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Abstract Modern sloths are among the more characteristic
mammals of South and Central American faunas. Recent dis-
covery in four Paleogene, 22 Neogene, and dozens of
Pleistocene fossiliferous localities in the tropics has revealed
an unexpected paleobioversity constituted by some 81 fossil
sloth species. Probably originating in southern South America
near the Eocene/Oligocene transition, sloths were represented
in the tropics during the late Oligocene by Pseudoglyptodon,
Mylodontidae, and Megalonychidae. The latter occupied the
West Indies between at least the late early Miocene and late
Pleistocene, and two mylodontid clades, Octodontobradyinae
and Urumacotheriinae, were characteristic of Amazonian lo-
calities from the Colhuehuapian and the Laventan periods,
respectively, until the end of the Miocene. Megatheriinae
and Nothrotheriidae appeared during the middle Miocene,
colonizing the tropics and then North America, where
Mylodontidae and Megalonychidae had already been present
since the early late Miocene. Nothrotheriids are more abun-
dant and diversified during the lateMiocene in the tropics than
in southern South America. Remains closely related to either
of the modern sloths are absent from the fossil record,

including those in the tropics. The characteristic suspensory
posture of Bradypus and Choloepus appeared independently
and likely after the Miocene epoch, and thus well after the
hypothesized split suggested by molecular studies of the re-
spective clades of these genera. Given their current wide-
spread distribution in and reliance on the tropics, prospecting
efforts for the direct fossil kin of suspensory sloths should
concentrate on deposits in the Amazonian region, as this area
has shown promise in producing fossil sloths.

Keywords Tropics . Paleogene . Neogene . Pleistocene .

Sloths . Systematics

Introduction

Xenarthra is among the most enigmatic and characteristic
groups of the South American mammalian fauna. Anyone
may expect to be surprised and fascinated by the ability of
armadillos to bury themselves in seconds despite the presence
of their armor, the ease with which anteaters can rise on their
hind legs to insert their long tongue deep into an anthill in
search of food, and the slow sloths, hanging upside down
for most of their life yet able to swim across rivers.

What is the origin of Xenarthra? Evidence for such origins
should probably be sought near the end of the Cretaceous or
perhaps the beginning of the Paleocene as suggested by mo-
lecular clocks (e.g., Delsuc et al. 2004, 2012; Delsuc and
Douzery 2009; Emerling and Springer 2015; Gibb et al. in
press). We might expect this ancestor to have been small to
medium-sized, mobile, with its body probably covered with
dermal scutes (which may be the primary way of recognizing
its xenarthran affinities), to have possessed a strengthened
vertebral column (with xenarthry and ischiosacral fusion),
and many homodont and hypsodont teeth. Indeed, many
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Tertiary placental mammals share several convergent similar-
ities with xenarthrans without belonging to this particular
clade (see Storch 2003 for a review). As well, we would ex-
pect its teeth to have lacked or least possessed only traces of
enamel. Recently, Emerling and Springer (2015) and Gaudin
and Croft (2015) suggested that Bproto-xenarthrans^ might
have been myrmecophagous diggers and climbers.

The fossil record suggests that armored Xenarthra (arma-
dillos and glyptodonts) have been present in South America
since at least the early Eocene (Itaboraian South American
Land Mammal Age [SALMA], Scillato-Yané 1976). Pilosa
(sloths and anteaters) appear later in the fossil record, with
the earliest sloths reported from the early Oligocene
Tinguirirican SALMA (McKenna et al. 2006) and the earliest
anteaters at the beginning of the Miocene Colhuehuapian
SALMA (McDonald et al. 2008). Modern armadillos, repre-
sented by about 20 species, and anteaters, represented by four
species, are very similar to their earliest representatives, but
this is not the case for the six species of suspensory sloths. An
unresolved aspect of xenarthran evolution that has generated
numerous debates among zoologists and paleontologists over
several decades is the origin of current and fossil sloths.
Although they are ultimately of South American origin, the
factors and place are still uncertain.

