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During the last two decades several generalizations of the traditional Tikhonov–
Phillips regularization method for solving inverse ill-posed problems have been 
proposed. Many of these variants consist essentially of modifications on the 
penalizing term, which force certain features in the obtained regularized solution 
([11,18]). If it is known that the regularity of the exact solution is inhomogeneous 
it is often desirable the use of mixed, spatially adaptive methods ([7,12]). These 
methods are also highly suitable when the preservation of edges is an important 
issue, since they allow for the inclusion of anisotropic penalizers for border detection 
([20]). In this work we propose the use of a penalizer resulting from the convex 
spatially-adaptive combination of a classic L2 penalizer and an anisotropic bounded 
variation seminorm. Results on existence and uniqueness of minimizers of the 
corresponding Tikhonov–Phillips functional are presented. Results on the stability 
of those minimizers with respect to perturbations in the data, in the regularization 
parameter and in the operator are also established. Applications to image restoration 
problems are shown.
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1. Introduction

A linear inverse problem can be formulated as: find u ∈ X such that

Tu = v, (1)

where T is a bounded linear operator with non-closed range between two infinite dimensional normed spaces 
X and Y (usually X and Y are function spaces) and v is the data, which might be exactly or approximately 
known (with a certain error). Under these hypotheses it is well known that problem (1) is ill-posed, the 
Moore–Penrose pseudo-inverse of T is unbounded and therefore small errors in the data v may result in 
arbitrarily large errors in the approximations of u ([19]). Because of this, problem (1) must be “regularized” 
before any attempt to solve it is made. Regularizing problem (1) essentially means replacing it by a family 
of “well-posed” problems whose solutions converge (in an appropriate sense) to a solution of the original 
problem. Undoubtedly, the most usual way of regularizing a linear ill-posed problem is by means of the 
Tikhonov–Phillips method, which can be formulated as an unconstrained minimization problem. In fact, 
given a penalizer W with domain D ⊂ X , the Tikhonov–Phillips regularized solution of (1) is the global 
minimizer over D of the functional

Fα,W (u) = ‖Tu− v‖2 + αW (u), (2)

where α > 0 is a constant called regularization parameter. The original method was proposed independently 
by Phillips and Tikhonov in 1962 and 1963 ([15,21]) using W (u) = ‖u‖2

X . Other penalizers can also be used 
to regularize the problem and in the last few decades, considerable research has been devoted in this 
direction. For instance, an interesting problem is the study of penalizers which are particularly appropriate 
for preserving certain known or assumed properties of the exact solution. Sufficient conditions on a general 
penalizer W guaranteeing existence, uniqueness and stability of the minimizers of (2) under different types 
of perturbations can be found in [6,9,11,17,18].

In this article we will consider functionals W of mixed L2–BV type in which the idea of “anisotropic” 
penalization will be incorporated. Mixed penalizers were previously studied by a few authors (see [5,11,
12]). Anisotropy ideas were used in [8,14] and [20] for edge enhancement in problems of image deblurring 
and image denoising, whereas in [4] for image inpainting. It is also timely to mention that multi-penalty 
regularization with component-wise penalization was studied by Naumova and Pereverzyev in [13] while the 
case of multi-parameter Tikhonov regularization with �0 sparsity constraint was studied by Wang et al. in 
[22].

2. Preliminaries

In what follows Ω ⊂ R
2 will be a bounded open convex set with Lipschitz boundary, M(Ω) shall denote 

the set of all real valued measurable functions defined on Ω and M̂(Ω) the subset of M(Ω) formed by those 
functions with values in [0, 1].

Definition 2.1. Given θ ∈ M̂(Ω), a measurable matrix field A : Ω → R
2×2 and p ∈ [1, ∞) we define the 

functional JΩ
θ,A,p(u) with values on the extended reals by

JΩ
θ,A,p(u) .= sup

�ν∈VΩ
θ,A,p

∫
Ω

−u div(θA�ν) dx, u ∈ L1(Ω), (3)

where VΩ
θ,A,p

.= {�ν : Ω → R
2 such that θA�ν ∈ C1

0 (Ω) and |�ν(x)|p∗ ≤ 1 ∀ x ∈ Ω} and p∗ is the conjugate dual 
of p. Here, for any p ∈ [1, ∞], | · |p denotes the p-norm in R2.
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Remark 2.2. It can be easily shown that for any u ∈ L1(Ω) and any Ω∗ ⊂ Ω there holds JΩ∗
θ,A,p(u) ≤ JΩ

θ,A,p(u)
and VΩ

θ,A,p ⊂ VΩ∗
θ,A,p.

Definition 2.3. The functional JΩ
0 (BV-seminorm) with values on the extended reals is defined as

JΩ
0 (u) = sup

�ν∈VΩ

∫
Ω

−u div �ν dx, u ∈ L1(Ω) (4)

with VΩ .= {�ν : Ω → R
2 such that �ν ∈ C1

0 (Ω) and |�ν(x)|2 ≤ 1 ∀ x ∈ Ω}.

Remark 2.4. In the case θ(x) ≡ 1, A(x) ≡ I (the identity matrix) and p = 2 one clearly has VΩ
θ,A,p = VΩ and 

JΩ
θ,A,p = JΩ

0 . For convenience we shall suppress the superscript Ω and unless otherwise specified Jθ,A,p, Vθ,A,p

and V shall denote JΩ
θ,A,p, VΩ

θ,A,p and VΩ, respectively.

When θ, u and A are smooth, the functional Jθ,A,p takes a particular form.

