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Abstract

Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that
transform raw data into valuable information via data reduction and analysis. In this work we present Corral, a Python framework
for astronomical pipeline generation. Corral features a Model-View-Controller design pattern on top of an SQL Relational Database
capable of handling: custom data models; processing stages; and communication alerts, and also provides automatic quality and
structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the
data models, delivering at the same time multi-processing and distributed computing capabilities. Corral represents an improve-
ment over commonly found data processing pipelines in Astronomy since the design pattern eases the programmer from dealing
with processing flow and parallelization issues, allowing them to focus on the specific algorithms needed for the successive data
transformations and at the same time provides a broad measure of quality over the created pipeline. Corral and working examples
of pipelines that use it are available to the community at https://github.com/toros-astro.

Keywords: Astroinformatics, Astronomical Pipeline, Software and its engineering: Multiprocessing; Design Patterns

1. Introduction

The development of modern ground–based and space–born
telescopes, covering all observable windows in the electro-
magnetic spectrum, and an ever increasing variability interest
via time–domain astronomy have raised the necessity for large
databases of astronomical observations. The amount of data
to be processed has been steadily increasing, imposing higher
demands over: quality; storage needs and analysis tools. This
phenomenon is a manifestation of the deep transformation that
Astronomy is going through, along with the development of
new technologies in the Big Data era. In this context, new au-
tomatic data analysis techniques have emerged as the preferred
solution to the so-called “data tsunami” (Cavuoti, 2013).

The development of an information processing pipeline is a
natural consequence of science projects involving the acquisi-
tion of data and its posterior analysis. Some examples of these
data intensive projects include The Dark Energy Survey Data
Management System (Mohr et al., 2008), designed to exploit a
camera with 74 CCDs at the Blanco telescope to study the na-
ture of cosmic acceleration; the Infrared Processing and Analy-
sis Center (Masci et al., 2016), a near real-time transient-source
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discovery engine for the intermediate Palomar Transient Fac-
tory (iPTF Kulkarni, 2013); and the Pan-STARRS PS1 Image
Processing Pipeline (Magnier et al., 2006), performing the im-
age processing and analysis for the Pan-STARRS PS1 proto-
type telescope data and making the results available to other
systems within Pan-STARRS and Vista survey pipeline that in-
cludes VIRCAM, a 16 CCD nearIR camera for the VISTA Data
flow system Emerson et al. (2004) . In fact, the implementation
of pipelines in Astronomy is a common task to the construction
of surveys (e.g. Marx and Reyes, 2015; Hughes et al., 2016;
Hadjiyska et al., 2013), and it is even used to operate telescopes
remotely, as described in Kubánek et al. (2010). Standard tools
for pipeline generation have already been developed and can
be found in the literature. Some examples are Luigi1, which
implements a method for the creation of distributive pipelines;
OPUS (Rose et al., 1995), conceived by the Space Telescope
Science Institute; and more recently Kira (Zhang et al., 2016), a
distributed tool focused on astronomical image analysis. In the
experimental sciences, collecting, pre-processing and storing
data are common recurring patterns regardless of the science
field or the nature of the experiment. This means that pipelines
are in some sense re-written repeatedly. A more efficient ap-
proach would exploit existing resources to build new tools and
perform new tasks, taking advantage of established procedures

1Luigi: https://luigi.readthedocs.io/
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that have been widely tested by the community. Some success-
ful examples of this are the BLAS library for Linear Algebra,
the package NumPy for Python (Van Der Walt et al., 2011) and
the random number generators. Modern Astronomy presents
plenty of examples where pipeline development is crucial. In
this work, we present a python framework for astronomical
pipeline generation developed in the context of the TOROS
collaboration (“Transient Optical Robotic Observatory of the
South”, Diaz et al., 2014). The TOROS project is dedicated
to the search of electromagnetic counterparts to gravitational
wave (GW) events, as a response to the dawn of Gravitational
Wave Astronomy. TOROS participated in the first observation
run O1 of the Advanced LIGO GW interferometer (Abramovici
et al., 1992; Abbott et al., 2016) from September 2015 through
January 2016 with promising results (Beroiz et al., 2016) and
is currently attempting to deploy a wide-field optical telescope
in Cordón Macón, in the Atacama Plateau, northwestern Ar-
gentina (Renzi et al., 2009; Tremblin et al., 2012). The collab-
oration faced the challenge of starting a robotic observatory in
the extreme environment of the Cordón Macón. Given the iso-
lation of this geographic location (the site is at 4,600 m AMSL
and the closest city is 300 km away), human interaction and
that Internet connectivity is not readily available, this imposes
strong demands for in-situ pipeline data processing and storage
requirements along with failure tolerance issues. To assess this,
we provide the formalization of a pipeline framework based on
the well known design pattern Model–View–Controller (MVC),
and an Open Source BSD-3 License2 pure Python package ca-
pable of creating a high performance abstraction layer over a
data warehouse, with multiprocessing data manipulation and
quality assurance reporting. This provides simple Object Ori-
ented structures that seizes the power of modern multi-core
computer hardware. On the assurance reporting given the mas-
sive amount of data expected to be processed, Corral extracts
quality assurance metrics for the pipeline run, useful for error
debugging.

This work is organized as follows. In section 2 the pipeline
formalism and the relevance of this architecture is discussed, in
section 3 the framework and the design choices made are ex-
plained. The theoretical ideas are implemented into code as an
Open Source Python software tool, as shown in section 4. In
section 5 a short introductory code case for Corral is shown,
followed by section 6 where a detailed explanation of the inter-
nal framework’s mechanisms and their overhead is discussed,
and in section 7 a comparison between Corral and other similar
projects is shown. Finally in section 8 three production-level
pipelines, each built on top of Corral are listed. In section 9
conclusions, discussion and future highlights of the project can
be found. Finally the appendix appendix A presents two brief
examples about experiences of pipeline development with Cor-
ral, and appendix B where a table that compares Corral with
other pipeline framework alternatives can be found.

2BSD-3 License: https://opensource.org/licenses/

BSD-3-Clause

2. Astronomical Pipelines

Typical pipeline architecture involve chains of processes that
consume a data flow, such that every processing stage is depen-
dent output of a previous stage. According to Bowman-Amuah
(2004), any pipeline formalism must include the following en-
tities:

Stream: The data stream usually means a continuous flow
of data produced by an experiment that needs to be trans-
formed and stored.

Filters: a point where an atomic action is being executed on
the data and can be summarized as stages of the pipeline
where the data stream undergoes transformations.

Connectors: the bridges between two filters. Several connec-
tors can converge to a single filter, linking one stage of
processing with one or more previous stages.

Branches: data in the stream may be of a different nature and
serve different purposes, meaning that pipelines can host
groups of filters on which every kind of data must pass, as
well as a disjoint set of filters specific to different kinds of
data. This concept allows pipelines the ability to process
data in parallel whenever data is independent.

This architecture is commonly used on experimental projects
that need to handle massive amounts of data. We argue that it
is suitable for managing the data flow from telescopes immedi-
ately after data ingestion through to the data analysis.

In general, most dedicated telescopes or observatories have
at least one pipeline in charge of capturing, transforming and
storing data to be analyzed in the future, manually or automat-
ically (Klaus et al., 2010; Tucker et al., 2006; Emerson et al.,
2004). This is also important because many of the upcoming
large astronomical surveys (e.g. LSST, Ivezic et al., 2008),
are expected to be in the PetaByte scale in terms of raw data,3,
4, meaning that a faster and more reliable type of pipeline en-
gine is needed. LSST is currently maintaining their own foun-
dation for pipelines and data management software (Axelrod
et al., 2010).