Modern suspensory sloths are represented by the genera
Bradypus and Choloepus and are dis t r ibuted in
Bradypodidae and Megalonychidae, respectively, with the
former generally being considered as the sister clade of other
sloths (e.g., Gaudin 2004; Pujos et al. 2012c; Gibb et al. in
press). Suspensory sloths are relatively small compared to
fossil sloths, slow-moving mammals utilizing a mainly sus-
pensory posture in arboreal environments of the tropical
rainforests of South and Central America and some
Antillean islands. It is generally suspected that the very pecu-
liar upside-down posture and suspensory locomotion were
acquired independently in these genera but presumably under
similar ecological conditions. The diphyletic origin of modern
suspensory sloths has been commonly supported by osteolog-
ical (Gaudin 2004), morphofunctional (Nyakatura 2012), and
molecular (Höss et al. 1996) studies. The beginning of their
independent evolutionary paths is thought to date back to the
early late Oligocene (~27 mya; Delsuc et al. 2012; ~30 mya,
Pant et al. 2014; Gibb et al. in press).

However, Bsuspensory^ sloths’ fossil kin, generally re-
ferred to as Bground^ sloths, displayed a much wider range
of body size (from dozens of kilograms to several tons; Toledo
et al. 2014), diet (mixed feeding, browsing, grazing,
subterranean grubbing, and aquatic grazer; Bargo et al.
2006; Pujos et al. 2012c), and locomotory modes (bipedal,
quadrupedal, aquatic or sub-aquatic, and climbing), and a
much broader geographic distribution (Pujos et al. 2012c).
Pseudoglyptodon from the early Oligocene of Chile
(McKenna et al. 2006) is a peculiar basal sloth considered as

the earliest member of Pilosa. Indeed, sloths colonized much
of the Americas (including the West Indies) during the
Paleogene, Neogene, and Quaternary periods, extending from
Patagonia to Alaska (Pujos and De Iuliis 2008). It is generally
accepted that sloths first colonized North America during the
late middle Miocene and more extensively at the end of the
Pliocene after the formation of the Panamanian Isthmus
(McDonald 2005; Fariña et al. 2013). Sloths, along with na-
tive ungulates, were the most diversified and represented her-
bivorous mammals of South America until about 10,000 years
ago and they seem to have had little geographical or ecolog-
ical limitation (Pujos et al. 2012c). However, dramatic climat-
ic and environmental changes at the end of the Pleistocene
probably combined with the arrival of humans contributed to
the extinction of this group of giant xenarthrans, as well as of
many other groups of megamammals (Fariña et al. 2013).

Fossil sloths are distributed in four commonly recognized
clades (rather than the seven recognized by Pant et al. 2014)
(Gaudin 2004; De Iuliis et al. 2011): Mylodontidae,
Megalonychidae, Megatheriidae, and Nothrotheriidae
(Fig. 1a). The majority of fossil sloths discovered in the
Americas since the end of the 18th century have been recov-
ered from Argentina and North America, although a few other
well-known localities have yielded fossil sloths, such as Tarija
(late Pleistocene, Bolivia; Boule and Thévenin 1920), late
Pleistocene Cuban caves (Matthew 1931), and La Venta
(late middle Miocene, Colombia; McDonald 1997). Given
that modern suspensory sloths are so characteristic of tropical
mammalian communities, it is paradoxical that our knowledge
of fossil sloths from the tropics is relatively poorly and the
data sporadic.

The aim of this contribution is to present the first extensive
systematic and paleobiogeographic review of Cenozoic sloths
recovered from the tropics. By gathering such disparate re-
cords into a single dataset, our aim permits a synthesis of
information that would shed light on the appearance, disap-
pearance, migration, and possible adaptations of major groups
of sloths and allow some evaluation of the possible origin(s)
of suspensory sloths.

Institutional Abbreviations

AMNH, American Museum of Natural History, New York,
USA; FLMNH, Florida Museum of Natural History,
Gainesville, USA; FMNH, Field Museum of Natural
History, Chicago, USA; LACM, Natural History Museum
of Los Angeles County, Los Angeles, USA; MACN, Museo
Argentino de Ciencias Naturales BBernardino Rivadavia,^
Buenos Aires, Argentina; MCL, Museu de Ciências
Naturais da Pontifícia Universidade Católica de Minas
Gerais, Belo Horizonte, Brazil; MLP, Museo de La Plata, La
Plata, Argentina; MNHN, Muséum national d’Histoire
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naturelle, Paris, France; MNHN-Bol, Museo Nacional de
Historia Natural de Bolivia, La Paz, Bolivia; MUSM,
Museo de Historia Natural de la Universidad Mayor de San
Marcos, Lima, Peru; PUC, Pontifícia Universidade Católica
de Minas Gerais, Belo Horizonte, Brazil; UFAC ,
Universidade Federal do Acre, Rio Branco, Brazil; YPM,
Yale Peabody Museum, New Haven, USA.

