kB is the Boltzmann constant, and T0 is a temperature of reference.3 Here T0 plays the role of being
a temperature that breaks up the correlations between the microvariables. Two remarks about the constraint (41) deserve
to be made. First, one can see that (41) corresponds to the constraint (10) in order to use the 2D correlated model. Second,
the physical content of (41) is to introduce correlations between the positions q1 and q2 of the oscillators by restricting the
dynamics to the submanifold Θ ∩ {Σ2

= σ1σ2}, with σi =


kBT0
miωi

and i = 1, 2.
Due to the correlations are only between the position coordinates q1, q2 then one can reasonably neglect the

momentum coordinates p1, p2 by integrating the probability distribution p(q1, q2, p1, p2; θ) given by the canonical
ensemble, i.e. 1

Z(θ)
exp{−βE(q1, q2, p1, p2; θ)}, over p1 and p2. And since only the kinetic energy has the dependence on p1

and p2 then this equivalent to consider a sort of marginal probability distribution with respect to the potential energy, i.e.

p(q1, q2; θ) = A(θ) exp{−βV (q1, q2; θ)}, with A(θ)−1 =


exp{−βV (q1, q2; θ)}dq1dq2. (42)

With the help of (41) one can express the potential energy as

V (q1, q2; q10, ω1, r) =
kBT0
2


(q1 − q10)2

kBT0(m1ω
2
1)
−1
+

q22kBT0(m1ω
2
1)
−1

Σ4
−

2r(q1 − q10)q2
Σ2


. (43)

Then, from (42) and (43) one has

p

q1, q2; q10,


kBT0(m1ω

2
1)
−1, r


= A


q10,


kBT0(m1ω

2
1)
−1, r


× exp


−β

kBT0
2


(q1 − q10)2

kBT0(m1ω
2
1)
−1
+

q22kBT0(m1ω
2
1)
−1

Σ4
−

2r(q1 − q10)q2
Σ2


(44)

which is nothing but the probability distribution of the 2D correlated model (11) by means of the identifications

(x, y) ←→ (q1, q2)
µx ←→ q10

σ ←→


kBT0(m1ω

2
1)
−1

(1− r2)−1 ←→ βkBT0 =
T0
T

.

(45)

From the last line of (45) one obtains

1− r2 =
T
T0

. (46)

Let us show that this equation is a particular case of the formula (40): since the determinant of the covariance matrix is
Σ4(1 − r2) and the determinant of the Hessian of the potential energy evaluated at (q10, q20) is (1 − r2)m1m2ω

2
1ω

2
2 then

one can replace both expressions in (40) with n = 1, thus obtaining
Σ4(1− r2)2m1m2ω

2
1ω

2
2 = (kBT )2.

With the help of (41) one can recast this equation as

Σ4(1− r2)2(kBT0)2
1

Σ4
= (kBT )2

from which one obtains 1− r2 = T
T0
.

Considering the temperature T as an external parameter one can study the phase transitions of the system as T varies.
Also, we set the reference temperature T0 as the room temperature. Given that the parameter τ is arbitrary, we choose τ as

τ =
1

1− T
T0

.

This choice for τ is convenient since one has
τ −→∞ if and only if T −→ T0. (47)

3 For instance, the room temperature∼20 °C (293.15 K).
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In this way, the asymptotic limit τ → ∞ is identified with the limit T → T0, and therefore, the transition towards high
temperatures can be studied bymeans of the limit τ →∞. This transition express the behavior of the correlations between
the oscillators when the bath temperature pass from a finite value (which is lower than T0) to the room temperature.
Physically, at the room temperature is expected that if the energy kBT0 delivered by the bath to each oscillator is larger
than the energies of them (i.e., kBT0 ≫ m1,2ω

2
1,2) then as a result of the thermal agitation the correlations between the

oscillators tend to be canceled. Indeed, from (46) one can see that r → 0 when T → T0.
Now let us see that this phase transition is characterized in terms of the mixing level of the IGEH. When r is vanishingly

small, the following approximations hold:

(

1− r2)−1−

1
|r| ≈ 1− r2


−

1
2
−

1
2|r|


= 1+

1
2
|r| +

1
2
r2

(1+ |r|)−1−
1
|r| ≤ 1.

Using these approximations, and neglecting terms of order r2, in the formula (29) of F(p) one obtains that F(p) . |r| holds
for |r| ≪ 1. Replacing this inequality in (28) one has that

|C(f1, f2, τ )| . |r| ∥f1f2∥1, for |r| ≪ 1.
In turn, since r → 0 when τ →∞ this equation implies

lim
τ→∞
|C(f1, f2, τ )| . lim

τ→∞
|r| ∥f1f2∥1 = 0. (48)

According to the definition (25) then the system is IG mixing. This is the regime of null correlations corresponding to the
region of the curve of F(p) around at r = 0, as can be seen in Fig. 1. When r = 0 the probability distribution (44) can be
factorized as the product of its marginals, and therefore, from the Eq. (26) one has that the system is IG Bernoulli.