3. Framework

Most large projects in the software industry start from a com-
mon baseline defined by an already existent framework.

The main idea behind a framework is to offer a theoretical
methodology that significantly reduces the repetition of code,
allowing the developer to extend an already existent function-
ality, optimizing time, costs and other resources (Bäumer et al.,
1997; Pierro, 2011). A framework also offers its own flow con-
trol and rules to write extensions in a common way, which also
facilitates the maintainability of the code.

3LSST System & Survey Key Numbers: https://www.lsst.org/

scientists/keynumbers
4LSST Petascale R&D Challenges: https://www.lsst.org/about/

dm/petascale
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3.1. The Model-View-Controller (MVC) pattern
MVC is a formalism originally designed to define software

with visual interfaces around a data driven (DD) environment
(Krasner et al., 1988). The MVC approach was successfully
adopted by most modern full stack web frameworks including
Django5, Ruby on Rails6, and others. The main idea behind this
pattern is to split the problem into three main parts:

• the model part, which defines the logical structure of the
data,

• the controllers, which define the logic for accessing and
transforming the data for the user, and

• the view, in charge of presenting to the user the data stored
in the model, managed by the controller.

In general these three parts were initally defined by the Object
Oriented Paradigm (OOP, Coad, 1992). MVC implementation
provides self contained, well defined, reusable and less redun-
dant modules, all of these key features are therefore necesarry
for any big collaborative software project such as astronomical
data pipeline.

3.2. Multi-processing and pipeline parallelization
As stated before, pipelines can be branched when the chain

of data processing splits into several independent tasks. This
can be easily exploited so that the pipeline takes full advantage
of the available resources that a multi-core machine provides.
Furthermore with this approach, the distribution of tasks inside
a network environment, such as in a modern cluster is simple
and straightforward.

3.3. Code Quality Assurance
Software quality has become a key component to software

development. According to Feigenbaum (1983),

”Quality is a customer determination, not an engi-
neer’s determination, not a marketing determination,
nor a general management determination. It is based
on the customer’s actual experience with the product
or service, measured against his or her requirements –
stated or unstated, conscious or merely sensed, tech-
nically operational or entirely subjective – and always
representing a moving target in a competitive mar-
ket”.

In our context, a customer is not a single person but a role
that our scientific requirements define, and the engineers are
responsible for the design and development of a pipeline able
to satisfy the functionality defined by those requirements. Mea-
suring the quality of software is a task that involves the extrac-
tion of qualitative and quantitative metrics.

One of the most common ways to measure software quality is
Code Coverage (CC). CC relies on the idea of unit-testing. The

5Django: https://www.djangoproject.com/
6Ruby on Rails: https://rubyonrails.org

objective of unit-testing is to isolate and show that each part of
the program is correct (Jazayeri, 2007). Following this, the CC
is the percentage of code executed by the unit tests (Miller and
Maloney, 1963).

Another interesting metric is related to the maintainability of
the software. Although this may seem a subjective parameter, it
can be measured by using a standardization of code style. The
number of style deviations as a tracer of code maintainability.
It is also interesting to define quality based on hardware–use
and its related performance given the software. This is com-
monly known as profiling A software profile aids in finding
bottlenecks in the resource utilization of the computer, such as
processor and memory use, I/O devices, or even energy con-
sumption (Gorelick and Ozsvald, 2014). The broader profile
type classification splits into application profiling and system
profiling. Application profiling is restricted to the currently
developed software, while system profiling tests the underly-
ing system (databases, operating system and hardware) looking
for configuration errors that may cause inefficiencies or over-
consumption (Gregg, 2013). There are different techniques to
obtain this information depending on the unit of analysis and
the data sampling method. There are profilers that evaluate
the application in general (application level profiling), on each
function call (function level profiling) or each line of code (line
profiling) (Gregg, 2013). Another profiler classification further
divides them into deterministic and statistic (Roskind, 2007)
(Schneider). Deterministic profilers sample data at all times,
while statistic profilers records data at regular intervals, taking
note of the current function and line of execution. Unlike the
analysis unit, which is decided in advance and is usually mod-
ified during the analysis, the choice for a deterministic profile
is based on the need to retrieve precise measurements, at the
cost of speed, since deterministic profiles can slow down the
application execution time by up to a factor of ten. On the other
hand, the statistic profiler method executes the application at
almost true speed.

4. Results: A Python Framework to Implement repro-
ducible Pipelines Based on Models, Steps and Alerts

We designed a Data Driven process based on MVC to gener-
ate pipelines for applications in Astronomy that support quality
metrics by means of unit-testing and code coverage. It is com-
posed of several pieces, each one consistent with the function-
ality set by traditional Astronomical pipelines and also features
branching option for parallel processing naturally. This design
was implemented on top of the OO Python Language and Re-
lational Databases in a Open Source BSD-3 licensed software
project named Corral7

4.1. The Underlying Tools: Python and Relational Databases
As previously mentioned, Corral is implemented on the

Python programming language 8; which has a vast ecosystem

7 Corral Homepage: https://gitub.com/toros-astro/corral
8Python Programming Language: http://python.org
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of scientific libraries such as NumPy, SciPy Van Der Walt et al.
(2011), Scikit-Learn Pedregosa et al. (2011), and a powerful
and simple syntax. Most astronomers are choosing Python as
their main tool for data processing, favoring the existence of li-
braries such as AstroPy Robitaille et al. (2013), CCDProc9, or
PhotUtils10Tollerud (2016), e.t.c., It is also worth mentioning
that Python hosts a series of libraries for parallelism, command
line interaction tools, and test case design, that are all useful for
a smooth translation from ideas into real working software.

Another key requirement is the storage and retrieval of data
in multiple processes, which led us to use Relational Databases
Management Systems (RDBMS). Relational Databases are a
proven standard for data management and have been around
for more than thirty years. They support an important number
of implementations and it is worth mentioning that amongst the
most widely used are Open Source, e.g., PostgreSQL.

SQL is a powerful programming language for RDBMS and
offers advantages in data consistency, and for search queries.
SQL has a broad spectrum of implementations: from smaller,
local applications, accessible from a single process, like SQLite
(Owens and Allen, 2010), to distributed solutions on computer
clusters, capable of serving billions of requests, like Hive (Thu-
soo et al., 2009). This plethora of options allows flexibility
in the creation of pipelines, from personal ones, to pipelines
deployed across computing clusters hosting huge volumes of
data and multiple users. Inside the Python ecosystem, the
SQLAlchemy11 library offers the possibility of designing model
Schema in a rather simple way while at the same time offering
enough flexibility so as to not cause dependence issues related
to specific SQL dialects. Thus offering a good compromise to
satisfy different needs of the developer.

4.2. From Model-View-Controller to Model-Step-Alert

To bridge the gap between traditional MVC terminology and
that used to describe pipeline architecture, some terms (e.g.
Views and Controllers) have been redefined in this work, to
make the code more descriptive for both programmers and sci-
entists.

Models define protocols for the stream of our pipeline. They
define data structures for the initial information ingest, in-
termediate products and final knowledge of the processing
pipeline. Since the framework is Data Driven, every stage
of the process consumes and loads data trough the mod-
els that act as the channels of communication amongst the
different pipeline components. The models can store data
or metadata.

Steps Just like the Models, Steps are defined by classes, and
in this case they act like filters and connectors. We know
mention two different types of steps used by Corral: load-
ers, and steps.