Proposition 2.5. Let Jθ,A,p be as in (3). If θ, u ∈ W 1,1(Ω), A ∈ W 1,1(Ω; R2×2) is symmetric and p ∈ [1, 2], 
then Jθ,A,p(u) = ‖θ |A∇u|

p
‖L1(Ω).

Proof. Assume that θ, u ∈ C1(Ω) and A ∈ C1(Ω; R2×2) (by standard density arguments, the result can be 
proved for general θ, u ∈ W 1,1(Ω) and A ∈ W 1,1(Ω; R2×2) ).

Let �n denote the outward unit normal to ∂Ω and q the conjugate dual of p. Then for all �ν ∈ Vθ,A,p it 
follows that∫

Ω

−u div(θA�ν) dx =
∫
Ω

∇u · θA�ν dx−
∫
∂Ω

(uθA�ν · �n) dS

=
∫
Ω

∇u · θA�ν dx (since θA�ν|∂Ω = 0)

=
∫
Ω

θA∇u · �ν dx (since A is symmetric)

≤
∫
Ω

|θA∇u|
p
|�ν|

q
dx (by Hölder’s inequality)

≤
∫
Ω

|θA∇u|
p
dx (since |�ν(x)|

q
≤ 1 ∀x ∈ Ω).

Taking supremum over �ν ∈ Vθ,A,p it follows that Jθ,A,p(u) ≤ ‖θ |A∇u|
p
‖L1(Ω). For the opposite inequality, 

let A∇u(x) .= (w1(x), w2(x))T and define

�ν∗(x) .=

⎧⎨⎩|A∇u(x)|1−p
p

(
sgn(w1(x)) |w1(x)|p−1

, sgn(w2(x)) |w2(x)|p−1
)T

, if A∇u(x) �= 0,

0, if A∇u(x) = 0.

Then one has that |�ν∗(x)|
q
≤ 1 ∀ x ∈ Ω and

∫
A∇u · θ�ν∗ dx =

∫
|θA∇u|

p
dx. (5)
Ω Ω
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Now, given any ε > 0 there exists a function ϕ ∈ C∞
0 (Ω; R2) such that by convolving �ν∗ with ϕ we obtain 

a function �νε ∈ C1
0 (Ω; R2) such that |�νε(x)|

q
≤ 1 ∀ x ∈ Ω (and therefore �νε ∈ Vθ,A,p since u and θ are 

in C1(Ω) and A ∈ C1(Ω; R2×2)) for which 

∣∣∣∣∣∣
∫
Ω

A∇u · θ(�ν∗ − �νε) dx

∣∣∣∣∣∣ ≤ ε. From this and (5) it follows that ∫
Ω

−u div(θA�νε) dx ≥ ‖θ |A∇u|
p
‖L1(Ω)−ε. Since ε is arbitrary, taking supremum over �ν ∈ Vθ,A,p we conclude 

that

Jθ,A,p(u) ≥ ‖θ |A∇u|
p
‖L1(Ω).

Hence Jθ,A,p(u) = ‖θ |A∇u|
p
‖L1(Ω), as we wanted to prove. �

In this article we will consider penalizers of the form

Wθ,A,p(u) = α1

∫
Ω

|
√

1 − θ(x)u(x)|2 dx + α2 sup
�ν∈Vθ,A,p

∫
Ω

−u div(θA�ν) dx

= α1

∫
Ω

|
√

1 − θ(x)u(x)|2 dx + α2 Jθ,A,p(u), (6)

where α1, α2 are positive constants. In view of Proposition 2.5 if θ, u ∈ W 1,1(Ω) and A ∈ W 1,1(Ω; R2×2) is 
symmetric then Wθ,A,p(u) as defined in (6) takes the form

Wθ,A,p(u)(u) = α1

∫
Ω

|
√

1 − θ(x)u(x)|2 dx + α2 ‖θ|A∇u|p‖L1(Ω).

Note that the case θ(x) ≡ 0 corresponds to the penalizer associated to the classical Tikhonov–Phillips 
method, while θ(x) ≡ 1 corresponds to a pure anisotropic p-BV method, with the classical bounded variation 
method corresponding to p = 2 and A(x) ≡ I. The matrix field A is introduced with the objective of 
allowing anisotropic penalization. There are several ways of constructing this so-called “anisotropy matrix 
field”, either from structural prior information or from the available data (see [4,8]). The construction of 
this matrix field is a very important matter on which we shall not get any deeper here. The general case 
can then be thought of as a convex combination of a classical L2 and an anisotropic p-BV penalizers. The 
particular case A(x) ≡ I was studied in [12].

3. Main results

In this section we state our main results about existence, uniqueness and stability of minimizers of 
generalized Tikhonov–Phillips functionals with penalizers involving spatially varying combinations of the 
L2-norm and the functional Jθ,A,p under different hypotheses on the function θ and the anisotropy matrix A.

Definition 3.1. Let p ∈ [1, 2], Q ⊂ Ω, θ ∈ M̂(Q) with 1
θ ∈ L∞(Q), A : Q → R

2×2 a measurable matrix field. 
We shall say that θ and A satisfy the weight-anisotropy (WA) condition in Q if

‖θ(x)A(x)‖L(R2,p∗ ) ≥
1

‖θ−1‖L∞(Q)
, ∀x ∈ Q. (7)

Here, for a 2 × 2 matrix B, ‖B‖L(R2,p∗ ) denotes the norm of B as an operator on R2 with the p∗-norm.
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In order to be able to use certain known coercivity properties of the functional JΩ
0 (see [1]) an inequality 

of the type Jθ,A,p(u) ≥ C JΩ
0 (u) for some constant C is highly desired. The following theorem provides 

sufficient conditions on θ and A assuring that such an inequality holds.