Moreover, since the scalar curvature for the 2D correlated model is R = − 1
2 (1− r2) then one obtains

R = −
T
2T0

. (49)

The formula (49) expresses the connection between the thermodynamics of the canonical ensemble and the information
geometry of the system of coupled oscillators. It can be seen that the statisticalmodel behaves as an ‘‘intermediary’’ between
the thermodynamic parameters and the geometrical quantities of the statistical manifold. As a consequence, the covariance
matrix determinant of the statistical model is determined by the Boltzmann factor, thus linking the temperature with all
the geometrical quantities like the metric tensor, the scalar curvature, etc.

From Eq. (49) it follows that the scalar curvature decreases as the bath temperature increases up to reach a minimum
value R = − 1

2 at the room temperature, where the correlation coefficient is zero. On the other hand, when the temperature
tends to zero the scalar curvature takes a maximum value R = 0 which corresponds to the maximally correlated case
r →±1. This reflects the intuitively image that in absence of thermal agitation the correlations remain present.

Finally, it should be noted that this analysis is consistent with the Cafaro’s criteria of global chaos: as the temperature
grows the dynamics become more chaotic and the scalar curvature turns out more negative. From the point of view of the
IGEH this is characterized in terms of the mixing level, in which the breaking up of the coupling between the oscillators at
the room temperature is expressed by means of the cancellation of the IG correlation in the asymptotic limit.

7.2. 2× 2 Gaussian Orthogonal Ensembles (GOE)

In Gaussian Orthogonal Ensembles theory one deals with the probability distribution p(H11,H12, . . . ,Hnn) for the
Hamiltonianmatrix elements assuming that theHij are uncorrelated [20,21]. Then in the framework of information geometry
one could try to describe them by defining a microspace x1, x2, . . . , xn and a macrospace θ1, θ2, . . . , θm in a suitable way.

In order to characterize the GOE within a statistical model we study a correlated ensemble of 2 × 2 matrices. We take
the microspace as the Hamiltonian matrix elements {H11,H22,H12,H21} and define the macrospace as follows. For the sake
of simplicity, we choose the macrospace in such way that only H11 and H22 are correlated, and that the mean values of all
variables are zero, except for the mean value corresponding to H11 which is equal to µ. Also, we consider that the variance
of H11, H12 and H21 are the same, denoted by σ . Moreover, in order to study how independent the diagonal Hamiltonian
elements are,we restrict the dynamics by considering that r ∈ [−1, 1] is the correlation coefficient betweenH11 andH22, and
that the product of the covariances betweenH11 andH22 is a constantΣ2. Taking this into account, the resultingmacrospace
is {(µ, σ ) ∈ R× (0,∞)} and the correlated probability distribution is given by4

p(H11,H22,H12,H21;µ, σ , r)

=
1

2πΣ2
√
1− r2

exp

−

1
2(1− r2)


(H11 − µ)2

σ 2
+

H2
22σ

2

Σ4
−

(2r(H11 − µ)H22)

Σ2


1

2πσ 2
exp


−

(H2
12 + H2

21)

2σ 2


4 Note that, since the GOE correspond to the orthogonal class of Hamiltonians then one has that H12 = H21 . However, in the formalism of Random

matrices and for the orthogonal case, the volume element dH11dH22dH12dH21 (as if H12 and H21 were independent variables) is the real Lebesgue measure
of R4 and must to be taken into account in order to normalize the probability distribution [20].
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Fig. 2. The Liouville density of the canonical ensemble defines a family of PDFs parameterized by macroscopic quantities which constitutes a statistical
model. For the special case of the quadratic Hamiltonians, the correspondence between the Liouville densities and the multivariate Gaussian distributions
is one-to-one, and therefore the same happens between the Hessians energy and the covariance matrices respectively.

where the correlation coefficient r is considered as an external parameter and since the correlation between H11 and H22 is
in terms of r then Σ can be taken as a fixed constant. In turn, given that H11 and H22 are the only microvariables correlated
to each other and since the transitions of the dynamics depend fundamentally on the correlations, then one can reasonably
neglect H12 and H21. Analogously as it was made in the pair of oscillators, one can integrate the correlated probability
distribution over H12 and H21, thus obtaining

p(H11,H22;µ, σ , r) =
1

2πΣ2
√
1− r2

exp

−

1
2(1− r2)


(H11 − µ)2

σ 2
+

H2
22σ

2

Σ4
−

(2r(H11 − µ)H22)

Σ2


(50)

which is nothing but the 2D correlated model, i.e. (11) and (50) identical by renaming H11 and H22 as x and y respectively.
Then, the non vanishing components of the Ricci tensor Rij and the Ricci scalar curvature R are given by the Eqs. (14) and (15)

R = g11R11 + g22R22 = −
1
2
(1− r2), with R11 = −

1
4σ 2

, R22 = −
1
σ 2

.