9CCDProc: http://ccdproc.readthedocs.io
10PhotUtils: http://photutils.readthedocs.io/en/stable/
11SQLAlchemy: http://www.sqlalchemy.org/
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Figure 1: Data road-map in traditional pipeline architecture (upper panel) and
Corral’s pipeline model (lower panel). In previous pipeline models data is be-
ing processed sequentially from one Step to the next one, with the possible
scenario of parallel branching; while in the model proposed in this work Steps
are independent entities that interact with a shared central data container. In
both architectures data can be extracted when desired conditions are met, and
shared at any time to users.

Loaders are responsible for feeding the pipeline at its
earliest stage. By design choice, a pipeline over Cor-
ral can only have one loader.

Steps select data from the stream by imposing con-
straints, and load the data again after some transfor-
mation. It follows from this that steps are both filters
and connectors, that implicitly include branching.

Alerts To define views we take that concepts of Alerts as uti-
lized in some astronomical applications used for follow-up
experiments, as inspiration to design the views. In Corral
views are called Alerts and are special events triggered by
a particular state of the data stream.

Some Python code examples regarding each of these ”pipeline
processors” can be found in section 5 and appendix A A com-
plete picture of the framework and the user defined elements of
the pipeline along with their interactions, is displayed in figure
1.

4

http://ccdproc.readthedocs.io
http://photutils.readthedocs.io/en/stable/
http://www.sqlalchemy.org/


4.3. Some Words About Multiprocessing and Distributed Com-
puting

As previously mentioned our project is built on top of a
RDBMS, which by design can be accessed concurrently from a
local or network computer. Every step accesses only the filtered
part of the stream, so with minimum effort one can deploy the
pipeline in one or more computers and run the steps in paral-
lel. All the dangers of data corruption are avoided by the ACID
(Atomicity, Consistency, Isolation and Durability) properties of
the database transactions. This approach works well in most
scenarios, but there are some unavoidable drawbacks, that arise
for example in real-time processing, where consistency is less
important than availability. Corral takes advantage of this tech-
nology to start a process for each Loader, Step or Alert within
the pipeline, and allows interaction with the data stored in the
database. If needed, groups of processes can be manually dis-
tributed on nodes of a cluster where the nodes will interact with
the database remotely.

It is worth noting that any inter-processes direct communica-
tion is forbidden by design, and the only way to exchange mes-
sages is through the database. On this last particular point, the
absolute isolation of the processes, is guaranteed by the MVC
pattern.

4.4. Quality – Trustworthy Pipelines

One important requirement for a pipeline is the reliability of
its results. A manual check of the data is virtually impossible
when its volume scales to the TeraByte range. In our approach
we suggest a simple unit testing approach to check the status of
the stream before and after every Step, Loader or Alert.

Because tests are unitary, Corral guarantees the isolation of
each test by creating and destroying the stream database before
and after execution of the test. If you feed the stream with a
sufficient amount of heterogeneous data you can check most of
the pipeline’s functionality before the production stage. Finally
we provide capabilities to create reports with all the structural
and quality assurance information about the pipeline in conve-
nient way, and a small tool to profile the CPU performance of
the project.

4.4.1. Quality Assurance Index (QAI)
We recognize the need of a value to quantify the pipeline

software quality. For example, using different estimators for
the stability and maintainability of the code, we arrived at the
following Quality Index:

QAI =
Θ × ΛCov × RPT

γ

and γ is a penalty factor defined as:

γ =
1
2
×

(
1 + exp

(
NS Error

τ × N f

))
Θ is 1 if every test passes or 0 if any one fails, RPT is the ra-
tio of tested processors (Loader, Steps and Alerts) to the total
number of processors, ΛCov the code coverage (between 0 and
1), NS Error is the number of style errors, τ is the style tolerance,

and N f is the number of files in the project. The number of
test passes and failures are the unit-testing results, that provide
a reproducible and updatable manner to decide whether your
code is working as expected or not. The Θ factor is a critical
parameter of the index, since it is discrete, and if a single unit
test fails it will set the QAI to zero, in the spirit that if your
own tests fail then no result is guaranteed to be reproducible.
The RPT factor is a measure of how many of the different pro-
cessing stages critical to the pipeline are being tested (a low
value of this parameter should be interpreted as a need to write
new tests for each pipeline stage). The ΛCov factor shows the
percentage of code that is being executed in the sum of every
unit test; this displays the ”quality of the testing” (a low value
should be interpreted as a need to write more extensive tests,
and it may correlate with a low number of processors being
tested, that is a low RPT ). NNS err/(τ × N f ) is the scaling fac-
tor for the exponential. It comprises the information regarding
style errors, attenuated by a default or a user-defined tolerance
τ times the number of files in the project N f . The exponential
function expresses the fact that a certain number of style errors
isn’t critical, but after some point this seriously compromises
the maintainability of the software project, and in this situation
γ strongly penalizes the quality index. The factor 1/2 is a nor-
malization constant, so that QAI ∈ [0, 1]. This index aims to
encode in a single figure of merit how well the pipeline meets
the requirements specified by the user. We note that this index
represents a confidence metric. Thus a pipeline could be com-
pletely functional even if every test fails, or if no tests are yet
written for it. And in the opposite direction, the case where
every test passes and the pipeline is delivering wrong or bogus
results is possible. The QAI index attempts to answer the ques-
tion of pipeline reliability and whether a particular pipeline can
be trustworthy. It should not be confused with the pipeline’s
speed, capability, or any other performance metric.

4.4.2. Determining the default error tolerance in a python
project

Corral, as earlier mentioned is written in Python, which
offers a number of third party libraries for style validation.
Code style in Python is standardized by the PEP 8 document12.
Flake813 is a style tool that allows the user to measure the
number of style errors, that reflects the maintainability of the
project.

For the QAI measurement of Corral a key detail was in the
determination of the amount of style errors developers tollerate
as normal. For this we collected data from nearly 4000 public
Python source code files. The number of style errors was deter-
mined using Flake8 and the inter-quartile mean was determined
as a measurement for τ. A τ of ∼ 13 was found. It is important
to note that this value can be overridden by the user if a stronger
QAI is required (Fig. 2).

12PEP8: https://www.python.org/dev/peps/pep-0008
13Flake8: http://flake8.pycqa.org/
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Figure 2: Ideal test pass, and coverage QAI curves, with NS Err ∈ [0, 40] for
four values of τ, for only one file. A damp in the error slope decay can be
observed when τ is higher.

4.4.3. Quality and Structural reporting
Corral includes the ability to automatically generate doc-

umentation, creating a manual and quality reports in Mark-
down14 syntax that can be easily converted to a preferred format
such as PDF (ISO., 2005), LaTeX (Lamport, 1994) or HTML
(Price, 2000). A Class-Diagram (Booch et al., 2006) generation
tool for the Models defined using Graphviz15 are also available
for the pipelines created with Corral. We provide in Appendix
A.4 an example of a pipeline (EXO) with an implementation of
tests and the corresponding results of the QA report.

4.4.4. Profiling
Corral offers a deterministic tool for the performance analy-

sis of CPU usage at a function level16 during the execution of
unit tests. It is worth noting that in case a pipeline shows signs
of lagging or slowing down, running a profiler over a unit test
session can help locate bottlenecks. However for rigurous pro-
filing, real data on real application runs should be used, instead
of unit testing.

Another kind of profiling at the application level could be
carried out manually using existing Python ecosystem tools
such as memory profiler17 18 (memory line level determinis-
tic profiling), statsprof.py19 (statistic function level profiling),
o line profiler20 (line level deterministic) amongst other tools.
We note that although some application level profiling tools are
included or suggested, Corral was never intended to offer a sys-
tem profiling tool. Nor does it claim to offer data base profiling,
or I/O, energy profiling, network profiling, etc.

