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between the poles of the scattering matrix and the Lyapunov exponents in a non Hermitian quantum 

dynamics, is presented. We illustrate the formalism by characterizing the behavior of the Gamow model 

whose dissipative decay time, measured by its decoherence time, is found to be inversely proportional to 

the Lyapunov exponents of the unstable periodic orbits. The results are in agreement with those obtained 

by means of the semiclassical periodic–orbit approach in quantum resonances theory but using a simpler 

mathematics. 
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. Introduction 

The interest in the study of non Hermitian Hamiltonians is re-

ated with the interpretation of phenomena such as nuclear res-

nances, dissipation, relaxation of nonequilibrium states, typical

f open systems. In scattering systems one can consider quantum

esonances, called “quasi-stationary states” or “Gamow states”, in-

tead of scattering solutions [1–5] . Gamow states play in open sys-

ems a similar role as the eigenstates of closed systems and their

igenvalues are complex numbers with non zero imaginary part.

oreover, they characterize the unstable periodic orbits and are

hysically interpreted as particle–states transferred from the sys-

em to its environment. Any measurement on a open system dras-

ically changes its properties by converting discrete energy levels

nto decaying Gamow states, which can be described by a non Her-

itian Hamiltonian [6–9] . In this context, the characteristic decay

imes are given by the imaginary part of the complex eigenvalues,

.e. the so called poles of the scattering matrix [3] . These arise as

 result of the analytic extension of a Hamiltonian whose degen-

ration makes the perturbation theory inapplicable [10–19] . Fur-

hermore, non Hermitian Hamiltonians allow to describe the non-

nitary time evolutions that appear in open quantum systems [9] .

roperties of open quantum systems like nonequilibrium phenom-

na and dissipation can be characterized by the positivity of the

olmogorov–Sinai entropy which, in turn, is equal to the sum of

ll positive Lyapunov exponents due to the Pesin theorem [20–23] .

he characteristic time of these kind of processes is given by the
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olmogorov–Sinai time, which provides a decay time in the phase

pace as a function of the Lyapunov exponents [24–26] . In addi-

ion, in chaotic open quantum systems the Lyapunov exponents

nd the escape rates of classical trajectories have been character-

zed by means of semiclassical techniques [27–30] , and also from

he strategy of ranking chaos looking at the decay of correlations

etween states and observables [31,32] . 

The present contribution shows a novel way of obtaining Lya-

unov exponents in terms of poles of the scattering matrix (S–

atrix) in non Hermitian Hamiltonian systems, but with a sim-

ler mathematics than the used in the literature. As a consequence

f this study, the following is obtained: i) a method for obtain-

ng the part of the KS–entropy free of the escape rates in open

uantum systems [29] , and ii) conditionally invariant measures de-

cribing classical localization of chaotic states [30] . The dynami-

al indicator we choose to obtain our results is the Kolmogorov–

inai entropy by two reasons, mainly. The first is that due to the

esin theorem and the relationship between the KS–entropy and

he KS–time, the sum of the Lyapunov exponents can be expressed

n terms of the KS–time which is the time that a little volume

akes to spread throughout all the phase space [24–26] . In turn,

ith the help of the Wigner transformation the evolution of vol-

mes in phase space can be written as quantum mean values, that

ecay according to the lifetimes given by the poles of the S–matrix.

hus, KS–entropy serves an intermediate tool to connect Lyapunov

xponents with poles. Secondly, the robustness of the KS-entropy

uarantees the validity of the results for a wide range in the initial

onditions, as we shall see. 

Using the idea of expressing classical quantities in terms of

races of quantum operators as in Gomez and Castagnino [31] ,

http://dx.doi.org/10.1016/j.chaos.2017.04.009
http://www.ScienceDirect.com
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Gomez et al. [32] , Castagnino and Lombardi [33] , Gomez and

Castagnino [34 , 35] , we present a relationship between the poles

of the scattering matrix and the Lyapunov exponents in a non Her-

mitian quantum dynamics, where the Kolmogorov–Sinai time ex-

presses the contractions and expansions of volumes in the phase

space along their dynamics. The paper is organized as follows. In

Section 2 we give the preliminaries and the mathematical formal-

ism. In Section 3 we express the Lyapunov exponents in terms of

the poles by means of the non–unitary evolution of a little vol-

ume element in phase space. In Section 4 we illustrate the formal-

ism by applying it to the Gamow model. In Section 5 we discuss

the results with regard the quantum resonances theory. Finally, in

Section 6 some conclusions and future research directions are out-

lined. 

2. Preliminaries 

2.1. Kolmogorov–Sinai time and Pesin theorem 

The characteristic time for a nonequilibrium process in a mixing

dynamics is the Kolmogorov–Sinai time (KS–time) τ KS , which mea-

sures the necessary time to take a number of initially close phase

points to uniformly distribute over the energy surface. Moreover,

τ KS is inversely proportional to the Kolmogorov–Sinai entropy (KS–

entropy), denoted by h KS 

τKS = 

1 

h KS 

(1)

Another important property is the relationship between the max-

imum Lyapunov exponent and h KS . Krylov observed that a little

phase volume �V after a time t will be spread over a region with

a volume �V (t) = �V exp (h KS t) where �V ( t ) is of order 1 [24,25] .

This means that after a time 

 0 = 

1 

h KS 

ln 

1 

�V 

(2)

the initial phase volume �V is spread over the whole phase space.