Three remarks follow. First, the statistical manifold has a curvature which is negative for all values of the correlation co-
efficient r ∈ [−1, 1]. Based on the Cafaro’s criterium above, this simply means that the dynamics in macrospace (µ, σ ) is
chaotic for all r .

Second, the 2× 2 GOE case corresponds to r = 0 and Σ = σ , thus having the minimum value of the scalar curvature

RGOE = R(r = 0) = −
1
2
= Rmin (GOE,most chaotic case).

In this case the correlated probability distribution is the product of their marginals and thus, the model is IG Bernoulli.
Therefore, one can see that the GOE corresponds to the strongest level of the IGEH and this can be considered as a
characterization of the Gaussian ensembles from an information geometric point of view.

Third, for the strongly correlated case that corresponds to |r| ∼ 1 one has

R(|r| → 1) = 0 (strongly correlated case)

which can be interpreted, by the Cafaro’s criterium of global chaos, as the case when the dynamics is the least chaotic of all.

7.3. A panoramic outlook of the IGEH and of the canonical ensemble in curved statistical models

Here we summarize the aspects of our proposal that can provide innovative tools within the context of the information
geometry for characterizing the dynamics of a system in terms of the chosen statistical model. For this, below we provide
two schematic diagrams, Figs. 2 and 3, showing the content of the two main contributions of this work and its physical
relevance from a panoramic outlook.

8. Conclusions

We have proposed an extension of the ergodic, mixing and Bernoulli levels in the context of information geometry, that
we called information geometric ergodic hierarchy (IGEH), andwe applied it to characterize: (i) the phase transitions of a pair of
interacting harmonic oscillators in the canonical ensemble and (ii) the 2×2 Gaussian Orthogonal Ensembles. The relevance
and novelty of ourmain contributions, i.e. the IGEH and the information geometric characterization of the Liouville densities
of the canonical ensemble expressed by the Eqs. (22)–(26) and (31)–(40) respectively, lie in the following remarks:
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Fig. 3. A diagram showing the way in which the IGEH can characterize phase transitions in terms of the passage from one of their levels to other, and in
different applications: a pair of interacting harmonic oscillators in the canonical ensemble and the 2× 2 GOE.

• Statistical models provides a unified scenario for approaches involving correlations between microscopic variables. This
was illustrated with a correlated 2 × 2 GOE by adding correlations between two variables and showing that, this
modification attenuates the chaotic dynamics on macrospace by increasing the scalar curvature, accordingly to the
Cafaro’s criterium of global chaos.
• The IGEH generalizes the chaos characterization of the ergodic hierarchy by quantifying the statistical independence

between the microvariables (instead of subsets of phase space) of the statistical model. This is performed in the
asymptotic limit of large values of the time-like parameter which is expressed in terms of upper bounds of the IG
correlation as the measure F(p) for the case of the 2D correlated model.
• The association between multivariate Gaussian distributions and quadratic Hamiltonians can be useful for studying the

type of stability that present the dynamics in their equilibrium points in the context of the information geometry.
• Geometrical notions and the Cafaro’s criterium of global chaos can be related with the levels of the IGEH. The 2 × 2

GOE case belonging to the most chaotic level, the IG Bernoulli, has an associated minimum negative value of the scalar
curvature RGOE = −

1
2 .

• By obtaining upper bounds F(p) on the IG correlation for a specific family of probability distributions, as exemplified by
the curve of Fig. 1, one could study geometrical phase transitions moving along curves F(p) as an external parameter r
is varied.
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Appendix. Distinguishability measure F(p) (formula (29))

Proof. Replacing (11) in the definition of F(p) one obtains

F(p) = max
{(x,y)∈R2}

 1

2πΣ2
√
1− r2

exp

−1

2(1− r2)


(x− µx)

2

σ 2
+

y2σ 2

Σ4
−

2r(x− µx)y
Σ2


−

1
√
2πσ 2

exp

−

(x− µx)
2

2σ 2


σ

√
2πΣ4

exp

−

y2σ 2

2Σ4

 .
Now, by defining the following adimensional variablesx = x−µx

σ
andy = y σ

Σ2 one can recast F(p) as

F(p) =
1

2πΣ2
máx{(x,y)∈R2}

 1
√
1− r2

exp

−1

2(1− r2)

x2 +y2 − 2rxy− exp

−
x2 +y2

2

 . (A.1)

