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ABSTRACT

A study regarding the acquisition and analytical utilization of four-way data acquired by monitoring
excitation—emission fluorescence matrices at different elution time points in a fast HPLC procedure is
presented. The data were modeled with three well-known algorithms: PARAFAC, U-PLS/RTL and MCR-
ALS, the latter conveniently adapted to model third-order data. The second-order advantage was
exploited when analyzing samples containing uncalibrated components. The best results were furnished
with the algorithm U-PLS/RTL. This fact is indicative of both no peak time shifts occurrence among
samples and high colinearity among spectra. Besides, this latent-variable structured algorithm is capable
of better handle the need of achieving high sensitivity for the analysis of one of the analytes. In addition,
a significant enhancement in both predictions and analytical figures of merit was observed for carben-
dazim, thiabendazole, fuberidazole, carbofuran, carbaryl and 1-naphtol, when going from second- to
third-order data. LODs obtained were ranged between 0.02 and 2.4 pg L~

Multi-way calibration

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High performance liquid chromatography (HPLC) combined
with fast-scanning fluorescence detection (FSFD) can generate
spectral-elution time second-order data [1,2]. The proper model-
ing of these data can be done not only when full selectivity in the
chromatographic separation is not achieved but even in the pre-
sence of unexpected constituents in new samples. This modeling
gives place to three-way calibration, which has additional benefits
such as decreasing cost and time of analysis. Recent pertinent
examples can be found in the literature [3-10].

On the other hand, four-way arrays generated with chromato-
graphic systems equipped with proper detection devices can also
be exploited for analytical purposes [1]. One common example of
four-way/third-order data involving chromatography is compre-
hensive two-dimensional gas chromatography followed by mass
spectrometric detection (GC x GC-TOFMS) [11]. Another approach
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consists in recording excitation-emission matrices (EEMs) as a
function of the elution time. Very recently, this was done for the
first time with quantitative purposes by following two different
approaches: (a) performing several chromatographic runs, and
recording the emission spectra of every one at a different excita-
tion wavelength, across the excitation spectra of the compounds of
interest [12], and (b) collecting chromatographic fractions every
two seconds and then, obtaining excitation-emission matrices for
each collected fraction [13]. On the other hand, liquid chromato-
graphy-diode array detection (LC-DAD)-kinetic third order data
were modeled by Bezemer and Rutan [14]. In addition, very re-
cently, Qing et al. reported the generation and modeling of fourth-
order LC-DAD-pH-kinetic data to study the hydrolysis of naptalam
[15].

Since multi-way data of chromatographic origin usually pre-
sent multi-linearity loss due to time mode variations of con-
stituent profiles from sample to sample, multivariate curve re-
solution coupled to alternating least squares (MCR-ALS) [16] has
been the selected algorithm for modeling such complex data. The
original third-order data should be first unfolded into matrices, i.e.
arranged into bilinear augmented matrices [11,17], to be modeled
with the MCR-ALS algorithm. In addition, a latent structured
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model such as partial least squares in its unfolded alternative (U-
PLS), and coupled to residual trilinearization (RTL) has been ap-
plied to third-order data to exploit the second-order advantage
[18,19]. Furthermore, when multi-linearity is fulfilled, parallel
factor analysis (PARAFAC) can also be applied [20]. Finally, it
should be commented that a new augmented parallel factor ana-
lysis (APARAFAC) was successfully proposed by Olivieri and co-
workers to circumvent the problem of multi-linearity loss in the
time mode [21].

Regarding the target analytes of the present work, it should be
noticed that the use of pesticides in agriculture has increased
dramatically during the last few decades. Although they offer
unquestionable benefits in providing a plentiful, low-cost supply
of high-quality fruit and vegetables, their incorrect application
may leave harmful residues, which involve possible health risks
[22]. For this reason, government and international organizations,
such as the European Commission (EC) [23] and the Food and Drug
Administration (FDA) [24] have established maximum residue
limits (MRLs) to control the use of these potentially harmful
compounds.

A literature search reveals that a large number of methods for
the determination of pesticides have been published. Specifically,
the determination of benzimidazolic pesticides (carbendazim,
thiabendazole and fuberidazole) and carbamates (carbaryl, car-
bofuran and 1-naphthol) have been carried out by fluorescence
spectroscopy [25-27], liquid chromatography coupled with diode
array detection [28], fluorescence detection [29,30], mass spec-
trometry [31] and tandem mass spectrometry [32], gas chroma-
tography-mass spectrometry [33], micellar electrokinetic chro-
matography coupled with mass spectrometry [34] and electro-
chemical methods [35].

In the present work, we report a method for the quantitation of
carbendazim (CBZ), fuberidazole (FBZ), thiabendazole (TBZ), car-
bofuran (CBF), carbaryl (CBR) and naphthol (NPH) in fruit juice
samples based on the generation of third-order chromatographic
data and their modeling with three different algorithms. The data
were obtained using HPLC coupled with fast-scanning fluores-
cence detection, recording for each sample several emission-elu-
tion time two-way matrices at different excitation wavelengths.