Consequently, one might expect that the typical relaxation times

are proportional to 1 
h KS 

. 

On the other hand, the Pesin theorem relates the KS-entropy

h KS with the Lyapunov exponents by means of the formula

[20–23] 

h KS = 

∫ 
�

∑ 

σi > 0 

σi (q, p) d qd p (3)

where � is the phase space. For the special case when the σ i are

constant over all phase space one has 

h KS = 

∑ 

σi > 0 

σi (4)

It should be noted the interest of the formula (3) and its physical

meaning. Pesin theorem relates the KS-entropy, that is the average

unpredictability of information of all possible trajectories in the

phase space, with the exponential instability of motion. Then, the

main content of Pesin theorem is that h KS > 0 is a sufficient condi-

tion for the chaotic motion. Using Eqs. (1) and (4) one obtains the

following relationship between τ KS and the Lyapunov exponents 

1 

τKS 

= 

∑ 

σi > 0 

σi (5)

In the following sections we will use this formula in order to ob-

tain a relationship between the Lyapunov exponents and the poles

of the S–matrix, within the context of effective non Hermitian

Hamiltonians. 
.2. Wigner transformation 

We recall some properties of the Wigner transformation formal-

sm [36–39] we will use throughout the paper. Given a quantum

perator ˆ A the Wigner transformation W ˆ A 
: R 

2 M �→ R of ˆ A is de-

ned by 

 ˆ A 
(q, p) = 

1 

h 

M 

∫ 
R M 

〈 q + �| ˆ A | q − �〉 e 2 i p�h̄ d� (6)

here q, p, � ∈ R 

M . The Weyl symbol ˜ W ˆ A 
: R 

2 M �→ R of ˆ A is defined

y ˜ W ˆ A 
(q, p) = h̄ M W ˆ B 

(q, p) where h̄ = 

h 
2 π and h is the Planck con-

tant. In particular, for the identity operator ˆ I one has ˜ W ˆ I 
(q, p) =

(q, p) where 1( q, p ) is the function that is constantly equal to 1.

ne of the main properties of the Wigner transformation is the

xpression of integrals over the phase space in terms of trace of

perators by means of [37] 

r ( ̂  A ̂

 B ) = 

∫ 
R 2 M 

W ˆ A 
(q, p) ̃  W ˆ B 

(q, p) d qd p (7)

alid for all pair of operators ˆ A , ˆ B where ˆ A ̂

 B denotes the product of
ˆ 
 and 

ˆ B and Tr ( . . . ) is the trace operation. Using the definition of

he Weyl symbol it can be shown the following result that relates

he Weyl symbols of an operator and of the same but evolved at a

ime t . The proof can be found in the Appendix. 

emma 2.1. Let ˜ W ˆ A 
(q, p) be the Weyl symbol of an operator ˆ A .

hen the Weyl symbol of ˆ A (−t) = 

ˆ U 

† 
t 

ˆ A ̂

 U t is ˜ W ˆ A 
(q (t) , p(t)) where

(q (t) , p(t)) = (T t q, T t p) and T t is the classical evolution given by

amilton equations. For all t ∈ R one has ˜ 

 ˆ U † t 
ˆ A ̂ U t 

(q, p) = 

˜ W ˆ A 
(q (t ) , p(t )) ∀ (q, p) ∈ R 

2 (8)

here ˆ A (−t) = 

ˆ U −t ̂  A ̂

 U 

† 
−t , 

ˆ U t = e 
−i 

ˆ H 
h̄ 

t 
is the evolution operator, and ˆ U 

† 
t 

s the Hermitian conjugate of ˆ U t . 

.3. Scattering matrix and analytic continuations 

The motivations for the use of non Hermitian Hamiltonians

rise naturally when modeling phenomena of nuclear physics or

ecay processes by means of scattering theory [3,9]. Mathemati-

ally, these are obtained by the analytic dilation method [40] . For

nstance, in the context of microwave billiards it is well known that

he spectrum is modified by the presence of the coupling antennas,

here the quantum probability amplitude that a certain entering

tate | ψ in 〉 is scattered into an outgoing state | ψ out 〉 is given by

he scattering matrix ˆ S 

 ψ〉 = | ψ in 〉 + 

ˆ S | ψ out 〉 (9)

f ˆ H = 

ˆ H 0 + 

ˆ V is the total Hamiltonian of the system with 

ˆ H 0 the

ndisturbed Hamiltonian and 

ˆ V the potential of interaction, then it

an be shown that ˆ S takes the form [3] 

ˆ 
 = 

ˆ 1 − 2 i ˆ W 

† 1 

E − ˆ H 0 + 

ˆ W 

ˆ W 

† 
ˆ W (10)

here ˆ W contains the information on the coupling strengths be-

ween the unperturbed states and the resonances, and it can be

iven in terms of the potential ˆ V . Thus, the poles of ˆ S are the

igenvalues of the effective non Hermitian Hamiltonian 

ˆ 
 0 − i ˆ W 

ˆ W 

† (11)

his type of effective Hamiltonian have been widely used in nu-

lear physics [1,2] . In particular, if E 0 n is the n th eigenvalue of ˆ H 0 

hen in the limiting case of small coupling strengths the eigenval-

es are given in first order perturbation theory by 

 n = E 0 n − i 
(

ˆ W 

ˆ W 

† 
)

nn 
= E 0 n − i 

∑ 

k 

| W nk | 2 (12)
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On the other hand, non Hermitian Hamiltonians can also arise

y means of methods based on analytic continuations [13–19] . In

rder to illustrate the connection with the scattering matrix for-

alism described above, we give a brief review as follows (see

41], for more details). Consider a system having a continuous 

pectrum ω ∈ [0, ∞ ) provided with a total Hamiltonian 

ˆ 
 = 

ˆ H 0 + 

ˆ V = 

∫ ∞ 

0 

ω | ω 〉〈 ω | dω + 

∫ ∞ 

0 

V (ω , ω 

′ ) | ω 〉〈 ω 

′ | dω dω 

′ (13) 

here {| ω〉 } is the eigenbasis of the unperturbed Hamiltonian 

ˆ H 0 .