14Markdown: https://daringfireball.net/projects/markdown/
15Graphviz: http://www.graphviz.org/
16Function Level CPU Profiling: shows function call times and frequency, as

well as the chain of calls they were part of based on the receiver of the call.
17memory profiler:https://pypi.python.org/pypi/memory_

profiler
18memory profiler:https://pypi.python.org/pypi/memory_

profiler
19statsprof.py:https://github.com/smarkets/statprof
20line profiler: https://github.com/rkern/line_profiler

4.4.5. Final words about Corral quality
The framework does not contain any error backtrace concept,

or retry attempts in processing. Each processor should be able
to handle correctly the required information on its conditions.
It is implicitly expected that the quality tools offered serve to
unveil code errors as well.

If the pipeline’s developer achieves a high code coverage and
is able to test enough data diversification, the possible software
bugs can decrease substantially, up to 80% (Jeffries and Melnik,
2007).

5. Study case: A Simple Pipeline to Transform (x, y) Image
Coordinates to world coordinates (RA, Dec)

A few examples are given below to illustrate each part of a
toy model pipeline built over Corral. A more extended example
can be found in appendix A and in the TOROS GitHub repos-
itory page https://github.com/toros-astro/toritos,
where a fully functional astronomical image preprocessing
pipeline is available.

We encourage the interested users to read the full Corral tu-
torial located at: http://corral.readthedocs.io

5.1. A Model example
In the following example a Model for an astronomical source

is shown. It uses both (x, y) and (RA,Dec) coordinates and a
field given for apparent magnitude. The identification field is
automatically settled.

1 # this code is inside mypipeline/models.py

2 from corral import db

3

4 class PointSources(db.Model):

5 "Model for star sources"

6 __tablename__ = "PointSources"

7

8 id = db.Column(

9 db.Integer, primary_key=True)

10 x = db.Column(db.Float, nullable=False)

11 y = db.Column(db.Float, nullable=False)

12 ra = db.Column(db.Float, nullable=True)

13 dec = db.Column(db.Float, nullable=True)

14

15 app_mag = db.Column(db.Float, nullable=False)

5.2. A Loader example
In the following example a Loader is shown, where the

PointSource Model from above example is filled with new data.
We note that the (RA,Dec) fields in PointSource Model are al-
lowed to be null, and therefore there is no need to set them a
priori.

1 # this code is inside mypipeline/load.py

2 from astropy.io import ascii

3 from corral import run

4

5 from mypipeline import models
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6

7 class Load(run.Loader):

8 "Pipeline Loader"

9 def setup(self):

10 self.cat = ascii.read(

11 'point_sources_cat.dat')
12

13 def generate(self):

14 for source in self.cat:

15 src = models.PointSource()

16 src.x = source['x']
17 src.y = source['y']
18 src.app_mag = source['app_mag'])
19 yield src

5.3. A Step example

An example Step is displayed below, where a simple data
transformation is conducted. Where the step takes a set of
sources and transforms their (x, y) coordinates to (RA,Dec):
lines 10-12 show definitions for Class-level attributes, which
are responsible for this query. The framework retrieves the data
and serves it to the process method (line 14), which executes
the relevant transformation and loads the data for each source.

1 # this code is inside mypipeline/step.py

2 from corral import run

3 from mypipeline import models

4

5 import convert_coord

6

7 class StepTransform(run.Step):

8 "Step to transform from x,y to ra,dec"

9

10 model = models.PointSource

11 conditions = [model.ra == None,

12 model.dec == None]

13

14 def process(self, source):

15 x = source.x

16 y = source.y

17

18 source.ra, source.dec = convert_coord(x, y)

5.4. Alert Example

In the example below an Alert is triggered when a state sat-
isfies a particular condition of data in the stream. A group of
communication channels are activated. In this particular case
an email and an Astronomical Telegram (Rutledge, 1998) are
posted whenever a point source is detected in the vicinity of
Sgr A∗, near the center of the galaxy.

1 # this code is inside mypipeline/alert.py

2 from corral import run

3 from corral.run import endpoints as ep

4

5 from mypipeline import models

6

7 class AlertNearSgrA(run.Alert):

8

9 model = models.PointSource

10 conditions = [

11 model.ra.between(266.4, 266.41),

12 model.dec.between(-29.007, -29.008)]

13 alert_to = [ep.Email(["sci1@sci.edu",

14 "sci2@sci.edu"]),

15 ep.ATel()]

5.5. Running your Pipeline

As seen in the previous sections we define our protocol for
the stream and the actions to be performed in order to covert the
coordinates; but code is never defined to schedule the execu-
tion. Nevertheless applying the Corral MVC equivalent pattern
guarantees that every loader and step is to be executed indepen-
dently which means that both tasks run as long as there is data
to work with. In every Step/Loader/Alert there is a guarantee
of data consistency since each is attached to an SQLAlchemy
session, and every task is linked to a database transaction.
Since every SQL transaction is atomic, so the process is exe-
cuted or fails, thus lowering the risk of data corruption in the
stream.
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Typically for a given pipeline with defined: Loader; Alert
and Steps, the following output is produced:

1 $ python in_corral.py run-all

2 [mypipeline-INFO@2017-01-12 18:32:54,850]

3 Executing Loader

4 '<class 'mypipeline.load.Load'>'
5 [mypipeline-INFO@2017-01-12 18:32:54,862]

6 Executing Alert

7 '<class 'mypipeline.alert.AlertNearSgrA'>'
8 [mypipeline-INFO@2017-01-12 18:32:54,874]

9 Executing Step

10 '<class 'mypipeline.load.StepTransform'>'
11 [mypipeline-INFO@2017-01-12 18:33:24,158]

12 Done Alert

13 '<class 'mypipeline.alert.AlertNearSgrA'>'
14 [mypipeline-INFO@2017-01-12 18:34:57,158]

15 Done Step

16 '<class 'mypipeline.load.StepTransform'>'
17 [mypipeline-INFO@2017-01-12 18:36:12,665]

18 Done Loader

19 '<class 'mypipeline.load.Loader'>' #1

It can be seen in the time stamps of the executions and task
completions for the Loader, Alert and Steps; that there is no
relevant ordering between them.

5.6. Checking The Pipeline Quality
5.6.1. Unit Testing

Following the cited guidelines of Feigenbaum (1983) who
states that quality is a user defined specification agreement, it is
necessary to make this explicit in kind in code that for Corral
is achieved in a unit-test. Below an example is included show-
ing a basic test case for our Step. The Corral test, feeds the
stream with some user defined mock data, then runs the Step
and finally checks if the result status of the stream meets the
expected value.

1 # this code is inside mypipeline/tests.py

2 from corral import qa

3

4 from mypipeline import models, steps

5

6 import convert_coord

7

8 class TestTransform(qa.TestCase):

9 "Test the StepTransform step"

10 subject = steps.StepTransform

11

12 def setup(self):

13 src = models.PointSource(

14 x=0, y=0, app_mag=0)

15 self.ra, self.dec = convert_coord(0, 0)

16 self.save(src)

17

18 def validate(self):

19 self.assertStreamHas(

20 models.PointSource,

21 models.PointSource.ra==self.ra,

22 models.PointSource.dec==self.dec)

23 self.assertStreamCount(

24 1, models.PointSource)

As shown in lines 12-16 the setup() method is in charge of
creating new data –whose transformed result is already known–
, so then validate() asserts the outcome of StepTransform.
This process would be repeated if more tests were defined, and
an important caveat is that, mocked data streams are private to
each unit test so will never collide producing unexpected re-
sults.