Interestingly, this procedure can be adapted to a high number
of complex analytical applications, allowing to extract more in-
formation compared to that obtained by recording the emission
spectrum at one excitation wavelength selected as a compromise
between the optimal wavelength for each analyte. In this way, the
optimal signal for every target analyte can be collected, giving the
possibility of extracting qualitative information which could be
extremely useful for identification of co-eluting compounds in
highly complex samples.

2. Theory
2.1. U-PLS-RTL

The original cube-structured data are transformed into uni-
dimensional arrays (vectors) by concatenating (unfolding) the
original three-dimensional information. Then, concentration in-
formation, included in the vector y (I x 1), is employed in the ca-
libration step without including data for the unknown sample
[36]. As it is well-known for PLS, a set of loadings P and weight
loadings W (JKL x A, where A is the number of latent variables) as
well as regression coefficients v (size A x 1) are obtained after the
calibration step. Usually, the leave-one-out cross-validation pro-
cedure is implemented for selecting the parameter A [37]. Subse-
quently, v is employed to estimate the analyte concentration
through the following equation:

Yu =tuTV M

where t, (size Ax 1) is the test sample score, obtained by pro-
jection of the (unfolded) data for the test sample X, [vec(X,)] of
size (JKL x 1) onto the space of the A latent factors:

t, = WPy 'Wlvec(X,) @)

If the sample contains unexpected components, the scores gi-
ven by Eq. (2) are not suitable for analyte prediction using Eq. (1),
generating abnormally large residuals in comparison with the ty-
pical instrumental noise assessed by replicate measurements.

In the latter cases, RTL models the interferent effects with a
Tucker3 decomposition [18], i.e. RTL aims at minimizing the norm
of the residual vector e,, computed while fitting the sample data
to the sum of the relevant contributions to the sample signal. The
Tucker3 model is seen as a way to generalize Principal Component
Analysis (PCA) to higher orders. The expression for a single inter-
ferent is the following.

vec(Xu) = I)tu + gim(dint ® Cip ® bint) + €y 3)

where by, Cin: and d;,; are normalized profiles in the three modes
for the interference and gj,, is the first core element, analogous to
the first component in PCA, obtained for Tucker3 decomposition of
the residual array Ep in the following way:

(&ine» Dints Cines dine) = Tucker3(Ep) @)

During this stage, P is kept constant at the calibration values
and t, is varied until Il e, Il is minimized by a Gauss-Newton (GN)
procedure. Finally, the analyte concentrations are provided by Eq.
(1), although the final t, (tyrrr) vector found by the RTL procedure
is used.

A relevant issue is to know the number of interferents N;, which
can be assessed by comparing the final residuals s, with the in-
strumental noise level. Usually, this value is computed for a trial
number of components. Each time a new trial component is added
to the model, the Tucker3 analysis shown in Eq. (4) is carried out
using N; principal components. Residual shows decreasing values,
starting at s, when N;=0, until it stabilizes at a value compatible
with the experimental noise, allowing to locate the correct num-
ber of components.

2.2. MCR-ALS

As it is well-known, the MCR-ALS algorithm is capable of
handling second-order data sets deviating from trilinearity, i.e.,
data in which time shifts or peak shape changes occur for analytes
from sample to sample [16]. The strategy of augmenting matrices
along the mode which is suspected of breaking the trilinear
structure has been the choice to circumvent the latter problem.
The algorithm performs a bilinear decomposition of the aug-
mented matrix D, according to:

D=CxS +E (5)

in which the rows of D generally contain spectra (K wavelengths)
as a function of time (J times), the columns of C contain the time
profiles of the N compounds involved in the process, the columns
of S their related spectra, and E is a matrix of residuals not fitted by
the model. The augmented D matrix is decomposed by iterative
least-squares minimization of the norm of E. Constraining condi-
tions (non-negativity in the spectral profiles, unimodality and
non-negativity in the time profiles, correspondence among species
and samples in the case of samples containing uncalibrated com-
ponents) are imposed during the decomposition. D is built by
placing one on top of another the calibration submatrices and each
of the test data submatrices. The pure spectrum of each compound
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should be the same in all experiments, and selective. On the other
hand, the temporal profiles in the different C sub-matrices need
not share a common shape; this is why this method is widely used
to model second-order chromatographic data [1]. Finally, in-
itialization can be performed by selection of the purest spectra
based on SIMPLISMA (simple interactive self-modeling mixture
analysis) [38].

In order to apply MCR-ALS to third-order data, the X (J x K x L)
cube is firstly unfolded into matrices X (J x KL), so that they could
then be arranged into a bilinear augmented matrix. The general
procedure followed in the present work consisted in performing
several chromatographic runs, and recording the emission spectra
of every one at a different excitation wavelength, across the ex-
citation spectra of the compounds of interest. Then an EEM of size
(L x K), in which L and K are the number of excitation and emission
wavelengths, respectively, was recorded for every elution time
(gathering ] EEMs). Then, data were organized for their subsequent
MCR-ALS analysis. The first stage was to unfold each EEM gen-
erating a row vector of dimension (1 x LK). Then, a matrix of
(J x LK) was created for each sample. After that, an augmented data
matrix D of size [J(I+1) x LK] was built, in which I is the number of
standards and “1” represents the unknown sample under analysis.