ne can consider the resolvent of ˆ H 

 (z) = (z − ˆ H ) −1 (14) 

hich corresponds to the analytic continuation 

1 of R (ω) = (ω +
ε − ˆ H ) −1 to the lower complex semiplane { z ∈ C : Im (z) ≤ 0 } and

hose poles are precisely the same as those of the matrix ˆ S .

et us assume that R ( z ) has N poles z 1 = ω 1 − iγ1 , . . . , z N = ω N −
γN belonging to the lower complex semiplane, i.e. with γ i > 0

or all i = 1 , . . . , N. If | ϕ〉 is an arbitrary state then the analytic

ontinuation of ϕ(ω) = 〈 ϕ| ω〉 to the lower complex plane, de-

oted by 〈 ϕ| ω〉 + , gets the poles z 1 , . . . , z N of R ( z ). Moreover, from

he Lippmann–Schwinger equation there are two eigenbasis for ˆ H 

iven by [15,41] 

 ω 〉 ± = | ω 〉 + 

1 

ω ± iε − ˆ H 

ˆ V | ω〉 (15) 

here ±i ε is a short notation for the analytic continuation to

he lower (upper) complex semiplane. In particular, one has that

q. (13) can be written in the equivalent and compact form 

ˆ 
 = 

∫ ∞ 

0 

ω 

+ | ω 

+ 〉〈 ω 

+ | dω 

+ (16) 

ere the well known expression from the distribution theory can

e used 

1 

ω ± iε − ω 

′ = P 
1 

ω − ω 

′ ± iπδ(ω − ω 

′ ) (17) 

ith P 1 
ω −ω ′ denoting the principal kernel in the sense of Cauchy.

ext step is to perform the analytic continuation of 〈 ϕ| ω〉 + , i.e. 

 ϕ | ω〉 + = 〈 ϕ | ω〉 + 

1 

ω + iε − ˆ H 

〈 ϕ| ̂  V | ω〉 (18) 

o the lower complex semiplane. Thus, from the last equation one

btains 

〈 ϕ | z〉 + = 〈 ϕ | z〉 + 

1 

z− ˆ H 
〈 ϕ | ̂  V | z〉 

(19) 
+ 〈 z| ϕ〉 = 〈 z ∗| ϕ〉 + 

1 

z ∗− ˆ H 
〈 z ∗| ̂  V | ϕ〉 

here | z〉 + = | z〉 + 

1 

z− ˆ H 
ˆ V | z〉 is the eigenvector | ω〉 + extended on

he lower complex semiplane having the eigenvalue z . Then, from

qs. (15) –(19) and renaming | z〉 + , + 〈 z| as | z〉 , 〈 ̃  z | one can recast the

ntegral (16) over the semi–rect [0, ∞ ) that defines ˆ H as 

ˆ 
 = 

∫ 
C 

z| z〉〈 ̃  z | dz + 

∫ 
ϒ

z| z〉〈 ̃  z | dz (20) 

here C is any closed curved that contains the poles z 1 , z 2 , . . . , z N 
n its interior and Y is an arbitrary curve below each of the poles,

ith one end at the origin and the other at the infinity of the real

xis. Applying the Cauchy residue theorem one obtains 

ˆ 
 = 

N ∑ 

i =1 

z i | z i 〉〈 ̃  z i | + 

∫ 
ϒ

z| z〉〈 ̃  z | dz (21) 
1 Of course, one can also perform the analytic continuation to the upper complex 

lane { z ∈ C : Im (z) ≥ 0 } but this does not correspond to the decaying case that we 

re considering. 
he contribution of the integral represents the Khalfin effect that

s a very weak one (detected in 2006 [42] ) so the integral can

e neglected with regard the sum containing the poles, which is

he dominant term. Finally, one obtains an effective non Hermitian

amiltonian 

ˆ 
 = 

N ∑ 

i =1 

z i | z i 〉〈 ̃  z i | (22) 

ith z i = ω i − iγi and γ i > 0 for all i = 1 , . . . , N. Therefore, one has

rrived to the same effective Hamiltonian than the obtained using

he scattering matrix ( Eqs. (11) and (12) ). 