Theorem 3.2. Let p ∈ [1, 2] and θ ∈ M̂(Ω) with 1
θ ∈ L∞(Ω), A : Ω → R

2×2 a measurable matrix field 
such that they satisfy the WA condition in Ω and let Jθ,A,p, JΩ

0 be the functionals defined in (3) and (4), 
respectively. Then JΩ

0 (u) ≤ ‖ 1
θ‖L∞(Ω) Jθ,A,p(u) for all u ∈ L1(Ω).

Proof. Let u ∈ L1(Ω). Then for all �ν ∈ V∫
Ω

−u div�ν dx = ‖θ−1‖L∞(Ω)

∫
Ω

−u div
(

θAA−1�ν

‖θ−1‖L∞(Ω)θ

)
dx

≤ ‖θ−1‖L∞(Ω) sup
�ω∈Vθ,A,p

∫
Ω

−u div (θ A�ω) dx

= ‖θ−1‖L∞(Ω) Jθ,A,p(u),

where the inequality is a consequence of A−1�ν
‖θ−1‖L∞(Ω) θ

∈ Vθ,A,p (which follows immediately from the fact that 
θ and A satisfy the WA condition in Ω and �ν ∈ V). Then, taking supremum for �ν ∈ V we conclude that 
JΩ

0 (u) ≤ ‖θ−1‖L∞(Ω) Jθ,A,p(u). �
The following lemma will be of fundamental importance for proving several of the upcoming results.

Lemma 3.3. Let p ∈ [1, 2], θ ∈ M̂(Ω) and A : Ω → R
2×2 be a measurable matrix field. Then the functional 

Jθ,A,p defined by (3) is convex and weakly lower semicontinuous with respect to the Lq(Ω) topology for every 
q ∈ [1, ∞).

Proof. The convexity of Jθ,A,p is trivial. To prove the weak lower semicontinuity, let q ∈ [1, ∞), {un} ⊂ Lq(Ω)
and u ∈ Lq(Ω) be such that un

w−Lq

→ u. We want to show that Jθ,A,p(u) ≤ lim inf
n→∞

Jθ,A,p(un). Let �ν∗ ∈ Vθ,A,p

and q∗ be the conjugate dual of q. Since θA�ν∗ ∈ C1
0 (Ω) it follows that div(θA�ν∗) ∈ L∞(Ω) ⊂ Lq∗(Ω). Then ∫

Ω

−u div(θA�ν∗) dx = lim
n→∞

∫
Ω

−un div(θA�ν∗) dx ≤ lim inf
n→∞

sup
�ν∈Vθ,A,p

∫
Ω

−un div(θA�ν) dx = lim inf
n→∞

Jθ,A,p(un), 

where the first equality follows from the weak convergence of un to u in Lq(Ω). Taking supremum over all 
�ν∗ ∈ Vθ,A,p it follows that Jθ,A,p(u) ≤ lim inf

n→∞
Jθ,A,p(un). �

We are now ready to present several results on existence, uniqueness and stability of minimizers of 
generalized Tikhonov–Phillips functionals with penalizers involving spatially varying combinations of the 
L2-norm and of the functional Jθ,A,p, under different hypotheses on the function θ and the anisotropy 
matrix A.

Theorem 3.4. Let X = L2(Ω), Y a reflexive Banach space, T ∈ L(X , Y), v ∈ Y, α1, α2 positive constants, 
p ∈ [1, 2], θ ∈ M̂(Ω) such that 1

1−θ ∈ L1(Ω) and 1
θ ∈ L∞(Ω), A : Ω → R

2×2 a measurable matrix field such 
that θ and A satisfy the WA condition in Ω (see Definition 3.1). Then the functional

Fθ,A,p(u) .= ‖Tu− v‖2
Y + α1‖

√
1 − θ u‖2

L2(Ω) + α2 Jθ,A,p(u)

= ‖Tu− v‖2
Y + Wθ,A,p(u), u ∈ X , (8)

(where Jθ,A,p and Wθ,A,p are defined in (3) and (6) respectively) has a unique global minimizer û ∈ BV (Ω).
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Proof. We will prove that Wθ,A,p is weakly lower semicontinuous and that Wθ,A,p-bounded sets are relatively 
weakly compact in X . It can be easily verified that these two conditions imply the validity of Assumptions 
3.11 and 3.22 in [18] and therefore Proposition 4.1 in [18] holds (for the linear case). To prove the weak lower 
semicontinuity of Wθ,A,p let {un} ⊂ X such that un

w→ u. Since 
√

1 − θ ∈ L∞(Ω) one has 
√

1 − θ un
w−→√

1 − θ u. The condition 1
1−θ ∈ L1(Ω) implies that the functional ‖

√
1 − θ · ‖L2(Ω) defines a norm in L2(Ω)

and therefore it is weakly lower semicontinuous. From this and the weak lower semicontinuity of Jθ,A,p in 
L2(Ω) = X (see Lemma 3.3) we conclude that the functional Wθ,A,p is in fact weakly lower semicontinuous 
on X .

To prove the relative weak compactness of Wθ,A,p-bounded sets, let {un} ⊂ X be such that Wθ,A,p(un) ≤
c1 < ∞ ∀ n. We want to show that there exists a subsequence {unj

} ⊂ {un} and u ∈ X such that unj

w→
u. Since {Wθ,A,p(un)} is uniformly bounded, there exists K < ∞ such that ‖

√
1 − θ un‖L2(Ω) ≤ K ∀ n. 