After building the augmented matrix, MCR-ALS analysis yields
an augmented concentration matrix containing the pure elution
time profiles for different samples (C), a matrix of pure unfolded
EEM profiles (S) for the N components, and a residual matrix (E)
containing noise and unresolved background (according to Eq.
(5)). The C matrix contains the elution time profiles in all [J(I+1)]
fractions for the N resolved components. The single pure unfolded
EEM matrix ST (N x LK) can be reshaped as an EEM (L x K) and
used for the identification of the resolved components. On the
other hand, the areas under the resolved time elution profiles
corresponding to one sample are used for quantitative purposes. In
this way, a matrix of size (J x N) for every sample is obtained.

2.2.1. MCR-bands

MCR solutions are not unique and may have an unknown grade
of ambiguity. In particular, intensity and rotation ambiguities can
be reduced by normalization or application of constraints, re-
spectively [39].

The MCR-BANDS method has been described to evaluate rota-
tion ambiguity, based on the calculation of the relative contribu-
tion of every component in a mixture using a method which is
evaluated using the equation:

Jeasa
|es7] ©6)

where f,, is a scalar value which gives the relative signal con-
tribution of a particular component to the whole signal for the
mixture of N components (n=1,...N).

For every component, there will be a different set of ¢, and s}
profiles, with different shapes due to rotation ambiguity, as well as
different relative signal contribution f;, calculated with Eq. (6). The
application of constraints makes only possible some of these re-
sults. It is then possible to look for maximum and minimum values
of the relative contribution function for each component of the
system, called respectively f,™ and f,™".

After MCR modeling under a set of constraints, f,™** and f,™"
values are calculated. In cases where rotation ambiguities are al-
most eliminated by the application of constraints, the profiles ¢,
and s!, and therefore f,™% and f,™®" values, are practically con-
stant. On the other hand, if rotation ambiguity is confirmed, the
extent of rotation ambiguity can be evaluated by the difference
between f,™** and f,™" values [40].

n

2.3. PARAFAC

The presently studied third-order data of size J x K x L, mea-
sured for a set of I calibration samples, can be arranged in a four-
way array (X), whose dimensions are [(I+1) xJ x K x L]. Provided
X follows a quadrilinear PARAFAC model represented by Eq. (7), it
can be written in terms of four vectors for each responsive com-
ponent (a,, b,, ¢, and d,) and collecting the relative concentra-
tions [(I+1) x 1] for component n, and the profiles in the three
modes (J x 1), (Kx 1) and (L x 1), respectively [20].

N
Xijk = 2 AinDjnCindin + €
n=1 (7)

The model described by the latter equation defines a decom-
position of X which provides access to emission (B) and excitation
spectral profiles (C), elution time profiles (D) and relative con-
centrations (A) of individual components in the (I+1) mixtures,
whether they are chemically known or not. The decomposition is
usually accomplished through an alternating least-squares mini-
mization scheme [41].

PARAFAC initialization for the study of four-way arrays can be
done using singular value decomposition vectors, spectral and
chromatographic data which are known in advance for pure
components, or by the loadings giving the best fit after small
PARAFAC runs involving both singular value decomposition vec-
tors and several sets of orthogonal random loadings, options
which can be implemented in the PARAFAC package.

3. Materials and methods
3.1. Chemicals and reagents

All standards were of analytical grade. CBZ, FBZ, TBZ, CBF, CBR
and NPH were provided by Sigma Aldrich (St. Louis, MO, USA).
Methanol (MeOH) LC grade and acetonitrile (ACN) LC grade were
obtained from Merck (Darmstadt, Germany). Dichloromethane
(DM) was purchased from Cicarelli (Rosario, Argentina). Ultrapure
water was obtained from a Milli-Q water purification system from
Millipore (Bedford, MA, USA).

3.2. Calibration, validation and fruit juice samples

Stock standard solutions of CBZ (300.0mgL~'), TBZ
(700.0mgL~"), FBZ (300.0mgL~'), CBF (510.0mgL~"), CBR
(600.0mg L~') and NPH (580.0 mgL~!) were prepared by dis-
solving accurately weighed amounts of the pesticide standard in
MeOH and maintained the solutions under refrigeration at 4 °C in
the dark. More diluted solutions were prepared daily in ACN.
Working standard solutions were prepared by dilution of these
solutions in water.

In order to design the calibration set, the full elution time range
was divided into two regions, one comprising CBZ, TBZ and FBZ
and the other CBF, CBR and NPH. Two central composite designs
were built for each region, obtaining a set of 15 calibration samples
with the six analytes in the range of 10.0-400.0 pgL~! for CBZ,
2.0-80.0 pg L~ ! for TBZ, 0.1-1.5 pg L~ ! for FBZ, 50.0-500.0 pg L~
for CBF, 2.0-80.0 pg L' for CBR and 5.0-200.0 pig L~ for NPH.