. Lyapunov exponents in a non Hermitian quantum dynamics 

We consider a quantum system S described by an effective

on Hermitian Hamiltonian 

ˆ H having a discrete complex spectrum,

here E 1 = ω 1 + iγ1 , . . . , E N = ω N + iγN are the complex eigenval-

es. The eigenvalues contain the eigeneregies ω k , and the reso-

ance widths −γk > 0 are interpreted as proportional to the de-

ay characteristic times of the system [9] . The non–Hermiticity

f ˆ H implies the existence of two basis of eigenvectors called

〈 ̃  1 | , 〈 ̃  2 | , . . . , 〈 ̃  N |} left eigenvectors and {| 1 〉 , | 2 〉 , . . . , | N〉} right eigen-

ectors satisfying the relations [43] 

ˆ 
 | j〉 = E j | j〉 , 〈 ̃  j | ̂  H = 〈 ̃  j | E ∗j j = 1 , . . . , N (23) 

nd 

〈 ̃  j | k 〉 = δ jk ∀ j, k = 1 , . . . , N 

N ∑ 

j=1 

| j〉〈 ̃  j | = 

ˆ I (24) 

here E ∗
j 

denotes the complex conjugate of E j for all j = 1 , . . . , N.

he formulas in (24) correspond to the bi–orthogonality and com-

leteness conditions, respectively. 

Let � ⊆ R 

2 M be the phase space of Q and consider the dy-

amical system description used in classical mechanics given by

(�, P (�) , μ, { T t } t∈ R ) where P ( �) is σ–algebra of subsets of �, μ is

he Lebesgue measure, and T t is the classical evolution 

2 over the

hase space. Let us take a little volume �V which is the measure

f some set A ⊂�. That is, 

V = μ(A ) = 

∫ 
�

1 A (q, p) d qd p (25) 

here μ is the Euclidean measure of R 

2 M and 1 A ( q, p ) is the char-

cteristic function of A . Let ˆ A be the quantum operator such that

 ˆ A 
(q, p) = 1 A (q, p) . Since � ⊆ R 

2 M and 

˜ W ˆ I 
(q, p) = 1(q, p) ,then us-

ng the Wigner property (7) one can recast (25) as 

Tr ( ̂  A ) = 

∫ 
R 2 M 

1 A (q, p)1(q, p) d qd p = �V (26) 

n turn, from (25) and by Lemma 2.1 . it follows that the volume

V at time t is 

V (t) = μ(T t A ) = 

∫ 
�

1 T t A (q, p) d qd p = 

∫ 
�

1 A (T −t q, T −t p) d qd p 

= 

∫ 
�

1 A (q (−t) , p(−t)) d qd p 

= 

∫ 
R 2 M 

1 A (q (−t) , p(−t))1(q, p) d qd p (27) 

ince W ˆ A 
(q, p) = 1 A (q, p) then by Eq. (8) one has 

1 A (q (−t) , p(−t)) = W ˆ A 
(q (−t) , p(−t)) = W ˆ A (t) 

(q, p) (28) 

y the Wigner property (7) and (28) one can express (27) as 

�V (t) = Tr ( ̂  A (t)) = Tr ( ̂  U t ̂
 A ̂

 U 

† 
t ) (29) 
2 Typically, the one given by the Hamilton equations. 
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Considering �V as the initial condition then �V ( t ) represents the

fraction of phase space occupied by the initial volume �V at time

t . As we mentioned in Section 2 , at time t = t 0 the volume has

spread throughout over the whole phase space, which is expressed

mathematically as �V (t 0 ) = 1 . If one expands ˆ A in the eigenbasis

of the left–right eigenvectors 

ˆ A = 

N ∑ 

i, j=1 

a i j | i 〉〈 ̃  j | (30)

Then by the condition Tr ( ̂  A ) = �V one obtains 

�V = 

N ∑ 

i =1 

a ii (31)

For the sake of simplicity, we assume that the diagonal elements

of ˆ A are all the same, i.e. a ii = a 0 for all i = 1 , . . . , N. From (31) it

follows that 

a ii = 

1 

N 

�V ∀ i = 1 , . . . , N (32)

Then, ˆ A at time t is 

ˆ A (t) = 

ˆ U t ̂
 A ̂

 U 

† 
t = 

∑ N 
i, j=1 a i j exp 

((
−i ( 

ω i −ω j 
h̄ 

) + 

γi + γ j 

h̄ 

)
t 
)| i 〉〈 ̃  j | 

From Eqs. (24) , (31) –(33) one has 

�V (t ) = 

1 

N 

�V 

N ∑ 

i =1 

exp 

(
2 

γi 

h̄ 

t 

)
(33)

Now we are able to connect the Lyapunov exponents with the

poles E 1 = ω 1 + iγ1 , . . . , E N = ω N + iγN . By definition, if one sets

 = t 0 in (33) it follows that 

1 = 

1 

N 

�V 

N ∑ 

i =1 

exp 

(
2 

γi 

h̄ 

t 0 

)
(34)

Therefore, using (2) and (3) in (34) one has ∫ 
�

∑ 

σi > 0 
σi (q, p) d qd p = 

1 
t 0 

log 
(

1 
N 

∑ N 
i =1 exp 

(
2 

γi 

h̄ 
t 0 

))
(35)

which for the case σi = constant for all i becomes 

∑ 

σi > 0 

σi = 

1 

t 0 
log 

( 

1 

N 

N ∑ 

i =1 

exp 

(
2 

γi 

h̄ 

t 0 

)) 

(36)

Eq. (36) is the main result of the present contribution. It expresses

the positive Lyapunov exponents σ i of the phase space dynam-

ics in terms of the imaginary parts γ i of the poles E i = ω i + iγi .

It should be noted that since �V (t 0 ) = 1 is greater than the initial

volume �V, then the γ i cannot be all negative. 