From this, the hypotheses 1
1−θ ∈ L1(Ω), 1

θ ∈ L∞(Ω) and Theorem 3.2, it follows easily that {un} is 
BV (Ω)-bounded. The existence of a global minimizer of functional (8) belonging to BV (Ω) then follows 
from the fact that BV (Ω)-bounded sets are relatively compact in L2(Ω) ([2,3]). Finally, note that the 
condition 1

1−θ ∈ L1(Ω) implies the strict convexity of ‖
√

1 − θ u‖2
L2(Ω) and, in light of Lemma 3.3, since the 

other two terms on the RHS of (8) are convex, the uniqueness of the global minimizer of Fθ,A,p follows. �
Remark 3.5. Note that if θ(x) ≡ 0, then Wθ,A,p(u) = α1‖u‖2

L2(Ω) and Fθ,A,p as defined in (8) is the classical 
zero-order Tikhonov–Phillips functional, while for θ(x) ≡ 1 a pure anisotropic p-BV penalizer is obtained. 
Although the hypotheses of Theorem 3.4 clearly exclude both of these cases, the existence of a global 
minimizer for the first one is well known while for the second one, existence is guaranteed by the next 
theorem.

Theorem 3.6. Let X = L1(Ω), Y be a normed space, T ∈ L(X , Y), v ∈ Y, α a positive constant, p ∈ [1, 2], 
A : Ω → R

2×2 a measurable matrix field such that ‖A(x)‖L(R2,p∗ ) ≥ 1 ∀ x ∈ Ω and TχΩ �= 0. Then the 
functional

FA,p(u) .= ‖Tu− v‖2
Y + α sup

�ν∈VA,p

∫
Ω

−u div(A�ν) dx, u ∈ X , (9)

where VA,p

.= {�ν : Ω → R
2 such that A�ν ∈ C1

0 (Ω) and |�ν(x)|p∗ ≤ 1 ∀ x ∈ Ω}, has a global minimizer. 
Moreover, if T is injective then the global minimizer is unique.

Proof. By virtue of Theorem 3.1 in [1] it is sufficient to prove that the functional given in (9) is weakly 
lower semicontinuous and BV-coercive. The weak lower semicontinuity of FA,p follows from Lemma 3.3, the 
boundedness of T and the weak lower semicontinuity of the norm in Y. For the BV-coercitivity note that 
the Theorem 3.2 implies that

F (u) .= ‖Tu− v‖2
Y + αJΩ

0 (u) ≤ FA,p(u). (10)

Now, since TχΩ �= 0, by Lemma 4.1 in [1] the functional F (·) is BV-coercive. From this and inequality (10)
it follows that FA,p(·) is also BV-coercive as we wanted to prove.

Finally note that if T is injective then FA,p(·) is strictly convex and therefore its global minimizer is 
unique. �

It is timely to note that in Theorem 3.4 the function θ cannot assume the extreme values 0 or 1 on a 
set of positive measure. In some cases a pure anisotropic BV regularization in some regions and a pure L2

regularization in others may be desired, and therefore such a constraint on the function θ will turn out to 
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be inappropriate. In the next three theorems we introduce different conditions which allow the function θ
to take the extreme values on sets of positive measure.

Theorem 3.7. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L2(Ω), Y a reflexive 

Banach space, T ∈ L(X , Y), v ∈ Y, α1, α2 positive constants, p ∈ [1, 2], θ ∈ M̂(Ω) and Ω0
.= {x ∈

Ω such that θ(x) = 0}. If 1
θ ∈ L∞(Ω c

0), 1
1−θ ∈ L1(Ω) and A : Ω → R

2×2 a measurable matrix field such that 
θ and A satisfy the WA condition in Ω c

0. Then the functional Fθ,A,p defined by equation (8) has a unique 
global minimizer û ∈ L2(Ω) ∩BV (Ω c

0).

Proof. Under the hypotheses of the theorem, the functional Fθ,A,p in (8) can be written as Fθ,A,p = ‖Tu −
v‖2

Y + Wθ,A,p(u), where now Wθ,A,p takes the form

Wθ,A,p(u) .= α1‖u‖2
L2(Ω 0) + α1‖

√
1 − θ u‖2

L2(Ω c
0) + α2 sup

�ν∈Vθ,A,p

∫
Ω c

0

−u|Ω c
0 div(θA�ν) dx. (11)

Just like in Theorem 3.4, for the existence of a minimizer it suffices to prove that Wθ,A,p is weakly lower 
semicontinuous and that Wθ,A,p-bounded sets are relatively weakly compact in X . The weak lower semicon-
tinuity of Wθ,A,p follows from identical steps to the ones in Theorem 3.4. On the other hand, the relative 
weak compactness on Wθ,A,p-bounded sets can be obtained following similar steps as for the proof of Theo-
rem 2.9 in [12], with the obvious modifications to take into account the anisotropy matrix field A. Finally, 
uniqueness is a consequence of the fact that the hypothesis 1

1−θ ∈ L1(Ω) implies the strict convexity of 
Fθ,A,p. �

Note that in the previous theorem, the condition 1
1−θ ∈ L1(Ω) implies θ �= 1 a.e. in Ω. The next theorem 

includes the case in which θ can be equal to one on a set of positive measure.

Theorem 3.8. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L2(Ω), Y a re-

flexive Banach space, T ∈ L(X , Y), v ∈ Y, α1, α2 positive constants, p ∈ [1, 2]. Also let Ω1
.= {x ∈

Ω such that θ(x) = 1}, A : Ω → R
2×2 be a measurable matrix field, θ ∈ M̂(Ω) and suppose 1

1−θ ∈ L1(Ω c
1). 

Furthermore, assume that there exists M ⊂ Ω (M a convex region with Lipschitz continuous boundary) such 
that 1

θ ∈ L∞(M), Tχ
M

�= 0 and θ and A satisfy the WA condition in M . Then the functional defined by 
(8) has a global minimizer û ∈ L2(Ω) ∩ BV (M). If moreover, u ∈ N (T ) and u �= 0 implies u|Ω1 �= 0, then 
such a global minimizer is unique.