A set of 13 validation samples was prepared following the same
scheme used for the calibration set, containing the six analytes in
concentrations different than those used for calibration, provided
by a Box-Behnken design (see Table 1).

Apples, pears and plum samples were purchased in local markets.
The fruits were processed in a juice extractor. Spiked samples were
obtained by diluting appropriate aliquots of standard solutions in fruit
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Table 1
Predicted concentrations in validation samples using MCR-ALS, PARAFAC and U-PLS/RTL.
Analyte (ug L™ 1) Samples REP? Recovery
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 R %P
CBZ
Actual 175 300 300 175 50 50 175 50 175 300 300 175 50
MCR-ALS 159 301 318 177 46 34 177 44 172 322 307 180 35 6 95
U-PLS 162 278 286 162 47 52 166 40 169 307 285 177 48 6 95
PARAFAC 162 309 321 182 48 64 177 45 190 326 318 198 49 7 104
TBZ
Actual 35 10 35 10 60 35 60 35 10 35 60 60 10
MCR-ALS 35 10 35 8 58 37 54 34 1 34 62 64 8 5 97
U-PLS 35 10 37 1 58 36 55 36 11 35 58 61 7 5 99
PARAFAC 35 10 36 9 58 37 55 35 11 35 61 63 8 5 99
FBZ
Actual 0.7 0.7 11 03 0.7 11 0.3 0.3 11 0.3 0.7 11 0.7
MCR-ALS 0.8 0.6 1.0 0.1 0.6 0.8 0.1 0.1 0.6 0.1 0.6 0.9 0.4 29 66
U-PLS 0.7 0.7 11 0.2 0.6 1.2 0.2 0.2 1.0 0.2 0.7 11 0.5 11 86
PARAFAC 0.7 0.6 1.0 0.1 0.6 0.8 0.1 0.1 0.7 0.1 0.6 1.0 0.4 26 67
CBF
Actual 250 100 250 100 400 250 400 250 100 250 400 400 100
MCR-ALS 215 110 252 108 356 230 385 241 89 248 383 407 118 7 94
U-PLS 245 101 270 92 368 245 252 239 95 228 384 392 55 8 91
PARAFAC 212 92 243 92 385 251 386 250 91 239 381 406 92 5 95
CBR
Actual 35 60 60 35 10 10 35 10 35 60 60 35 10
MCR-ALS 34 56 58 32 9 10 35 9 32 60 57 37 9 5 93
U-PLS 32 56 57 33 9 10 33 8 34 61 57 35 10 5 95
PARAFAC 32 55 57 32 9 9 33 9 32 58 56 34 9 6 92
NPH
Actual 85 85 150 20 85 150 20 20 150 20 85 150 85
MCR-ALS 83 84 137 19 77 150 18 18 138 20 81 148 66 8 92
U-PLS 83 86 140 24 78 151 19 22 135 21 79 143 65 8 98
PARAFAC 81 82 134 19 75 148 18 18 136 20 79 145 65 9 92

@ REP, relative error prediction in %.
b Mean recovery.

juice. The samples were then centrifuged for 10 min at 5000 rpm. The
pesticides were extracted from the supernatant by a dispersive liquid-
liquid micro extraction (DLLME) procedure optimized for these sam-
ples, performed as follows: 1.0 mL of the juice sample supernatant was
transferred to a 2.0 mL Eppendorf tube and 100 pL of ACN, as dis-
persive solvent, and 400 pL of DM, as extraction solvent, were added.
The tubes were shaken for 1 minute using a vortex mixer and cen-
trifuged for 5 min at 14,000 rpm. The lower layer (dichloromethane
extract) was removed using a syringe and collected in clean test tubes.
The DM was evaporated under a gentle flow of nitrogen. The final
residues were reconstituted with 1.0 mL of water and vortexed for
1 min. Samples were transferred into 2 mL vials for further analysis.

3.3. HPLC-EEM procedure

The chromatographic studies were performed on an Agilent
1100 LC instrument (Agilent Technologies, Germany), equipped
with degasser, quaternary pump, autosampler, oven column
compartment, UV-visible diode array detector (DAD), fluorescence
detector and the ChemStation software package to control the
instrument, data acquisition and data analysis. The analytical col-
umn was a Zorbax Eclipse XDB-C18, 75 mm x 4.6 mm, 3.5 pm
particle size (Agilent Technology, Germany).

The column temperature was controlled by setting the oven

temperature at 30 °C. The mobile phase consisted in a mixture of
acetonitrile and water (45:55, v/v). Samples were analyzed in
isocratic mode. The complete analysis was carried out in 5 min.
The flow rate was maintained at 0.80 mL min~! and the acquisi-
tion frequency was 1.83 Hz. Samples were filtered through
0.45 pm nylon membrane filters before injection.

For each sample, seven chromatograms were obtained exciting
at seven different excitation wavelengths (278, 283, 286, 290, 293,
296 and 305 nm) and recording the emission spectra from 305 nm
to 500 nm every 1 nm. This procedure generated a data tensor of
size 549 x 196 x 7. For data modeling, excitation and emission data
points were reduced in order to eliminate scattering contributions.
Thus, the modeling was made in the excitation range of 278-
296 nm and the emission range of 335-500 nm.