4. The model and results 

4.1. The Gamow model 

In order to illustrate the physical relevance of the formula

(36) we apply it to an example of the decoherence literature: a

phenomenological Gamow model type [13,44] . This model consists

of a single oscillator embedded in an environment composed of a

large bath of noninteracting oscillators, which can be considered as

a continuum. In its simple form, the Hamiltonian is given by 

ˆ H = � ω 0 | 0 〉〈 0 | + 

∫ ∞ 

0 

� ω | ω 〉〈 ω | dω + 

∫ ∞ 

0 

� ( λ( ω ) | ω〉 〈 0 | + 

λ( ω ) 
∗| 0 〉 〈 ω| ) dω 

(37)

that represents the Gamow model having a single mode |0 〉 with

an energy � ω 0 . The coupling λ( ω) between the oscillator and

the bath is assumed to be small in such a way that the dissipa-

tive coupling influences the collective motion but does not dom-

inate [44] . Then, applying the analytic continuation described in
ection 2.3 and neglecting the Khalfin term one obtains the effec-

ive Hamiltonian 

ˆ 
 = z 0 | 0 〉〈 ̃  0 | (38)

ere the Khalfin term of (21) represents the background, i.e. the

nteraction with the oscillator bath, and can be suppressed because

( ω) is small. Moreover, the single pole z 0 is given by 

 0 = ω 0 + 

∫ ∞ 

0 

n (ω) | λ(ω) | 2 dω 

ω 0 − ω + iε 
(39)

here n ( ω) denotes the average number of oscillators per unit

requency interval. Using (17) one can recast the last equation as

44] 

z 0 = (ω 0 + δω 0 ) − iγ0 , with 

(40)

δω 0 = P 
∫ ∞ 

0 
n (ω) | λ(ω) | 2 dω 

ω 0 −ω , γ0 = π
∫ ∞ 

0 n (ω) | λ(ω) | 2 δ(ω 0 − ω) dω 

n the general case the single oscillator has infinite modes

 , 2 ω , . . . , nω n , . . . ,and the previous arguments can be generalized

n such a way that the effective Hamiltonian becomes 

ˆ 
 = 

∞ ∑ 

n =0 

z n | n 〉〈 ̃  n | (41)

here z n = n ( h̄ ω 

′ 
0 

− iγ0 ) are complex eigenvalues (except z 0 = 0 ),

0 > 0 is associated with the decoherence time t R = 

h̄ 
γ0 

, and ω 

′ 
0 

=
ω 0 + δω 0 

h̄ 
is the natural frequency of the single oscillator. The two set

f eigenvectors {〈 ̃  m |} ∞ 

m =0 
and {| n 〉} ∞ 

n =0 
satisfy the bi-orthogonality

nd completeness relations given by (24) . For numerical calcu-

ations, one can always consider a truncated basis composed by

 + 1 eigenvectors | 0 〉 , | 1 〉 , . . . , | N〉 that simply bounds the motion

f the single oscillator from zero energy up to a maximum value

f energy equal to h̄ (N + 1) ω 

′ 
0 
. 

.2. Mapping contractions into expansions and viceversa by means of

he time reversal system 

Since all the imaginary parts Im (z n ) = −nγ0 are negative, then

y the last paragraph of previous section one can not apply the

qs. (35) and (36) to obtain the Lyapunov coefficients. However,

ne can use the following strategy. The key is to consider an “arti-

cial” system S ′ which is the original but with the time evolution

nverted, i.e. by performing the time transformation t → −t . From

ere onwards, we will call “time reversal system” to S ′ . Then, in

rder to apply the Eqs. (34) –(36) on S ′ one simply should replace

 

γi 
h̄ 

t 0 by 2 
γi 
h̄ 
(−t 0 ) = 2 

−γi 
h̄ 

t 0 . This simply means that in presence

f complex eigenvalues the time reversal transformation t → −t is

quivalent to change the sign of the imaginary parts of the eigen-

alues, i.e. γi → −γi . Thus, in non Hermitian quantum mechan-

cs the time invariance symmetry is satisfied only if one adds the

ransformation γi → −γi . Using the Eq. (34) in S ′ one obtains 

(N + 1) = �V 

N ∑ 

k =0 

exp 

(
2 

γk 

h̄ 
t 0 

)
with γk = kγ0 ≥ 0 for all k = 0 , . . . , N (42)

or solving (42) is useful to adimensionalize t 0 by expressing it in

erms of the relaxation time t R = 

h̄ 
γ0 

. Taking into account this, the

quation to be solved for T 0 is 

(N + 1) = �V 

N ∑ 

k =0 

exp (2 kT 0 ) , T 0 = 

t 0 
t R 

(43)

here T 0 is the adimensionalized KS–time. Then, from Eqs. (2) to

4) and T one can rewrite the KS–entropy in the convenient
0 
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Table 1 

Some adimensionalized KS–times of the time reversal system in function 

of the number N of the bath oscillators and for the initial volumes �V = 

10 −3 , 10 −6 , 10 −9 and 10 −12 . 

adimensionalized KS–time T 0 [ ̄
h 
γ0 

] 

N 10 −3 10 −6 10 −9 10 −12 

5 0.85 1.56 0.0313 0.0313 

10 0.438 0.799 1.15 1.5 

30 0.15 0.287 0.393 0.511 

60 0.0837 0.146 0.198 0.257 

100 0.0544 0.0828 0.119 0.154 

10 0 0 0.0045 0.0083 0.0112 0.0155 

30 0 0 0.0015 0.0027 0.004 0.0051 

70 0 0 0.0 0 06 0.0012 0.0017 0.0022 

10,0 0 0 0.0 0 04 0.0 0 08 0.0012 0.0015 
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orm 