5.6.2. Quality Report and Profiling
Corral provides built-in functionalities to communicate qual-

ity assurance information:

1. create-doc: This command generates a Markdown ver-
sion of an automatically generated manual for the pipeline.
It includes information on Models, Loader, Steps, Alerts,
and command line interface utilities, using docstrings from
the code itself.

2. create-models-diagram: This creates a Models Class
Diagram (Booch et al., 2006) in Graphviz dot format (Ell-
son et al., 2001).

3. qareport: Runs every test and Code Coverage evalua-
tion, and uses this to create a Markdown document detail-
ing the particular results of each testing stage, and finally
calculates the QAI index outcome.

4. profile: Executes all existing tests and deploys an inter-
active web interface to evaluate the performance of differ-
ent parts of the pipeline.

With these four commands the user can get a detailed report
about structural status, as well a global measurement of quality
level of the pipeline.

6. Corral: Under the hood

Put simply, Corral is a Pipeline environment that autocon-
figures itself on each user command for which the following
operations are exectued:

1. First of all in corral.py inserts the path of settings.py into
the environment variable Corral SETTINGS MODULE.
With this simple action every Corral component knows
where to find the pipeline’s configuration.

2. The command line parser is created, and commands pro-
vided by Corral are made available.

3. If the user asks for help (with the --help|-h flag) –or
the requested command does not exist–, the help page is
printed to screen.

4. Given a valid command, the line arguments are parsed so
the requested action is identified, and set to be executed.

5. Based on the requested command, the framework would
work in three DBMS modes:
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Mode in: The production DB is configured as the back-
end to each model. This kind of configuration is used
since in general commands require knowledge of the
data stored in the stream.

Mode test: The test DB is configured (by default in-
memory DB is used). This mode is used by com-
mands that require destructive operations over the
database, eg test,coverage,profile

Mode out: No database is configured. Some commands
do not require any operations over the stream, like
lsstep, used to list all the existing steps.

6. The command true logic is executed.
7. The teardown is executed for every connection.
8. Finally the python interpreter is shut down and the current

error code is delivered to the operative system.

As mentioned the most basic functionality of Corral is to find
files based in only one environment configuration. This brings
to the developer clear rules to split the functionality in well de-
fined and focused modules.

According to measured estimates, typically 1.5–2 s of over-
head is required for any executed command, depending on the
number of processes spawned. Almost 100% of the overhead
is spent before the true command logic is executed. An in-
teresting point to this is that the running mode of commands
strongly affects the execution time (’out’ mode is much faster
than ’test’ with in-memory database; and test is much faster
than ’in’ mode). Other external factors causing potential bot-
tlenecks that are worth mentioning are database location, I/O,
Operating System configuration, or any hardware problems; al-
though these should produce lack of performance not only to
Corral but to any piece of software the user is executing.

7. Comparison with other pipeline frameworks

The two main differences between Corral and other similar
projects are now explained. (A comparison of other alterna-
tives is shown in Appendix B): First, to our knowledge Corral
is the first implementations of a pipeline framework that uses
MVC; and second the quality integration metrics that give an
indication of the trustworthiness of the resulting pipeline.

The use of the MVC design standard imposes the following
processing tasks (Loader, Steps and Alerts) result in a strong
isolation condition: every processing stage only interacts with
filtered data according to specific criteria with no bearing on
information of the source or data destination. A major advan-
tage of isolation is the natural parallelization of processing tasks
since no ”race condition” is created21. Regarding real-time pro-
cessing this pattern can be inconvenient, since batches of data
are processed asynchronously, leading to random ordering of
data processing and writing onto the Database.

21Race Condition: Is a software behavioral term that refers to the mutual and
competing need of components to work with data. This leads to errors when
the processing order is not as expected by the programmer.

Corral features ”integration quality” utilities as an important
tool set that builds confidence on the pipeline. This works when
unit-tests are available for the current pipeline and in these cases
Corral can automatically generate reports and metrics to quan-
tify reliability. Corral was designed to optimize pipeline confi-
dence in terms of some global notion of quality, which implies
revision of data in each processing stage. Pelican 22 is the only
project integrating tools for pipeline testing, but does not in-
clude extra functionalities based on this concept. In many other
aspects as depicted in appendix B, Corral is similar to other
alternatives. A majority of these alternative also use Python
as the programing language mainly in order to make use of its
vast libraries for data access and manipulation, across multiple
formats.

8. Real Pipelines Implemented on Corral

To date three pipelines have been implemented on Corral.
1. The TORITOS pipeline for image pre-processing. TORI-

TOS is a pilot project for TOROS which employs a 16”
telescope to take images in the Macón ridge. The pipeline
is available at https://github.com/toros-astro/

toritos.
2. Carpyncho is a Machine Learning facility, for the VVV

(Minniti et al., 2010) survey data, specifically built to find
variable stars in the Galactic Bulge and adjacent disk zone
(Cabral et al., 2016).

3. A pipeline for synthetic data generation for machine learn-
ing training, focused on transient detection on survey im-
ages (Sánchez et al. 2017 in preparation).

9. Conclusions and Future Work

In this work a pipeline framework is presented that facilitates
designing a parallel work flow for data multi processing. MVC
design pattern was employed, that delivers a set of processing
entities –Models, Steps, and Alerts– capable of carrying out a
wide variety of scientific data pipeline tasks inside a concurrent
scheduled environment. Last but not least, detailed quality and
structural reports can be extracted and compared to the user’s
predefined level of agreement to determine the pipeline trust-
worthiness and ultimately the validity of processed data.

Future work includes improvements on Corral’s performance
by integrating the framework scheduler over distributed com-
puting systems. This could run, for example, on top of Apache
Hadoop23, or Apache Spark24, as these are the state of the art
regarding data processing capability. Another possibility for
the future is to replace the task scheduler that currently uses
the module multiprocessing25 from the standard Python library,
with Apache storm 26

22Pelican: http://www.oerc.ox.ac.uk/~ska/pelican/1.0/doc/

user/html/user_reference_pipelines.html
23Apache Hadoop: http://hadoop.apache.org/
24Apache Spark: https://spark.apache.org/
25Python multiprocessing: http://docs.python.org/3/library/

multiprocessing.html
26Apache Storm: http://storm.apache.org/
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Some other projects that could make use of this framework
include Weak lensing analysis pipelines, Radio Telescope im-
age generation and analysis, spectroscopic data analysis on star
clusters and many more.

The capabilities of the presented framework can be a game-
changer in isolated environments where hardware is operated
remotely and resilience is an important requirement; and since
it is straightforward, Corral can be used in a wide variety sci-
ence cases. Anyone or any group interested in using Corral is
invited to direct any questions, suggestions, feature request or
advice at https://groups.google.com/forum/#!forum/
corral-users-forum.

10. Acknowledgments

The authors would like to thank to their families and friends,
the TOROS collaboration members for their ideas, and also
IATE astronomers for useful comments and suggestions.

This work was partially supported by the Consejo Na-
cional de Investigaciones Cientı́ficas y Técnicas (CONICET,
Argentina) and the Secretara de Ciencia y Tecnologı́a de la
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Bäumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D., Züllighoven, H.,
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Here we present two examples of pipeline development.

Appendix A. A quick–start guide to creating a Corral
pipeline

Appendix A.1. Installation
The recommended installation method for getting Corral run-

ning is using pip:

$ pip install -U corral-pipeline

Other methods are also possible, and are detailed in the on-
line documentation27.