3.4. Data pre-processing

The raw data obtained from the chromatographic runs were
pre-processed before modeling. In order to reduce instrumental
noise, a smoothing function was applied in the time direction
using the Savitzky-Golay method [42]. The baseline variation be-
tween runs was corrected by digitally subtracting the blank signals
from the sample data. Thus, the baseline was brought to zero for
all emission and excitation wavelengths.
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Fig. 1. (A) Chromatograms for validation sample no. 3 (Table 1) containing the six pesticides registered at r.x=283 nm and Aem=325 nm (black solid line), Aey, =355 nm
(gray dashed line) and Aem=455 nm (black dash-dotted line). (B) Chromatograms for real sample no. 1 (Table 2) containing the six pesticides registered at A.x=283 nm and
Aem=2325 nm (black solid line), Aer;=355 nm (gray dashed line) and Aep, =455 nm (black dash-dotted line).

Table 2
Predicted concentrations (ug L~ ") in fruit juice samples using U-PLS/RTL.

Fruit juice  Spiked Found Spiked  Found Spiked  Found
CBzZ TBZ FBZ
Apple 0 26 0 5.0 0 ND
30 55 (97) 10 134 (84) 030 0.21 (70)
Pear 0 36 0 ND 0 ND
150 146 (73) 40 39(97) 0.80 0.78 (97)
Plum 0 13 0 3.9 0 0.1
150 83 (48) 40 24(51) 080 0.6 (63)
CBF CBR NPH
Apple 0 ND 0 ND 0 ND
100 81 (81) 10 10 (100) 10 11 (110)
Pear 0 ND 0 ND 0 NR
250 211 (85) 40 34 (88) 95 NR
Plum 0 ND 0 ND 0 NR
250 263 (105) 40 43(107) 95 NR

NR: samples that could not be resolved.
Between parenthesis: recoveries (%), computed as: 100 x (Predicted value in the
spiked sample — Predicted value in non-spiked sample)/Nominal spiked value.

3.5. Software

The ChemStation software (Agilent Technologies, Germany)
was employed for LC instrument control. All employed algorithms
were implemented in MATLAB 7.6 [43]. Those for applying MCR-
ALS are available on the Internet at http://www.mcrals.info/. A
useful interface for data input and parameters setting written by
Olivieri et al. [44], which can be downloaded from www.iquir-
conicet.gov.ar/descargas/mvc3.rar, was employed to PARAFAC,
MCR-ALS and U-PLS/RTL implementation.

4. Results and discussion
4.1. Third-order data generation

Fig. 1A and B shows chromatograms for validation sample no. 3
(Table 1) containing the six pesticides registered at A.x=283 nm and
Aem=325, 355 and 455 nm, and chromatograms for apple juice real
sample (Table 2) at the same conditions. These three emission wa-
velengths were chosen in order to show that wavelength selection is
not a trivial operation. As can be appreciated, the six analytes cannot
be completely separated by the chromatographic method, and, ad-
ditionally, the real sample contains a large number of unexpected
constituents. On the other hand, a single chromatographic run only
requires 4 min to be carried out. This latter fact is of paramount
significance because the third-order data generation procedure im-
plemented herein requires seven chromatographic runs per sample,
as was commented above.

Fig. 2 shows excitation and emission spectra of CBZ, TBZ, FBZ,
CBF, CBR and NPH obtained in a spectrofluorimeter by measuring
pure standard solutions of each pesticide. Interestingly, this figure
demonstrates that selectivity can be improved taking advantage of
the differences in the excitation spectra, instead of using a single
excitation wavelength to generate the emission spectra.

Fig. 3 shows four contour plots, each one corresponding to
chromatogram-emission spectra matrices recorded at the follow-
ing excitation wavelengths: 278, 286, 293, 305 nm for validation
sample no. 1 (Table 1). A visual inspection of these four contour
plots makes evident the large amount of information that can be
obtained by using the described data generating procedure.

First, it is worth mentioning the importance of working with
second-order data, considering that the selection of one emission
and one excitation wavelength would restrict the number of
compounds that can be detected in a chromatographic run, or
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Fig. 2. Excitation (A) and emission (B) spectra for the six pesticides. 1-CBZ: yellow dashed line, 2-TBZ: blue solid line, 3-FBZ: orange dash-dotted line, 4-CBF: green solid line,
5-CBR: red dashed line and 6-NPH: cyan dash-dotted line. Conditions: (A) excitation spectra of CBZ (hem=310 nm), TBZ (Aem=360 nm), FBZ (Ae;y=355nm), CBF
(Aem=307 nm), CBR (Aem=335 nm) and NPH (iey, =458 nm). (B) Emission spectra of CBZ (Aex=383 nm), TBZ (Aex=296 nm), FBZ (Aex=304 nm), CBF (Aex=278 nm), CBR
(hex=278 nm) and NPH (Ae,=290 nm). Concentrations: CBZ: 200 mg L™!, TBZ: 100 mg L~ !, FBZ: 10 mg L', CBF: 200 mg L~ !, CBR: 100 mg L', NPH: 100 mg L. (For in-
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

would significantly reduce the sensitivity of the method. However,
recording the emission spectra is probably not sufficient as the
analytes present different excitation maxima and this is evidenced
in Figs. 1 and 3. In going from one excitation wavelength to an-
other, the signals of some analytes decrease as the signals of others
become stronger. For instance, the signal of CBF and CBR, which
elute at 2.7 and 3.0 minute, respectively, and have the maximum