 KS = 

1 

T 0 

γ0 

h̄ 

log 
1 

�V 

= 

∑ 

σ ′ 
i 
> 0 

σ ′ 
i (44) 

t should be noted that h KS and the σ ′ 
i 

are the KS–entropy and the

yapunov exponents of the system S ′ respectively. The Lyapunov

xponents of the original system can be recovered by using the

ollowing argument. Since a positive (negative resp.) Lyapunov ex-

onent σ implies an expansion (contraction resp.) of some region

f phase space then one has that t → −t maps σ into −σ . From

his it follows that −σ ′ 
i 

are the Lyapunov exponents of the original

ystem. In other words, the time reversal transformation t → −t

aps contractions into expansions and viceversa. 

.3. Adimensionalized KS–time of the time reversal system 

Now we solve numerically the Eq. (43) for a given number of

scillators N and for some representative initial volumes �V . We

nalyze two cases: first we vary the number N from 5 to 100

n steps of �N = 5 . Second, we consider N from 10 0 0 to 10 , 0 0 0

ith �N = 10 0 0 . In both cases the chosen initial volumes �V are

0 −3 , 10 −6 , 10 −9 , and 10 −12 . The first case is suitable to give an

dea for the effects of using a finite basis, while in the second case

he situation is closer to a continuum bath of oscillators. 

From the Table 1 one can see that T 0 decreases along with the

umber of oscillators N and this is independent of the initial vol-

me �V , as expected. For a given N the effect of �V is to increase

he value of T 0 as soon as �V decreases. We can give an intuitive

xplanation about this. Since T 0 is the time that takes for �V to

pread over the whole phase space then the more smaller is �V ,

ore bigger is T 0 . Moreover, an interplay between N and �V is

bserved. For instance, one can see that the same value of T 0 =
 . 0015 is obtained for N = 30 0 0 , �V = 10 −3 and for N = 10 , 0 0 0 ,

V = 10 −12 . Physically, this means that any decrease in the initial

olume can be compensated by an increase in the number of os-

illators, i.e. if one wants to decrease T 0 then one must add more

scillators to the bath. The same situation is observed for N = 30 ,

V = 10 −3 and for N = 100 , �V = 10 −12 . 

.4. KS–entropy of the time reversal system 

Having computed numerically the adimensionalized KS–time of

 

′ as a function of the number of the bath oscillators one can pro-

eed to obtain the KS–entropy h KS of S ′ . If one replaces the val-

es of T 0 of the Table 1 in Eq. (44) then we obtain that h KS as a

unction of N can be linearly adjusted for each value of the initial

olume 

h KS (N) �V =10 −3 = (1 . 5152 ± 0 . 0 0 01) N 

h KS (N) −6 = (1 . 662 ± 0 . 001) N 
�V =10 
h KS (N) �V =10 −9 = (1 . 7355 ± 0 . 001) N 

h KS (N) �V =10 −12 = (1 . 778 ± 0 . 001) N (45) 

rom Eq. (45) it is straightforward that one can deduce the approx-

mated formula 

 KS (N) = (1 . 5 ± 0 . 3) N ( in units of 
γ0 

h̄ 

) (46) 

or the KS–entropy of the time reversal system S ′ , which is valid

or all the range in N and �V studied. 

.5. Lyapunov exponents in terms of poles 

Now we can proceed to obtain the Lyapunov exponents of the

amow model in term of its poles. From Eqs. (44) to (46) it follows

hat 

(1 . 5 ± 0 . 3) N 

γ0 

h̄ 

= 

∑ 

σ ′ 
i 
> 0 

σ ′ 
i > 0 (47) 

here σ ′ 
i 

are the Lyapunov exponents of the time reversal system

 

′ . The physical meaning of (47) is straightforwardly to explain. The

dimensional characteristic time T 0 is inversely proportional to N

nd since h KS is inversely proportional to T 0 then h KS is a linear

nd increasing function of the number of bath oscillators. This im-

lies that the effect of each oscillator of the bath is to increase

 KS in an amount of (1 . 5 ± 0 . 3) 
γ0 
h̄ 

,where N = 0 corresponds to the

ingle oscillator ω 

′ 
0 without the presence of the bath oscillators.

oreover, since the oscillators of the bath are non interacting then

he effect of all the bath oscillators is simply the sum of each of

hem. It follows that each oscillator of the bath contributes with a

ame Lyapunov exponent, namely σ ′ 
0 , in such a way that the sum

f right hand in (47) becomes ∑ 

′ 
i 
> 0 

σ ′ 
i > 0 = Nσ ′ 

0 (48) 

rom Eqs. (47) to (48) one obtains 

′ 
0 = (1 . 5 ± 0 . 3) 

γ0 

h̄ 

(49) 

his is the Lyapunov exponent of the time reversal system S ′ ,
hich is positive since all the volumes �V = 

h̄ 
S expand along their

llowed region of phase space after the KS–time T 0 . In particular,

he transformation t → −t maps σ ′ 
0 into −σ ′ 

0 . Now we can arrive

o the other main result of this paper. The Lyapunov exponent σ 0 

f the Gamow model in terms of its poles is given by 

0 = −α
γ0 

h̄ 

α = (1 . 5 ± 0 . 3) (50) 

hich is negative according to its dissipative behavior. The factor

can be interpreted as a coupling constant which is characteris-

ic of the bath. Alternatively, the Lyapunov exponent also can be

xpressed in terms of the relaxation time t R = 

h̄ 
γ0 

as 

0 = −α
1 

t R 
α = (1 . 5 ± 0 . 3) (51) 