Therefore, in order to calculate F(p), it is enough to study the maximum and minimum on R2 of the function Gr(x, y) =
1√
1−r2

exp

−1

2(1−r2)


x2 + y2 − 2rxy


−exp


−

x2+y2

2


for each value of the parameter r ∈ [−1, 1]. For this, it is convenient

to write Gr(x, y) = g1(x, y)− g2(x, y) with g1(x, y) = 1√
1−r2

exp

−1

2(1−r2)


x2 + y2 − 2rxy


and g2(x, y) = exp


−

x2+y2

2


.



130 I.S. Gomez / Physica A 484 (2017) 117–131

Then, one must to find the critical points of Gr(x, y) from the equations

∂Gr(x, y)
∂x

=
∂g1(x, y)

∂x
−

∂g2(x, y)
∂x

= g1(x, y)

−1(x− ry)
(1− r2)


− g2(x, y)(−x) = 0 (A.2)

∂Gr(x, y)
∂y

=
∂g1(x, y)

∂y
−

∂g2(x, y)
∂y

= g1(x, y)

−1(y− rx)
(1− r2)


− g2(x, y)(−y) = 0.

From (A.2) it follows that y ∂Gr (x,y)
∂x − x ∂Gr (x,y)

∂y = 0, thus

yg1(x, y)

−1(x− ry)
(1− r2)


+ g2(x, y)xy− xg1(x, y)


−1(y− rx)
(1− r2)


− g2(x, y)xy = 0.

Since g1(x, y) is an exponential then is always positive. Then one obtains

g1(x, y)

−y(x− ry)+ x(y− rx)

(1− r2)


= 0 H⇒ g1(x, y)


r(y2 − x2)
(1− r2)


= 0 H⇒ r = 0 or y = ±x.

If r = 0 then it is clear that p is equal to the product of their marginals and it follows that the infinite norm is zero. Assuming
r ≠ 0 and replacing y = ±x in the formula of Gr(x, y) then one obtains a function that only depends on x, that we can denote
as ϕr(x). Then one has that

ϕr(x) =
1

√
1− r2

exp

−x2

(1− r2)
(1∓ r)


− exp


−x2


. (A.3)

Thus, the value of F(p) is given by the maximum value of |ϕr(x)|with x ∈ R. For this, we calculate the critical points of ϕr(x)
by making its derivative equal to zero, thus obtaining

dϕr(x)
dx

=
1

√
1− r2

exp

−x2

(1− r2)
(1∓ r)


−2x

(1− r2)
(1∓ r)


+ 2x exp


−x2


= 2x


exp


−x2


−

1
√
1− r2

exp

−x2

(1− r2)
(1∓ r)


1

(1− r2)
(1∓ r)


= 0

H⇒ x = 0 or exp

−x2


−

1
√
1− r2

exp

−x2

(1− r2)
(1∓ r)


1

(1− r2)
(1∓ r)


= 0.

So the critical points of ϕr(x) satisfy

x = 0 or
1

√
1− r2

exp

−x2

(1− r2)
(1∓ r)


1

(1− r2)
(1∓ r)


= exp


−x2


. (A.4)

Replacing (A.4) in (A.3) one has the value of ϕr(x) in its critical points xc

ϕr(xc) =

ϕ(0) =

1
√
1− r2

− 1, ± r exp

−x2c


. (A.5)

In order to find explicitly exp

−x2c


one must solve the second relation of the Eq. (A.4), taking the natural logarithm in both

sides of it then one has

−
x2c (1∓ r)
(1− r2)

+ ln


1
√
1− r2(1− r2)

(1∓ r)

= −x2c .

That is,

exp

−x2c


=


1

√
1− r2(1± r)

 1±r
∓r


. (A.6)

Then, from (A.6) and (A.5) one obtains the following values of ϕr(xc) in its critical points

r


1− r2(1+ r)
−1− 1

r
, −r


1− r2(1− r)

−1+ 1
r
,

1
√
1− r2

− 1. (A.7)
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Now, given that the maximum and minimum values of G(x, y) are precisely the same of ϕr(x) subject to the restriction
y = ±x and since the maximum value of |G(x, y)| is equal to F(p), then from (A.7) one deduces that F(p) is

F(p) = max

|r|


1− r2(1+ r)
−1− 1

r
, |r|


1− r2(1− r)

−1+ 1
r
,

1
√
1− r2

− 1


(A.8)

from which follows the desired result. �
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