495
Ex =278 nm

350
495

Ex=293 hm

Wavelength (nm)

350
Time (m)

excitation intensity at 278 nm, is evidently favored in the first
contour plot (Aex=278 nm), and gradually decreases until the last
one (Aex=305nm), in which no signal of them is detected. The
opposite behavior is observed for TBZ (1.4 min) and FBZ (1.6 min),
since the signal increases from the first contour plot to the last
one, in agreement with their excitation maxima (296 nm and

305 nm, respectively).

Ex =286 nm

Fig. 3. Contour plots, each one corresponding to chromatogram-emission spectra matrices recorded at four excitation wavelengths for validation sample no. 1 (Table 1).
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4.2. MCR-ALS modeling of second- and third-order data

In order to quantify the six analytes in the thirteen validation
samples, two D augmented matrices were built by appending:
(a) the second-order calibration data matrices consisting in time-
emission spectra recorded at A.,=283 nm split into two regions:
region I (1.1-1.8 min) and region II (2.5-4.0 min); and (b) the third-
order calibration data matrices (time-unfolded EEM, equally split
into two regions as for second-order data).

Augmented matrices were built appending one validation
sample plus the fifteen calibration sample data. During the ALS
optimization, the following constraints were applied to get unique
and physically meaningful solutions: (a) non-negativity in the
concentration and spectral profiles, (b) unimodality in the con-
centration profiles, and (c) trilinearity.

In addition, based on the knowledge of the system under study,
three compounds, in each time region, were used to build the

spectral initial estimations using the simple-to-use interactive
self-modeling mixture analysis (SIMPLISMA) methodology [38].
After MCR-ALS decomposition of D matrices according to Eq. (5),
the concentration information contained in both C matrices was
used to construct pseudounivariate graphs by plotting the analyte
concentration scores against the nominal analyte concentrations.
Table 1 shows the results for third-order data and Table 1S (see
Supplementary material) for second-order data.

As can be seen in Table 1, MCR-ALS modeling furnishes good
results, with relative error predictions (REP%) of 5-7, except for
FBZ (REP=29%). When going from second- to third-order data the
prediction ability improves for the six analytes, although the
predictions for FBZ were still not satisfactory.

In Fig. 4, the profiles retrieved by MCR-ALS after decomposing
the augmented D matrix for third-order data are shown. As can be
seen, decomposition of D furnishes the temporal and spectral
profiles (concatenated emission spectra corresponding to each

Table 3
Effect of constraints on rotation ambiguity in MCR-ALS.
Constraints® f Region | Region II
Component 1 Component 2 Component 3 Component 1 Component 2 Component 3
123 e 0.284 0.844 0.494 0.413 0.684 0.993
i 0.231 0.781 0.457 0.642 0.757 0.119
L 0.184 0.460 0.207 0.388 0.542 0.609
froax_gmin 0.100 0.384 0.287 0.025 0.142 0.384
1,2,3,4 fmex 0.229 0.799 0.385 0.643 0.756 0.119
i 0.229 0.799 0.385 0.643 0.756 0.119
fmin 0.229 0.799 0.385 0.643 0.756 0.119
fmax_gmin 0.000 0.000 0.000 0.000 0.000 0.000

fmax _ fmin corresponds to the difference between f™* and f™" values.

¢ Constraints: 1 normalization; 2 non-negativity; 3 unimodality; 4 trilinearity.
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excitation wavelength) for every compound in region I (Fig. 4A and
B) and in region II (Fig. 4 C and D). Comparison of the results with
the pure spectra allows affirming that the modeling results were
satisfactory and the spectra profiles retrieved are in agreement
with the spectra of pure analytes.

In addition, rotational ambiguity was evaluated considering
different types of constraints. In Table 3, a summary of the results
obtained using the MCR Bands program is shown [40]. The values
of fmin, finic fmax and the difference between f™ and f™" are given
for every component when non-negativity and unimodality con-
straints were used, and when the trilinearity constraint was

applied in addition to non-negativity and unimodality. As can be
appreciated, the trilinearity constraint completely eliminates the
rotation ambiguity, as proved by f™" and fT** values, and their
comparison with those corresponding to fiMc,

Fig. 5, which shows the retrieved time profiles for all the vali-
dation samples, lets us arrive to an interesting observation: no
major peak time shifts occurred among samples. This fact con-
ducts us to the conclusion that there is no trilinearity loss, and
consequently, that other algorithms such as PARAFAC and U-PLS/
RTL could be successfully applied.