.6. Limiting cases 

From Eqs. (50) to (51) one can analyze two limiting cases. The

rst one results by considering the limit γ 0 → 0 that simply cor-

esponds to a single harmonic oscillator of frequency ω 

′ 
0 
. It is clear

hat in such case there is no dissipation, without expansion nor

ontraction of volumes in the phase space. Therefore, all the Lya-

unov exponents must be zero. This is precisely what it is obtained

y setting γ0 = 0 in (50) , i.e. σ0 = 0 . The other limiting case results

y considering that the relaxation time is vanishingly small. This

orresponds to a maximal dissipation where the oscillator is fully

amped by the bath. In such a case the Lyapunov exponent is in-

nitely negative, as one obtains by taking the limit t R → 0 in the

ormula (51) . 
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5. A discussion at the light of the quantum resonances theory 

Here we provide a discussion of the connection between some

approaches in quantum resonances theory [28–30] and the frame-

work presented in this paper. Several previous work based on the

formalism of the resonance gap lower bounds [45–47] , semiclassi-

cal approaches based on short periodic orbits in open systems [48] ,

and phenomenology by means of a mixture of phase-space dynam-

ics [49] among others, show that a unified theory of resonance still

appears to be a difficult task. 

Nevertheless, we can mention the aspects of our proposal in

agreement with some standard approaches used in the description

of quantum open systems. Below we quote some results of the lit-

erature and discuss them from the point of view of the present

paper. 

• Semiclassical periodic-orbit theory [28] : Studies about quantum

scattering resonances of dissociating molecules have reported that

signatures of the classical bifurcation appear in the spectrum

of resonances. These can be obtained as generalized eigenstates,

whose eigenergies are denoted by E n = ε n − i �n / 2 , of a non Her-

mitian Hamiltonian operator, as in Eqs. (23) and (24) . In turn, the

Gutzwiller trace allows to give a semiclassical description of the

resonances as the complex zeros of 

S(E) = 2 π h̄ (n + 

μ

4 

) − i 
h̄ 

2 

T (E )�(E ) (52)

with n = 0 , 1 , 2 . . . , μ = 2 for the symmetric–stretch period orbit,

S ( E ) denotes the reduced action � p . d q , and �( E ) stands for Lya-

punov exponent in the vicinity of the periodic orbit of period T ( E ).

Since the imaginary part �n /2 is usually smaller than the real part

εn then one of the successes of this approach is that, in (52) , one

can expand the action S ( E ) around the energy of the resonances

as S(ε n ) = 2 π h̄ (n + 1 / 2) . In such a way that the widths of the

resonance are determined by the Lyapunov exponent λ( εn ) of the

periodic orbit 

λ(ε n ) = 

�n 

h̄ 

= 

1 

τn 
(53)

where τ n are the lifetimes of the quantum resonances. 

Looking at Eqs. (50) and (51) , this is precisely what we have

obtained for the case of the Gamow model that has only a sin-

gle relevant lifetime, given by its decoherence time t R = − α
σ0 

.

Moreover, with the help of Eqs. (32) –(35) one can also recover

the formula (53) . Due to Eqs. (32) and (33) , if the single oscil-

lator is at the n th level then it has an energy n h̄ ω 

′ 
0 
, which cor-

responds to a superposition of n bath oscillators, and the Lya-

punov exponent λn for the unstable n th orbit results 

λn = −nα
γ0 

� 
= 

1 

t n 
, t n = 

t R 
n 

(54)

where t n is the lifetime corresponding to the quasi–stationary

state |n 〉 for all n = 1 , 2 , 3 , . . . 
• Generalized Pesin theorem [29] : in the context of chaotic open sys-

tems the Pesin formula (4) can be generalized as 

H KS = 

∑ 

σi > 0 

σi − γ = h KS − γ (55)

where γ is the escape rate of the trajectories leaving the system

and H KS denotes the KS–entropy that takes into account γ . 

One can see that the time reversal technique used in

Section 4 is in agreement with the generalized Pesin formula

(55) . Since the lifetime of a trajectory corresponding to the N th

energy level is proportional to γN / h̄ = Nγ0 / h̄ (with the propor-

tionality factor given by the coupling constant α and γ N the

N th resonance width), then the escape rate γ is αN γ / � . Thus,
0 
the generalized Pesin theorem implies that 

H KS = 

∑ 

σ ′ 
i 
> 0 

σ ′ 
i − αNγ0 / h̄ = 0 (56)

which is nothing but the Eq. (47) . 
• Classical localization of chaotic resonances states [30] : in order to

describe the classical localization of chaotic states of quantum sys-

tems, a conditionally invariant measure μγ is defined by 

μγ (T −1 A ) = e −γ μγ (A ) (57)

for all subset A of phase space. 