Proof. We will prove that under the hypotheses of the theorem, the functional Fθ,A,p(·) defined by (8) is 
weakly lower semicontinuous with respect to the L2(Ω) topology and BV-coercive. First, note that under 
the hypotheses of the theorem we can write

Fθ,A,p(u) = ‖Tu− v‖2
Y + α1‖

√
1 − θ u‖2

L2(Ω c
1) + α2 Jθ,A,p(u), u ∈ X . (12)

Since 1
1−θ ∈ L1(Ω c

1), it follows that ‖
√

1 − θ · ‖L2(Ωc
1) is a norm in L2(Ωc

1) and therefore ‖
√

1 − θ u‖2
L2(Ω c

1)

is weakly lower semicontinuous. The weak lower semicontinuity of Fθ,A,p(·) then follows immediately from 
this fact, from Lemma 3.3 and from the convexity of ‖Tu − v‖2

Y . For the BV-coercivity, note that

‖Tu− v‖2
Y + α2J

M

0 (u) ≤ ‖Tu− v‖2
Y + α2

∥∥∥∥1
θ

∥∥∥∥
L∞(M)

Jθ,A,p(u) (from Theorem 3.2 and Remark 2.2)

≤ ‖Tu− v‖2
Y + α2

∥∥∥∥1
θ

∥∥∥∥ Jθ,A,p(u) + α1‖
√

1 − θ u‖2
L2(Ω c

1)

L∞(M)
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≤
∥∥∥∥1
θ

∥∥∥∥
L∞(M)

Fθ,A,p(u) (since
∥∥θ−1∥∥

L∞(M)
≥ 1). (13)

Now, since Tχ
M

�= 0, by Lemma 4.1 in [1] the functional ‖Tu − v‖2
Y + α2J

M
0 (u) is BV-coercive. From 

this and inequality (13) it follows that Fθ,A,p(·) is also BV-coercive. The existence of a global minimizer 
û ∈ L2(Ω) is then obtained from Theorem 3.1 in [1]. The fact that û ∈ BV (M) follows immediately from 
observing that û ∈ L1(M) and, by virtue of (13), JM

0 (û) < ∞ (since Fθ,A,p(û) < ∞). Finally, since Tu = 0
(for u �= 0) implies u|Ω1 �= 0, it follows that Fθ,A,p is strictly convex and therefore such a global minimizer 
û is unique. �

Note that if in Theorem 3.8 Ω1 = ∅ and M = Ωc
0 (where Ωc

0 is as in Theorem 3.7) then Theorem 3.8
reduces to Theorem 3.7.

Finally, we present two stability results for the minimizers of functionals of type (8) under perturbations 
in the data, in the model and in the regularization parameters.

Theorem 3.9. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L2(Ω), Y a re-

flexive Banach space, p ∈ [1, 2], θ ∈ M̂(Ω) such that 1
1−θ ∈ L1(Ω) and 1

θ ∈ L∞(Ω), A : Ω → R
2×2 a 

measurable matrix field such that θ and A satisfy the WA condition in Ω. Let also T, Tn ∈ L(X , Y), v, vn ∈
Y, α1, α2, α(n)

1 , α(n)
2 positive constants, for n = 1, 2, ..., such that as n → ∞, α(n)

1 → α1, α(n)
2 → α2, vn → v

and Tnu → Tu uniformly for u in Wθ,A,p-bounded sets, where Wθ,A,p is as in (6). Let Fθ,A,p be as in (8) and 
define

F (n)
θ,A,p(u) .= ‖Tnu− vn‖2

Y + α(n)
1 ‖

√
1 − θ u‖2

L2(Ω) + α(n)
2 Jθ,A,p(u), u ∈ L2(Ω).

If û, un are the global minimizers of Fθ,A,p and F (n)
θ,A,p, respectively, then un

w−→ û.

Proof. Note first that by virtue of Theorem 3.4 the functionals Fθ,A,p and F (n)
θ,A,p have unique global mini-

mizers û and un, respectively. To prove that un
w−→ û, we will resort to Theorem 3.3 in [11], for which we 

need to prove that the following conditions hold: i) the functional Wθ,A,p is uniformly bounded from below; 
ii) every Wθ,A,p-bounded set is relatively compact in X ; iii) the functional Fθ,A,p is Wθ,A,p subsequentially 
weakly lower semicontinuous; iv) the functional F (n)

θ,A,p is Wθ,A,p-coercive; and v) F (n)
θ,A,p is Wθ,A,p-uniformly 

consistent for Fθ,A,p (i.e. F (n)
θ,A,p(u) → Fθ,A,p(u), uniformly for u in Wθ,A,p-bounded sets).

Condition i) is trivial while condition ii) was proved in Theorem 3.4. On the other hand, for iii), with a 
proof analogous to that of Theorem 3.8 (with Ω1 = ∅) it follows that Fθ,A,p is weakly lower semicontinuous 
(and hence subsequentially weakly lower semicontinuous). For iv), let {uj} ⊂ L2(Ω) such that Wθ,A,p(uj) →
∞ as j → ∞ and note that F (n)

θ,A,p(uj) ≥ α(n)
1 ‖

√
1 − θ uj‖2

L2(Ω) + α(n)
2 Jθ,A,p(uj) ≥ cnWθ,A,p(uj), where 

cn
.= min

{
α

(n)
1
α1

, α
(n)
2
α2

}
> 0, for all n ∈ N. Thus, F (n)

θ,A,p is Wθ,A,p-coercive. Finally, v) follows immediately 

from the convergence of α(n)
i to αi, as n → ∞, for i = 1, 2, from the fact vn converges to v and from the 

hypothesis that Tnu → Tu uniformly for u on Wθ,A,p-bounded sets.
The result then follows from Theorem 3.3 in [11]. �
The next stability result corresponds to the existence proof of Theorem 3.6.