Appendix A.2. Simple pipeline examples
Here we present a quick start guide to use Corral to set up a

pipeline, with two simple examples.
The workflow for creating a simple pipeline can be summa-

rized as follows (see also Fig. A.3):

• Create the pipeline

• Define the models

• Create the database for the data

27http://corral.readthedocs.io/en/latest/install.html

• Load the data

• Define the steps

• Run the pipeline

We show in what follows two simple examples of pipelines
along with some relevant code that show the basics to get started
with using Corral.

The first example uses the IRIS data, and is intended to com-
pute some simple statistics. The IRIS flower data set (fis) is
a commonly used multivariate data set that stores data from
3 species of the iris flower (”Setosa”, ”Virginica” and ”Versi-
color”). In the following subsection we show how to implement
a pipeline that reads the IRIS data, stores it in a database and
perform some simple statistics.

A second example uses data from Exoplanet Data Explorer,
which is an interactive web service to exploring data from the
Exoplanet Orbit Database (Han et al., 2014), that stores a com-
pilation of spectroscopic orbital parameters of exoplanets and
stellar parameters of their host stars. In this example, we will
construct a pipeline to store exoplanets data and perform some
simple exploratory analysis. The pipeline to be created would
be as follows:

• Download the data from exoplanets.org

• Update the database

• Create a scatter plot of planets period vs. mass

In both cases, the pipeline can be constructed using the Cor-
ral framework by performing the following operations:

• Create the pipeline, set the location of the data file and
other configuration parameters in settings
corral create my_pipeline

• Define the models for the data base. In this case, tell what
kind of data will be stored in the database, set names, etc.

• Create the database for the data. This is accomplished ac-
cording to the settings and the models.

• Load the data: read the CSV table and save it in the
database.
python in_corral.py load

• Define the steps: write the code to be applied to the data.

• Run the pipeline: this will read the data from the database
and perform all the steps defined before.
python in_corral.py run

• Output data can be obtained through Alerts.
python in_corral.py check-alerts

In what follows we present a step–by–step guide to carry out
this tasks.

After installation, a pipeline can be created by running the
command:

11

http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2010.97
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2010.97
http://dx.doi.org/10.1109/MCSE.2010.97
http://dx.doi.org/10.1109/MCSE.2010.97
http://www.embedded.com/design/prototyping-and-development/4018371/Statistical-Profiling-An-Analysis
http://www.embedded.com/design/prototyping-and-development/4018371/Statistical-Profiling-An-Analysis
http://www.embedded.com/design/prototyping-and-development/4018371/Statistical-Profiling-An-Analysis
http://arxiv.org/abs/astro-ph/0608575
http://arxiv.org/abs/astro-ph/0608575
http://dx.doi.org/10.1002/asna.200610655
exoplanets.org


Figure A.3: Basic scheme of the workflow to build a pipeline using Corral

$ corral create my_pipeline

which creates a file in corral.py and a new directory
’my pipeline’. The file in corral.py is the access point to the
pipeline, and allows commands to be executed inside the envi-
ronment of the pipeline. The directory my pipeline is the root
directory for the pipeline, and the actual Python package for the
project. Its name is the Python package name that can be used
to import anything inside it (e.g. my pipeline.models). The
name my pipeline can be replaced by IRIS or EXO, for our ex-
amples on IRIS data or exoplanet data, respectively. There are
some files that are created within the project directory, each of
them with a specific purpose within the Corral framework:

my pipeline/ init .py An empty file that tells Python that
this directory should be considered a Python package.

my pipeline/pipeline.py The suggested file to globally config-
ure the pipeline on execution time.

my pipeline/models.py Contains the entities (or tables) that
are stored in the pipelines database.

my pipeline/load.py Contains the Loader class. This would
be the entry point for raw data to the pipeline stream, be-
fore going through any defined Steps.

my pipeline/steps.py Contains all pipeline steps.

my pipeline/alerts.py Contains the definitions of the Alerts,
that offer custom communication channels to report ex-
pected results (a email for instance).

my pipeline/commands.py Used to add custom console com-
mands, specific for the pipeline.

Each time a new pipeline is created, the first step is to per-
form the configuration by editing the file settings.py This
file contains the variables that should be set in order to put the
pipeline into work. In particular, it stores the location of the
settings.py file:

PATH = os.path.abspath(os.path.dirname(__file__))

and also stores information about the locations of data files. For
example, we can create the variable IRIS PATH in the IRIS
pipeline that stores the location of the data file containing the
IRIS data, iris.csv 28

IRIS_PATH = os.path.join(PATH, "iris.csv")

This file contains 5 columns, listing the sepal length, sepal
width, petal length, petal width and name of 150 samples if
the IRIS flower from the original dataset (Fisher 1936).

For the exoplanets pipeline, we store the data in the file ex-
oplanets.csv29, which contains the following columns: name,
period and mass of the planet; star–planet separation; distance
to the host star; and mass, radius, effective temperature and
metallicity of the star. This is a subset of data obtained from
exoplanets.org. For this pipeline, the only modification in
the settings.py file, with respect to the other example, is:

EXO_PATH = os.path.join(PATH, "exoplanets.csv")

Besides this basic configuration, the names of classes con-
taining loaders, steps and alerts must be listed in the LOADER,
STEPS and ALERTS variables, respectively. For example, for
the IRIS pipeline we create 4 steps:

STEPS = [

"pipeline.steps.StatisticsCreator",

"pipeline.steps.SetosaStatistics",

"pipeline.steps.VirginicaStatistics",

"pipeline.steps.VersicolorStatistics"]

Appendix A.3. Processing of the IRIS data
As an essential part of the MVC pattern, the next step in

preparing the pipeline is to define the models. The Model deter-
mines the structure of the data, and is defined in the models.py
file.

We can create a model as a database which consists on two
tables. The Flower table has 4 columns that store the sepal
length and width, and the petal length and width, in the vari-
ables sepal l, sepal w, petal l, and petal w, respectively. The
other table stores the name of the flower (Name). Each model
is a class that inherits from db.model, so that Corral take these
as tables in the database. Both tables are linked through their
primary keys, which are added automatically when the database
is created.

1 from corral import db

2

3 class Name(db.Model):

4

5 __tablename__ = 'Name'
6

7 id = db.Column(db.Integer, primary_key=True)

8 name = db.Column(db.String(50), unique=True)

28https://github.com/toros-astro/corral/raw/master/

datasets/iris.csv
29https://github.com/toros-astro/corral/raw/master/

datasets/exoplanets.csv
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1 class Flower(db.Model):

2

3 __tablename__ = 'Flower'
4

5 id = db.Column(

6 db.Integer, primary_key=True)

7

8 name_id = db.Column(

9 db.Integer, db.ForeignKey('Name.id'),
10 nullable=False)

11 name = db.relationship(

12 "Name", backref=db.backref("flowers"))

13 sepal_l = db.Column(

14 db.Float, nullable=False)

15 sepal_w = db.Column(

16 db.Float, nullable=False)

17 petal_l = db.Column(

18 db.Float, nullable=False)

19 petal_w = db.Column(

20 db.Float, nullable=False)

In the IRIS example, in order to compute a basic statistic (the
mean) for each data column, an additional table must be created
to store the results (and any other value that could be required).
This table in the database is linked to the ”flowers” table by
its primary key, which is generated automatically. It must be
declared into the models.py file:

1 class Statistics(db.Model):

2

3 __tablename__ = 'Statistics'
4

5 id = db.Column(db.Integer, primary_key=True)

6 name_id = db.Column(

7 db.Integer, db.ForeignKey('Name.id'),
8 nullable=False, unique=True)

9 name = db.relationship(

10 "flowers", uselist=False,

11 backref=db.backref("statistics"))