Taking into account the developed in Section 3 , i.e. the way of

expressing volumes in phase space as traces of quantum oper-

ators, the measure μγ can be obtained with an explicit expres-

sion for γ in terms of the imaginary parts γ i . From Eqs. (25) ,

(27) , and (33) and for t = 1 it follows that 

μγ (T (A )) = e −γ μ(A ) , γ = γ (γ1 , . . . , γN ) 

= − log 

( 

1 

N 

N ∑ 

i =1 

exp 

(
2 

γi 

h̄ 

t 

)) 

(58)

Now if one applies the time reversal transformation (or, equiv-

alently, by changing the sign of the imaginary parts γ i ), then

the transformation T must be replaced by T −1 , and therefore,

(58) becomes (57) . 

. Conclusions 

We have presented a relationship between the Lyapunov ex-

onents and the poles of the scattering matrix in a non Hermi-

ian dynamics. We have deduced this relationship, the Eq. (36) , by

eans of the Pesin theorem and the KS–time, and with the help

f expressing volumes in phase space as traces of quantum oper-

tors. We have illustrated the formalism with a phenomenologi-

al Gamow model type, and the results have been interpreted and

inked with those obtained by using other approaches in the lit-

rature. The relevance of our contribution lies in several aspects,

hich we enumerate below: 

• Resonances and decoherence : the characteristic decay times

given by the imaginary part of the complex eigenvalues can

be connected with the Lyapunov exponents concerning the dy-

namics in phase space, in agreement with the semiclassical

periodic–orbit theory [28], but using a simpler mathematics.

Moreover, for the Gamow model the decoherence time is in-

versely proportional to the Lyapunov exponents of the unstable

periodic orbits ( Eq. (54) ). 
• KS–entropy in non Hermitian Hamiltonian systems : one has a

method to obtain the part of the KS–entropy, free of the escape

rates, of a quantum system having a non Hermitian Hamilto-

nian. For the Gamow model this results equivalent to use the

generalized Pesin theorem [29] . 
• Lyapunov exponents of dissipative systems : the use of the time

reversal system could provide an indirect way to obtain the

negative Lyapunov exponents of a dissipative system, as was ac-

complished for the Gamow model. 
• Invariant measure for classical localization : the use of the Wigner

function to express classical quantities as quantum traces al-

lows to express the conditionally invariant measure (CIM, [30] )

in terms of the decay modes of the quasi stationary states, i.e.

as a function of the imaginary part of the complex eigenvalues.

We hope the results of this work can be useful to shed light on

he search for a unified theory of quantum resonances. 
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ppendix A. Proof of Lemma 2.1. 

roof. By definition, one has 

˜ 

 ˆ A 
(q, p) = 

∫ 
R 

〈 q + �| ̂  A | q − �〉 e 2 i p�h̄ d� (A.1) 

hen it follows that ˜ 

 ˆ A 
(T εq, T ε p) = 

∫ 
R 

〈 T εq + �| ̂  A | T εq − �〉 e 2 i T ε p�
h̄ d� (A.2) 

here T ε is a the transformation T t at time t = ε. if one consider

 ε| � 1 then T ε is approximately equal to the identity function of

he phase space �, i.e. T ε ≈ T 0 = 1 � . Now if one make the change

f variables ˜ � = T −ε�, then 

= T ε ˜ � and d� = | T ε | d ̃  � (A.3) 

here | T ε | is the Jacobian determinant of T ε restricted to the coor-

inates q . Using (A.3) one can recast (A.2) as 

˜ 

 ˆ A 
(T εq, T ε p) = 

∫ 
R 

〈 T εq + T ε ˜ �| ̂  A | T εq − T ε ˜ �〉 e 2 i T ε pT ε ˜ �
h̄ | T ε | d ̃  � (A.4) 

t is clear that 

〈 T εq + T ε ˜ �| = 〈 q + ̃

 �| ̂  U 

† (ε) and 

| T εq − T ε ˜ �〉 = 

ˆ U (ε) | q − ˜ �〉 (A.5) 

lso, 

 

2 i T ε pT ε ˜ �
h̄ = e 2 i 

p ̃ �
h̄ ⇐⇒ 

T ε pT ε ˜ �

h̄ 

− p ̃  �

h̄ 

= mπ

⇐⇒ p(ε) ̃  �(ε) − p ̃  � = mh/ 2 

with m ∈ Z and p(ε) = T ε p , ˜ �(ε) = T ε ˜ �

(A.6) 

y considering the Planck constant h vanishingly small then the

q. (A.6) is satisfied. Thus, if one replaces (A.5) and (A.6) in (A.4) it

ollows that ˜ W ˆ A 
(T εq, T ε p) = 

∫ 
R 
〈 q + ̃

 �| ̂  U 

† (ε) ˆ A 

ˆ U (ε) | q − ˜ �〉 e 2 i p ̃ �
h̄ | T ε | d ̃  � (A.7) 

oreover, if one applies the change of variables theorem to the

ariables �, ̃  � then one can express (A.7) as 

˜ 

 ˆ A 
(T εq, T ε p) = 

∫ 
R 

〈 q + �| ̂  U 

† (ε) ˆ A 

ˆ U (ε) | q − �〉 e 2 i p�h̄ d�

= 

˜ W ˆ U † (ε) ̂ A ̂ U (ε) 
(q, p) = 

˜ W ˆ A (−ε) 
(q, p) (A.8) 

alid for all ε arbitrarily small. Also, for an arbitrary t ∈ R one

as 

 t = T N ε with t = Nε (A.9) 

here T N ε denotes the composition of T ε with itself N times. Then,

y iterating the formula (A.8) N times and using (A.9) the desired

esult is obtained. �
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