Table 4
Analytical figures of merit for the application of PARAFAC, MCR-ALS and U-PLS methods to the modeling of second- and third-order data for validation and fruit juice
samples.”
CBZ TBZ FBZ
MCR-ALS U-PLS PARAFAC MCR-ALS U-PLS PARAFAC MCR-ALS U-PLS PARAFAC
Validation samples
Sensitivity 2/3 8/20 57 10/25 30/89 38/110 220/710 1300/3900 1100/3100
[y~ 1P 1/04 0.2/0.1 0.1/0.3 0.3/0.1 0.05/0.02 0.01/0.01 0.01/0.003 0.001/0.0004 0.0004/0.0005
LOD (pg L71)° 24/32.0 4.7/21 18/18 4.4/8.7 1.2/0.6 6.3/5.5 0.4/0.4 0.04/0.02 0.3/0.3
Fruit juice
Sensitivity - 10 - - 34 - - 1380 -
[y~ 1P - 0.2 - - 0.05 - - 0.001 -
LOD (ug L~1)° - 30 - - 7.0 - - 0.07 -
CBF CBR NPH
MCR-ALS U-PLS PARAFAC MCR-ALS U-PLS PARAFAC MCR-ALS U-PLS PARAFAC
Validation samples
Sensitivity 0.5/0.6 5/13 14/3 14/18 38/100 48/95 9/20 12/34 20/45
[y~ '° 2/1 0.3/0.1 0.4/0.4 0.08/0.04 0.04/0.02 0.01/0.01 0.1/0.03 0.1/0.05 0.03/0.02
LOD (pug L71)° 100/110 12.2/4.6 59/4.7 2.4/[2.8 0.9/0.4 1.8/1.9 12/12 49/2.4 11/
Fruit juice
Sensitivity - 6 - - 41 - - 11
[y='° - 0.1 - - 0.02 - - 0.07
LOD (pg L™1)° - 20 - - 3.1 - - 73

Figures of merit were not computed for MCR-ALS and PARAFAC in fruit juice samples.

2 Second-order/third-order.
b Inverse of analytical sensitivity
€ LOD: Limit of detection.
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4.3. PARAFAC modeling of second- and third-order data

The thirteen validation samples (Table 1) were investigated
with PARAFAC. In order to model the data with this algorithm, the
first step is the assessment of the correct number of sample con-
stituents. This number is determined based on several different
criteria, such as previous knowledge of the system, variance ex-
plained by the model and core consistency diagnosis (CORCON-
DIA), proposed by Bro and Kiers [45]. For the latter criteria, when
the selected number is bigger than the correct factor number, the
core consistency is close to zero or even negative. When the se-
lected number is equal to or smaller than the correct number, the
core consistency is close to one. However, it is not rare that dif-
ferent diagnostics point to different number of components.
Considering this, the number of components was six, with an
explained variance of 99.1%, which is in agreement with the
known number of compounds present in the calibration and va-
lidation sets.

Different models were built for each analyte. For modeling both
second- and third-order data, matrices or cubes corresponding to
the calibration samples were stacked with the one corresponding
to the target sample. Decompositions were performed applying
the following constraints: unimodality in the time mode and non-
negativity in the others.

After PARAFAC decomposition of the three- or four-way arrays,
the concentration information contained in the score matrices was
used to build the pseudounivariate graph by plotting the analyte
concentration scores against the nominal analyte concentrations.
Predictions are depicted in Table 1 for third-order data and
Table 1S for second-order data, while figures of merit are shown in
Table 4 and discussed below.

4.4. U-PLS/RTL modeling of second- and third-order data

U-PLS was applied selecting the number of latent variables by
the well-known leave-one-sample-out cross-validation procedure
[37]. Thus, the optimum number of factors was estimated by cal-
culating the ratios F(A)=PRESS(A <A*)/PRESS(A*), where
PRESS:Z(yi_act—yi_pred)z, A is a trial number of factors and A*
corresponds to the minimum PRESS, and selecting the number of
factors leading to a 75%-less probability that F> 1. Since the pre-
sent study was carried out with six pesticides A was equal to 6.

Table 1 shows the prediction results for MCR-ALS, U-PLS/RTL
and PARAFAC modeling of the validation samples for third order
data. As can be appreciated, the algorithms achieved similar error
predictions (5-9%) for five of the six analytes. However, there is an
evident difference in their prediction ability for the analyte FBZ.
U-PLS/RTL attained a REP% =11, while for MCR-ALS and PARAFAC it
was 29 and 26, respectively. This significant improvement in
prediction for FBZ can be attributed to the higher sensitivity
reached by U-PLS/RTL, with a limit of detection 10-time lower than
those for both PARAFAC and MCR-ALS (see below). On the other
hand, it has been proven the higher ability of this latent-variable
structured algorithm when modeling highly collinear systems [46].