12

13 mean_sepal_l = db.Column(

14 db.Float, nullable=False)

15 mean_sepal_w = db.Column(

16 db.Float, nullable=False)

17 mean_petal_l = db.Column(

18 db.Float, nullable=False)

19 mean_petal_w = db.Column(

20 db.Float, nullable=False)

21

22 def __repr__(self):

23 return "<Statistics of '{}'>".format(
24 self.name.name)

Once the model is defined, the database is created with:

$ python in_corral.py createdb

At this point the database does not contain any data, so the
loaders must be used for that purpose. This is accomplished
with the sentence

$ python in_corral.py load

that uses the information set in the load.py file. This file con-
tains the Loader class, which reads the data and save it to the
database according to the model. The loader for this pipeline
would be:

1 class Loader(run.Loader):

2

3 def setup(self):

4 self.fp = open(settings.IRIS_PATH)

5

6 def get_name_instance(self, row):

7 name = self.session.query(

8 models.Name

9 ).filter(

10 models.Name.name == row["Name"]

11 ).first()

12

13 if name is None:

14 name = models.Name(name=row["Name"])

15

16 # we need to add the new

17 # instance and save it

18 self.save(name)

19 self.session.commit()

20

21 return name

22

23 def store_observation(self, row, name):

24 return models.Flower(

25 name=name,

26 sepal_l=row["SepalLength"],

27 sepal_w=row["SepalWidth"],

28 petal_l=row["PetalLength"],

29 petal_w=row["PetalWidth"])

30

31 def generate(self):

32 for row in csv.DictReader(self.fp):

33 name = self.get_name_instance(row)

34 obs = self.store_observation(

35 row, name)

36 yield obs

37

38 def teardown(self, *args):

39 if self.fp and not self.fp.closed:

40 self.fp.close()

In this example, setup is executed just before generate,
and it is the best place to open the data file. On the other hand
teardown runs after generate and uses information about
their error state. The actual reading of each line in the data
is split into two parts within generate: The method named
get_name_instance receives the row as a parameter and re-
turns a IRIS.models.Name instance referred to the name of
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such file (Iris-virginica, Iris-versicolor, or Iris-setosa). Every
time a name is non existant this method must create a new
one and store this model before returning it. Another method,
store_observation, receives the row as a parameter, and
also the instance of IRIS.models.Name just created by the pre-
vious model. This method just needs to return the instance
and deliver it to the loader without saving it. Finally, the
yields obs line within generate put the observation into the
database through corral functionalities.

Once the data has been stored according to the model and
is organized into the database, all the processing steps can be
written as separate units into the steps.py file. Steps (and
loaders) are controllers that do not need to run sequentially. In-
stead, a step will perform operations on the available data when
the pipeline is run.

The Statistics class must be instantiated, for each differ-
ent name on the flowers table, in the steps.py file using the
definitions in models.py:

1 from . import models

2

3 class StatisticsCreator(run.Step):

4

5 model = models.Name

6 conditions = []

7

8 def process(self, name):

9 stats = self.session.query(

10 models.Statistics

11 ).filter(

12 models.Statistics.name_id == name.id

13 ).first()

14 if stats is None:

15 yield models.Statistics(

16 name_id=name.id,

17 mean_sepal_l=0.,

18 mean_sepal_w=0.,

19 mean_petal_l=0.,

20 mean_petal_w=0.)

With the database ready to store the data, the mean can be
computed through a specific process for each Name in flowers.
For example, for the ”setosa” type:

1 class SetosaStatistics(run.Step):

2

3 model = models.Statistics

4 conditions = [

5 models.Statistics.name.has(

6 name="Iris-setosa"),

7 models.Statistics.mean_sepal_l==0.]

8

9 def process(self, stats):

10 sepal_l, sepal_w = [], []

11 petal_l, petal_w = [], []

12 for obs in stats.name.flowers:

13 sepal_l.append(obs.sepal_l)

14 sepal_w.append(obs.sepal_w)

15 petal_l.append(obs.petal_l)

16 petal_w.append(obs.petal_w)

17 stats.mean_sepal_l = sum(sepal_l)

18 stats.mean_sepal_w = sum(sepal_w)

19 stats.mean_petal_l = sum(petal_l)

20 stats.mean_petal_w = sum(petal_w)

21 stats.mean_sepal_l = (

22 stats.mean.sepal_l/len(sepal_l))

23 stats.mean_sepal_w = (

24 stats.mean.sepal_w/len(sepal_w))

25 stats.mean_petal_l = (

26 stats.mean.petal_l/len(petal_l))

27 stats.mean_petal_w = (

28 stats.mean.petal_w/len(petal_w))

Similarly, the corresponding classes must be written for the
other two Iris types. For the corral framework to be aware of
the steps, they must be added in the settings.py file, as men-
tioned previously. Finally, the pipeline can be run using the
following command line:

$ python in_corral run

Appendix A.4. Processing of exoplanet data
The pipeline for the exoplanets has a different data structure,

so its definition can be, for example:

1 class Planet(db.Model):

2

3 __tablename__ = 'Planet'
4

5 id = db.Column(

6 db.Integer, primary_key=True)

7

8 nomb = db.Column(db.Float, nullable=False)

9 per = db.Column(db.Float, nullable=False)

10 mass = db.Column(db.Float, nullable=False)

11 sep = db.Column(db.Float, nullable=False)

12 dist = db.Column(db.Float, nullable=False)

13 mstar = db.Column(db.Float, nullable=False)

14 rstar = db.Column(db.Float, nullable=False)

15 teff = db.Column(db.Float, nullable=False)

16 fe = db.Column(db.Float, nullable=False)

The load of the data is performed with just one table.
Then, the Loader class contain the setup and teardown func-
tions, which are the same than those in the IRIS example,
except for the path to the data file, given in this case by
settings.EXO_PATH. The generate function is:

1 import csv

2 from corral import run

3 from corral.conf import settings

4 from exo import models

5

6 class Loader(run.Loader):

7 """Extract data from the `exoplanets.csv` and feed

8 the stream of the pipeline.
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9

10 """

11

12 def setup(self):

13 # we open the file and assign it to

14 # an instance variable

15 self.fp = open(settings.EXO_PATH)

16

17 def float_or_none(self, value):

18 try:

19 return float(value)

20 except (TypeError, ValueError):

21 return None

22

23 def generate(self):

24 # now we make use of "self.fp"

25 # for the reader

26 for row in csv.DictReader(self.fp):

27 di = {

28 'name': row['NAME'],
29 'per': self.float_or_none(

30 row['PER']),
31 'mass': self.float_or_none(

32 row['MASS']),
33 'sep': self.float_or_none(

34 row['SEP']),
35 'dist': self.float_or_none(

36 row['DIST']),
37 'mstar': self.float_or_none(

38 row['MSTAR']),
39 'rstar': self.float_or_none(

40 row['RSTAR']),
41 'teff': self.float_or_none(

42 row['TEFF']),
43 'fe': self.float_or_none(

44 row['FE'])}
45 yield models.Planet(**di)

46

47 def teardown(self, *args):

48 # checking that the

49 # file is really open

50 if self.fp and not self.fp.closed:

51 self.fp.close()

where the function Empty2None allows to deal with missing
values, which is common in exoplanet data. This pipeline can
also be extended by adding steps and alerts. For instance, a
step can be configured to filter the dataset, compute correlation
parameters, or apply machine learning techniques to discover
clustering or perform classifications. If new planets are added
to the data file, running the pipeline updates all the results previ-
ously computed. Also, the python environment allows to write
alerts, which can be configured to produce plots, send the re-
sults by email or replace older versions in a webpage. Here we
show an example of a step, which determines the list of planets
in the habitable zone, and of an alert, which performs a scatter
plot of mass and period of planets in the habiltable zone.