Theorem 3.10. Let Ω ⊂ R
2 be a bounded open convex set with Lipschitz boundary, X = L1(Ω), Y a reflexive 

Banach space, p ∈ [1, 2], A : Ω → R
2×2 a measurable matrix field such that θ and A satisfy the WA condition 

in Ω. Let also T, Tn ∈ L(X , Y), v, vn ∈ Y, α, αn positive constants, for n = 1, 2, ..., such that as n → ∞, 
αn → α, vn → v, ‖TnχΩ‖ ≥ γ > 0 and Tnu → Tu for every u in X . Let FA,p be as in (9) and define

F (n)
A,p(u) .= ‖Tnu− vn‖2

Y + αn sup
�ν∈VA,p

∫
−u div(A�ν) dx, u ∈ L1(Ω),
Ω
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where VA,p is as defined in Theorem 3.6. If û, un are the global minimizers of FA,p and F (n)
A,p, respectively, 

then ‖un − û‖L1(Ω) −→ 0.

Proof. Under the hypotheses of the theorem, the existence of unique global minimizers û, un of FA,p and 
F (n)

A,p, respectively, follows immediately from Theorem 3.6.
To prove the result we will use Theorem 3.2 in [1]. For that, it suffices to prove that: i) the functionals 

FA,p and F (n)
A,p are BV-coercive; ii) FA,p and F (n)

A,p are lower semicontinuous; iii) the sequence of functionals 
{F (n)

A,p} is uniformly BV-coercive and iv) {F (n)
A,p} is consistent for FA,p, uniformly on BV-bounded sets.

Conditions i) and ii) for FA,p and F (n)
A,p follow immediately as in the proof of Theorem 3.6. For the uniform 

BV-coercivity condition iii) note that for any u ∈ L1(Ω) one has

F (n)
A,p(u) = ‖Tnu− vn‖2

Y + αn sup
�ν∈VA,p

∫
Ω

−u div(A�ν) dx

≥ ‖Tnu− vn‖2
Y + αnJ0(u) (by virtue of Theorem 3.2)

≥ ‖Tnu− vn‖2
Y + (α− ε)J0(u) (for some ε > 0, since αn → α). (14)

Now, by Theorem 4.2 in [1] it follows that the functional ‖Tnu− vn‖2
Y+(α−ε)J0(u) is uniformly BV-coercive. 

From this and inequality (14) we conclude that {F (n)
A,p} is uniformly BV-coercive. Condition iv) (consistency) 

follows immediately as in Theorem 4.2 in [1].
The result then follows from Theorem 3.2 in [1]. �

4. Applications to image restoration

The purpose of this section is to present some applications of the mixed regularization method de-
veloped in the previous section, consisting in the simultaneous use of penalizers of L2 and anisotropic 
bounded-variation (BV) type, to tackle an image restoration problem. We will show how this mixed method 
outperforms the pure single ones, more so when the regularity of the exact solution is inhomogeneous and/or 
anisotropic.

4.1. Modeling

The basic mathematical model for image blurring is given by the following Fredholm integral equation 
of the first kind:

T f(x, y) =
∫ ∫

Ω

k(x, y, x′, y′)f(x′, y′)dx′dy′ = g(x, y), (15)

where Ω ⊂ R
2 is a bounded domain, f ∈ X .= L2(Ω) represents the original image, k is the so called 

“point spread function” (PSF) and g is the blurred image. For the examples shown below we used a PSF of 
“atmospheric turbulence” type, i.e. we chose k to be a two-dimensional Gaussian kernel:

k(x, y, x′, y′) = (2πσhσv)−1 exp
(
− 1

2σ2
h

(x− x′)2 − 1
2σv

2 (y − y′)2
)
, (16)

where σh and σv are the horizontal and vertical standard deviations, respectively. It is well known ([6]) that 
with this PSF the operator T in (15) is compact with non-closed range and therefore T †, the Moore–Penrose 
inverse of T , is unbounded and problem (15), i.e.
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T f = g (17)

is ill-posed.

4.2. Discretization

For the numerical examples that follow, we considered images defined over the domain Ω = [0, 1] × [0, 1], 
discretized to obtain an M -by-M pixel grid and hence an M -by-M matrix U , whose entries consist of the 
values of the light intensity function f at the centerpoints of each pixel. Next, we stacked the columns 
of the matrix U to get a vector u ∈ R

M2 so that uM(l−1)+m = Um,l ∀ l, m = 1, 2, . . . , M . Denoting with 
T the matrix associated to the standard discretization of the operator T , the finite dimensional problem 
corresponding to (17) reads

Tu = v,

where v is the vector obtained by evaluating g at the centerpoints of the pixels. We further assume that our 
observations are contaminated with white noise. Hence, our model is finally stated as

Tu = v + ε, (18)

where ε ∈ R
M2 is a realization of a random variable with distribution N (0, σ2

noiseIM2).
Similarly, the discretized version of functional (8) takes the form

Fθ,A,p(u) .= 1
M2 ‖Tu− v‖2

2 + α1

M2 ‖
√

1 − θ u‖2
2 + α2

M2

∑
m∈M

θm

∥∥∥∥∥Am

(
M(um − um+1)
M(um − um−M )

)∥∥∥∥∥
p

, (19)

where Am and θm are the values of the matrix field A and of the weighting function θ at the centerpoint of 
the mth pixel, respectively, and M denotes the set of interior pixels. Next, we shall state a suitable method 
to approximate the minimizer of (19) when p = 1. Similar steps lead to the corresponding method for the 
case p = 2. Although we do not delve into details here, a complete explanation for the case p = 1 can be 
found in [10].