The statistical comparison of the prediction results presented in
Table 1 (and those obtained for second-order data modeling
shown in the Table 1S of Supplementary material) was made via
the bivariate least squares (BLS) regression method and the elliptic
joint confidence region (EJCR) test [47]. The EJCR plots of the
slopes and the intercepts are shown in Fig. 6A-C for second-order
data, and Fig. 6D-F for third-order data modeling. A visual in-
spection of the six figures allows arriving to an interesting con-
clusion: the elliptical domains obtained with all the data and the
algorithms applied to the six analytes only contain the theoreti-
cally predicted value of the slope (1) and the intercept (0) for
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Fig. 6. EJCR plots of the slopes and the intercepts for second-order data (A-C), and for third-order data modeling (Fig. 6D-F). For CBZ, TBZ, FBZ, CBF, CBR, NPH in yellow, blue,
orange, green, red and cyan line, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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U-PLS/RTL (Fig. 6E). This fact is indicative of the better perfor-
mance of the latter algorithm, and consequently, fruit juice sam-
ples were analyzed by implementing U-PLS/RTL.

4.5. Quantitative results obtained in fruit juice samples

In order to evaluate the performance of U-PLS/RTL in terms of
its predictive ability, predictions obtained for the fruit juice sam-
ples without and with spiked analytes are presented in Table 2. A
matrix effect was observed in the analysis of these samples,
probably due to the presence of a large number of components in
the extracting liquid. Thus, quantitation was performed by the
standard addition calibration method, which involved spiking
three levels of each standard to samples without and with the
target analytes.

The number of factors was estimated using the leave-one-
sample-out cross-validation procedure. The number of latent
variable was six for apple and five for the other two samples,
because NPH was affected by matrix effect in pear and plum and
could not be quantified. Due to the presence of uncalibrated
compounds, RTL was applied to achieve the second order ad-
vantage. Two interferents in the RTL procedure were necessary to
stabilize the final residuals.

As can be appreciated in Table 2, the best results were obtained
for CBF and CBR (recoveries ranged between 85% and 113%). It should
be noted that both analytes are present in the second region, and
reach the better chromatographic separation (see Fig. 1). According to
the latter comment, it would be expected the same behavior for NPH.
But, regrettably, NPH was the most affected analyte by the matrix
effect, especially in pear and plum samples. Consequently, it could
not be quantified in these particular samples.

Another interesting fact that deserves to be commented is the
presence of CBZ and TBZ in the three analyzed fruit juice, and FBZ
in plum juice. This latter analyte in a very low concentration
(01 pgL~1), but over the LOD computed for U-PLS/RTL of
0.02 ug L~ (see below).

4.6. Analytical figures of merit

Figures of merit were calculated in order to evaluate the ap-
plicability of the proposed method. Sensitivity (SEN) can be con-
sidered as one of the most relevant figures of merit in the field of
analytical chemistry due to the fact that it is a decisive factor in
estimating others, such as limit of detection (LOD) and limit of
quantitation (LOQ). SEN can be defined as the variation in net
response for a given change in analyte concentration.

Very recently, expressions for multi-way calibration methods,
such as MCR-ALS [48] and U-PLS/RBL or RTL [49], were derived
based on the concept of input and output noise in a given system
(SEN measures the ratio of output noise to input noise). These
expressions were used to compute the figures of merit presented
in Table 4. It should be remarked the enhancement in SEN and the
reduction in LOD and LOQ when going from second- to third-order
data for the same algorithm. This fact has been pointed out by
Allegrini and Olivieri [49], and encourages increased research on
the field of generation of new high-order data.

Comparing the results obtained in the present work with those
presented in reported papers, an improvement in LOD and LOQ, as
well as in sensitivity, is observed for some of the pesticides. The limits
found are quite varied, depending on the method employed. The LODs
reported in the literature are between 0.6 and 65 ug L~ for CBZ, 0.02—
0.30 ug L—"! for FBZ, 0.3-4.5 ug L—"' for TBZ, 013 pg L~ '4.0pgL—!
for CBF, 0.8-30 pig L~ for CBR, and 2-18 pg L' for NPH. A comparison
let us conclude that the results obtained by the method presented in
this work can be considered satisfactory and, in some cases, better
than those obtained by other methods [25,27,28, 29,31,35]. It is worth

mentioning that, apart from achieving desired limits of detection, the
method described is suitable for quantifying five analytes in a rea-
sonable analysis time, even in the presence of interferents, which
becomes especially important when dealing with complex matrices
such as fruits juice.

5. Conclusions

The acquisition and the proper modeling of four-way data ac-
quired by following excitation—-emission fluorescence matrices at
different elution times in a fast HPLC procedure can become a way
to improve the analytical ability when analyzing complex samples.

The modeling of the data considered in the present work re-
sulted more convenient with U-PLS/RTL than with the other two
well-known algorithms: PARAFAC and MCR-ALS. Thus, it could be
concluded that when no peak time shifts occurred among samples
and there is high colinearity in one mode, the latent-variable
structured algorithm is capable of better handle the need of high
sensitivity for the analysis of one of the analytes. More studies are
needed to fully understand the structure of four-way arrays and to
develop analytical methods for increasingly complex samples.
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