In order to add the list of planets in the habitable zone to the
database, we create a new table as follows:

1 class HabitableZone(run.Step):

2 __tablename__ = "HabitableZoneStats"

3

4 id = db.Column(

5 db.Integer, primary_key=True)

6

7 planet_id = db.Column(

8 db.Integer, db.ForeignKey('Planet.id'),
9 nullable=False)

10 planet = db.relationship("Planet",

11 backref=db.backref("hzones"))

12

13 luminosity = db.Column(db.Float)

14 radio_inner = db.Column(db.Float)

15 radio_outer = db.Column(db.Float)

16

17 in_habitable_zone = db.Column(db.Boolean)

Then, the step performs the search of planets that fulfill the
requirement of being in the habitable zone. To that end, we
compute the boundaries of the habitable zone as rin = L/(1.1 ∗
Lsun) and rout = L/(0.53 ∗ Lsun), and the luminosity as

L = 4πR2
∗ ∗ σT 4

e f f (A.1)

This is performed on the models.Planet model for the plan-
ets that have both the period and the mass measured in the
dataset. All these planets that satisfy the condition of being
in the habitable zone are then ingested to the data base on the
HabitableZoneStats table.

1 from corral import run

2 import numpy as np

3 from astropy import units as u, constants as c

4 from . import models

5

6 STEFAN_BOLTZMANN = c.sigma_sb

7 SUN_LUMINOSITY = c.L_sun

8

9 class HabitableZone(run.Step):

10 """Compute some statistics of the star of

11 a given planet and then determines if is in

12 their habitable zone.

13 """

14

15 model = models.Planet

16 conditions = [model.rstar != None,

17 model.teff != None]

18

19 def process(self, planet):

20 # habitable zone of the host star

21 Rstar = (planet.rstar * u.solRad).to('m')
22 Teff = planet.teff * u.K

23 luminosity = (

24 STEFAN_BOLTZMANN * 4 * np.pi *
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25 (Rstar ** 2) * (Teff ** 4))

26 lratio = luminosity / SUN_LUMINOSITY

27 rin = np.sqrt(lratio / 1.1)

28 rout = np.sqrt(lratio / 0.53)

29

30 in_hz = (

31 planet.sep >= rin and

32 planet.sep <= rout)

33 return models.HabitableZoneStats(

34 planet=planet,

35 in_habitable_zone=in_hz,

36 luminosity=lratio.value,

37 radio_inner=rin.value,

38 radio_outer=rout.value)

Finally, we show an alert that produces a scatter plot of planet
mass vs. period:

1 class LogScatter(ep.EndPoint):

2

3 def __init__(self, path, xfield, yfield,

4 title, **kwargs):

5 self.path = path

6 self.xfield = xfield

7 self.yfield = yfield

8 self.title = title

9 self.kwargs = kwargs

10 self._x, self._y = [], []

11

12 def process(self, hz):

13 planet = hz.planet

14 x = getattr(planet, self.xfield)

15 y = getattr(planet, self.yfield)

16 if x and y:

17 self._x.append(x)

18 self._y.append(y)

19

20 def teardown(self, *args):

21 plt.scatter(

22 p.log(self._x),

23 np.log(self._y), **self.kwargs)

24 plt.title(self.title)

25 plt.legend(loc="best")

26 plt.savefig(self.path)

27 super(LogScatter, self).teardown(*args)

28

29 class PlotAlert(run.Alert):

30 """Store a list of planets in habitable

31 zone in a log file and also generate a

32 period vs mass plot of this planets

33 """

34

35 model = models.HabitableZoneStats

36 conditions = [

37 model.in_habitable_zone == True]

38 alert_to = [

39 ep.File("in_habzone.log"),

40 LogScatter(

41 "in_habzone.png",

42 xfield="per", yfield="mass",

43 title="Period Vs Mass",

44 marker="*")]

45

46 def render_alert(self, now, ep, hz):

47 planet = hz.planet

48 data = []

49 for fn in planet.__table__.c:

50 data.append([fn.name,

51 getattr(planet, fn.name)])

52 fields = ", ".join(

53 "{}={}".format(k, v) for k, v in data)

54 return "[{}] {}\n".format(

55 now.isoformat(), fields)

In order to generate a report on the quality of this pipeline,
we must perform some tests. In what follows, we show
two tests that check for consistency in the data. The test
in HabitableZoneTest creates an instance of a planet with
R∗ = 1 and Te f f = 1. This should produce a luminosity of
4 ∗ π ∗ σ/L�, and should not be into the habitable zone. The
test also accounts for the consistency of the boundary values,
checking that the inner boundary is lesser than the outer bound-
ary. Finally, it verifies that as a result of the step, just one entry
on the HabitableZoneStats is produced.

1 class HabitableZoneTest(qa.TestCase):

2

3 subject = steps.HabitableZone

4

5 def setup(self):

6 planet = models.Planet(

7 name="foo", rstar=1, teff=1)

8 self.save(planet)

9

10 def validate(self):

11 planet = self.session.query(

12 models.Planet).first()

13 hzone = planet.hzones[0]

14 self.assertAlmostEquals(

15 hzone.luminosity, 8.96223797571e-10)

16 self.assertLess(

17 hzone.radio_inner, hzone.radio_outer)

18 self.assertFalse(hzone.in_habitable_zone)

19 self.assertStreamCount(

20 1, models.HabitableZoneStats)

The other test checks that in the case a planet does not have
the two values that are required for the plot in the alert, no entry
is generated on the HabitableZoneStats table.

1 class HabitableZoneNoRstarNoTeffTest(qa.TestCase):

2

3 subject = steps.HabitableZone

4

5 def setup(self):
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6 planet = models.Planet(name="foo")

7 self.save(planet)

8

9 def validate(self):

10 self.assertStreamCount(0,

11 models.HabitableZoneStats)

These tests produce a QA index of 27.31 per cent, and a qual-
ification F with a 81.94 per cent coverage. It must be noticed
that in order to improve the quality of this pipeline, more tests
should be prepared. This example can be downloaded from the
project repository. All the structural and quality documents can
be found in GitHub pipeline repository in the following direc-
tions:

• Pipeline repository, https://github.com/

toros-astro/corral_exoplanets

• QA report, https://github.com/toros-astro/

corral_exoplanets/blob/master/exo/qareport.

md

• Model class diagram, https://github.com/

toros-astro/corral_exoplanets/blob/master/

exo/models.png

• Pipeline documentation, https://github.com/

toros-astro/corral_exoplanets/blob/master/

exo/doc.md
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Appendix B. Comparative Table Between Several Pipeline Frameworks

In the following table we condense a collection of some of the most prominent pipeline implementations. Given a particular
problem situation and resource constrain, it can be difficult to decide on a particular implementation of a pipeline and it would be
even harder to test every pipeline framework available. See section 7 for a discussion.
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Links

[1] Corral: http://corral.readthedocs.io
[2] Luigi: https://luigi.readthedocs.io
[3] Airflow: http://airflow.apache.org/
[4] Arvados: https://arvados.org
[5] Azkaban: http://azkaban.github.io/azkaban
[6] OPUS: http://www.stsci.edu/institute/software_hardware/opus/
[7] Oozie: http://oozie.apache.org/
[8] Kepler: https://kepler-project.org
[9] Kira: https://github.com/BIDS/Kira/

[10] Pelican: http://www.oerc.ox.ac.uk/~ska/pelican/
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