4.3. Numerical implementation

We build the anisotropy matrix field A : Ω → R
2×2 following the ideas in [4]. We begin by computing an 

a-priori estimation of the gradient field ∇up(x, y), where up is a zero-order Tikhonov–Phillips restoration. 
Then A is constructed from ∇up so as to comply with the following properties:

• A(x, y) is a symmetric positive definite matrix ∀(x, y) ∈ Ω.
• If ∇up(x, y) = 0, A(x, y) = I (the identity matrix).
• If ∇up(x, y) �= 0, A(x, y) has eigenvalues σj(x, y) and eigenvectors vj(x, y), j = 1, 2, such that

v1(x, y) ‖ ∇up(x, y), σ1(x, y) = h(|∇up(x, y)|),

v2(x, y) ⊥ ∇up(x, y), σ2(x, y) = 1,

where the function h above is decreasing, with 0 < h(t) ≤ 1 ∀t ∈ R
+, h(0) = 1 and h(∞) = 0.

For our numerical examples, we took h(t) = [1 + (t/τ)κ]−1, where τ, κ > 0 are control parameters that 
can roughly be referred to as the break point from which we infer the image has an edge and the width of 
the transition region, respectively. With this choice of h, A was constructed as
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A(x, y) = I − (1 − h(|∇up(x, y)|))
[
∇up(x, y)
|∇up(x, y)|

] [
∇up(x, y)
|∇up(x, y)|

]T

. (20)

The weighting function θ was constructed by scaling to [0, 1] the norm of ∇up; that is

θ(x, y) = |∇up(x, y)|
max(x,y)∈Ω |∇up(x, y)|

. (21)

Notice that with this choice of θ, functional (19) resembles the one corresponding to pure Tikhonov–Phillips 
regularization where |∇up| is small, while it approaches a pure anisotropic BV functional where |∇up| is 
large. It can be shown that θ and A as chosen in (21) and (20), satisfy the WA condition (7) in Ω = [0, 1] ×[0, 1]
for both p = 1 and p = 2.

It now remains to find the minimizer of (19). To accomplish this, we approximate Fθ,A,1 by a differentiable 
functional in order to consider its first order necessary condition. We do so by replacing, for w ∈ R, the 
value of |w| by φ(w), where φ : R → R is given by φ(t) .=

√
t2 + η2 − η, for η sufficiently small. With this 

choice of φ, it can be shown (see §12 of [16]) that there exists a function ψ satisfying the following duality 
relation:

φ(t) = inf
s>0

(st2 + ψ(s)), (22)

ψ(s) = sup
t∈R

(φ(t) − st2),

and therefore∥∥∥∥∥Am

(
M(um − um+1)
M(um − um−M )

)∥∥∥∥∥
1

≈ inf
sm∈R+

(
smt2m,1 + ψ(sm)

)
+ inf

qm∈R+

(
qmt2m,2 + ψ(qm)

)
,

where

tm,1 = M [am1,1(um − um−M ) + am1,2(um − um+1)],

and

tm,2 = M [am2,1(um − um−M ) + am2,2(um − um+1)].

Define now the four M2-by-M2 diagonal matrices Ai,j , for i, j = 1, 2, by Ai,j
m,m = ami,j if m ∈ M and 

Ai,j
m,m = 0 otherwise. In a similar fashion, let Θ 

.= diag(θm)M2×M2 , and S, Q : RM2 → R
M2×M2 defined as 

S(s) .= diag(sm)M2×M2 and Q(q) .= diag(qm)M2×M2 . Let Lx and Ly be the M2-by-M2 first order finite 
difference approximating matrices for the components of the gradient, and let R1 and R2 be the M2-by-M2

matrices defined as R1
.= A1,1Lx + A1,2Ly and R2

.= A2,1Lx + A2,2Ly. Finally, let I be the M2-by-M2

identity matrix, and define the functional F̂θ,A,1(u, s, q) : (RM2)3 → R by

F̂θ,A,1(u, s, q) = ‖Tu− v‖2 + α1

M2u
t(IM2 − Θ)u + α2u

tRt
1ΘSR1u + α2u

tRt
2ΘQR2u

+ α2

M2

∑
θmψ(sm) + α2

M2

∑
θmψ(qm). (23)

It can be shown ([10]) that

inf
M2

F̂θ,A,1(u, s, q) = Fθ,A,1(u),

s,q∈R



438 F.J. Ibarrola et al. / J. Math. Anal. Appl. 450 (2017) 427–443
and hence, our problem of approximating the minimizer of (19) turns out to be tantamount to minimizing 
F̂θ,A,1 with respect to u, s and q, simultaneously. Note that the first order necessary condition on F̂θ,A,1 with 
respect to u can be written as:

(
T tT + α1(IM2 − Θ) + α2R

t
1ΘSR1 + α2R

t
2ΘQR2

)
u = T tv. (24)

In order to minimize F̂θ,A,1 with respect to s and q we resort to (22) to deduce that if bm
.=

arg minsm∈R+

{
smt2m,1 + ψ(sm)

}
, then

bm = φ′(tm,1)
2tm,1

. (25)

Similarly, if cm
.= arg minqm∈R+

{
qmt2m,2 + ψ(qm)

}
, then

cm = φ′(tm,2)
2tm,2

. (26)

Finally, the iterative algorithm can be stated as follows:

Step 1 – Initializing. Set j = 0, and initialize uj = u0, bj = b0 and cj = c0. (u0, b0, c0 ∈ R
M2 arbitrarily 

chosen.)
Step 2 – Counting. Make j = j + 1.
Step 3 – Updating b. Update bj and cj using equations (25) and (26).
Step 4 – Updating u. Update uj by solving the linear system (24).
Step 5 – Stopping. If a previously defined convergence criterion is satisfied, the algorithm ends and 

the global minimizer of (23), û, is approximated by uj . Otherwise, the algorithm repeats from 
step 2.

Next, we show some restoration examples produced with the aforementioned algorithm.

4.4. Numerical results

We shall first consider a 130 ×130 pixel color image and its corresponding blurred noisy version, obtained 
by model (18) with σh = σv = 0.025 and σnoise = 2.5% of the maximum data value.

It is worth mentioning here that the blurring process, noise addition and restorations for the following 
examples were done separately on the red, green and blue layers of the color images (available in the web 
version of this article).

Example 1. Fig. 1 depicts the blurred noisy image that constitutes the observation v of the problem, along 
with a restoration produced with the traditional zero-order Tikhonov–Phillips regularization (from which 
we later estimated the gradient field to build A and θ). Fig. 2 shows the images restored using both the 
isotropic and anisotropic BV methods, with p = 1. Note that there is a significant difference on the curvature 
of some of the edges produced by the different methods. Finally, Fig. 3 depicts the results of the isotropic 
and anisotropic mixed methods.

In order to make an objective performance comparison, we use the ISNR, defined as

ISNR(û) = 10 log10
(
‖v − u0‖2/‖û− u0‖2) ,
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Fig. 1. (a) Blurred noisy image (observation); (b) Tikhonov–Phillips restoration.

Fig. 2. (a) Isotropic BV restoration; (b) Anisotropic BV restoration.

Fig. 3. (a) Mixed isotropic restoration; (b) Mixed anisotropic restoration.
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Fig. 4. Original image.

Table 1
ISNR values.

Restoration method ISNR
Tikhonov 0 2.508
Isotropic BV 2.452
Anisotropic BV 2.998
Mixed isotropic 3.211
Mixed anisotropic 3.398

Fig. 5. (a) Blurred noisy image (observation); (b) Tikhonov–Phillips restoration.

where u0 is the original image (unknown in real-life problems) and û is the restored image. The ISNR values 
of the restorations for Example 1 are depicted in Table 1, alongside the original image u0, in Fig. 4.

In order to illustrate the importance of allowing θ to be space-dependent, the same previous deblurring 
problem was solved by choosing θ constant (note that in this case the existence and uniqueness of minimizers 
is well known for the extreme cases θ = 1 and θ = 0, while for 0 < θ < 1 well-posedness is given by 
Theorem 3.8). Both the mixed isotropic and mixed anisotropic methods were run for the image shown in 
Fig. 1(a) setting θ ∈ (0, 1) as a constant. Note that the value of this constant results irrelevant since it is 
absorbed by the regularization parameters α1 and α2 (obtained using Morozov’s Discrepancy Principle). The 
obtained ISNR values were 3.124 and 3.285 for the isotropic and anisotropic mixed regularization models, 
respectively.

Example 2. We now show another example of a 130 ×130 pixel color image, blurred with standard deviations 
σh = σv = 0.02 and contaminated with 2.5% (of the maximum data value) white additive Gaussian noise. 
The blurred noisy image v is depicted in Fig. 5 along with the restoration produced with a zero-order 
Tikhonov–Phillips regularization. In this case, the restorations including BV regularization were done with 
p = 2. Figs. 6 and 7 show the results for the BV and mixed methods.
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Fig. 6. (a) Isotropic BV restoration; (b) Anisotropic BV restoration.

Fig. 7. (a) Mixed isotropic restoration; (b) Mixed anisotropic restoration.

Fig. 8. Original image.

Table 2
ISNR values.

Restoration method ISNR
Tikhonov 0 2.415
Isotropic BV 2.580
Anisotropic BV 2.627
Mixed isotropic 2.845
Mixed anisotropic 2.942

Once again, we computed the ISNR values, which are presented in Table 2 along the original image u0, 
in Fig. 8.
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5. Conclusions

In this work we presented several mathematical results on existence, uniqueness and stability of global 
minimizers of generalized Tikhonov–Phillips functionals with penalizers given by convex spatially-adaptive 
combinations of L2 and anisotropic BV type. These penalizers are conceived so as to capture the benefits of 
both smooth L2 regularization and the well known border-preserving properties of total variation penaliza-
tion. Adaptivity is achieved through a spatially-varying weighting function θ while anisotropy is attained by 
the inclusion of a matrix field in the BV part of the penalizer. Although both the weighting function and the 
anisotropy matrix field can be prescribed a-priori, we showed how both can be appropriately constructed 
from a first estimation of the gradient field.

The main stability results (Theorems 3.9 and 3.10) contemplate not only perturbations in the data, but 
also in the model and in the regularization parameters.

In order to illustrate the performance of the mixed L2–BV regularization method, some examples of 
image restoration problems were presented. Through these examples it was shown that the introduction 
of spatial adaptivity improves the quality of the restoration on images with heterogeneous properties in 
terms of edges and smooth regions. Furthermore, the introduction of anisotropy in the model was shown 
to improve restoration of borders in the images. These conclusions are supported by the ISNR values on 
Tables 1 and 2. Although there is undoubtedly much room for further research, these preliminary results 
indicate that, with appropriate choices of the weighting function θ and of the anisotropy matrix field A, the 
mixed combined method outperforms all single ones.
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