Material and Methods

As mentioned above, the fossil record of sloths is particularly
well known from the austral regions of South America, North
America, and the West Indies. Based on the study of the col-
lections of fossil sloths in several institutions mentioned above
combined with a detailed revision of the available literature
and personal field experience in the Peruvian Amazon,
Bolivian Altiplano, southern North America, and Brazil, we
have gathered into a single dataset records of the better known
taxa of fossil sloths recovered from between the tropics of
Cancer and Capricorn. With this information, we try to iden-
tify the more important Paleogene and Neogene localities
yielding fossil sloths in a region that spans from northern
Argentina to Mexico and includes the West Indies.
Quaternary tropical fossiliferous localities are too numerous

for exhaustive inclusion, so we have included those that have
yielded the most characteristic and abundant sloths during this
recent period (Tables 1 and 2).

Systematic and Paleobiogeographic Review of Fossil
Sloths in the Tropics

The monogeneric Bradypodidae (Fig. 1a) is not recorded in
the fossil record. The four other clades of Folivora
(Phyllophaga = Tardigrada sensu Delsuc et al. 2001), those
noted above as commonly recognized (Pujos et al. 2012c), do
not appear synchronously or in the same geographical area;
moreover their evolution, geographical distribution, and di-
versity are clearly distinct. In the tropics, sloths are present
at least in four Paleogene, approximately twenty Neogene,
and dozens of Pleistocene localities (Tables 1 and 2).

MacPhee and Iturralde-Vinent (1995) reported the presence
of a megalonychid in the early Oligocene of Yauco, Puerto
Rico. The age of this fragmentary but fundamental material
attributed tentatively (but reasonably) to a megalonychid sloth
is highly questionable (McDonald and De Iuliis 2008; but see
also Vélez-Juarbe et al. 2014). However, if its age is con-
firmed, it would require reconsideration of the early
paleobiogeographic history of early sloths.

Fig. 1 a, cladogram showing the phylogenetic relationships among
sloths (based on Gaudin 2004); b, study area between Tropics of
Cancer and Capricorn showing the tropical localities from which the

oldest members of major clades of sloths have been recovered; c, location
on the time scale of the South American Land Mammal Ages for the first
appearance of major clades of sloths in the tropics
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Table 1 Tropical Cenozoic localities yielding fossil sloths

Period Locality and country Age References

Oligocene 1 Juana Díaz Fm., Yauco, Puerto Rico Early Oligocene MacPhee and Iturralde-Vinent 1995; White and
MacPhee 2001

2 Contamana, CTA-61 locality
(Chambira Fm.), Peru

Late Oligocene Antoine et al. 2016a

3 Salla, Bolivia Late Oligocene Engelmann 1987; Pujos and De Iuliis 2007;
Shockey and Anaya 2011

4 Lacayani, Bolivia Late Oligocene Hoffstetter et al. 1971

Miocene 5 Contamana, CTA-63 locality,
(Pebas Fm.), Peru

Early Miocene Antoine et al. 2016a

6 Domo de Daza, Cuba Late early Miocene MacPhee et al. 2003

7 Cerdas, Bolivia Early middle Miocene Croft et al. 2009

8 Fitzcarrald, Peru Middle Miocene Salas-Gismondi et al. 2006; Antoine et al. 2007;
Pujos et al. 2013; Tejada-Lara et al. 2015

9 Socorro Fm., Venezuela Middle Miocene Carlini et al. 2006b

10 La Venta (Villavieja Fm.), Colombia Upper middle Miocene Hirschfeld 1985; McDonald 1997;
Villarroel 1998, 2000

11 Quebrada Honda, Bolivia Early late Miocene Croft 2007; Pujos et al. 2011, 2014

12 Contamana (Pebas Fm.), Peru Late Miocene Antoine et al. 2016a

13 Urumaco Fm., Venezuela Late Miocene Carlini et al. 2006a; Rincón et al. 2015

14 San Pedro, Venezuela Late Miocene Collins 1934; Hoffstetter 1961; Marshall et al. 1983

15 Acre (Upper Solimões Fm.), Brasil Late Miocene Frailey 1988; Santos et al. 1993; Cozzuol 2006;
Negri et al. 2010; De Iuliis et al. 2011;
Ribeiro et al. 2013

16 Sacaco-Aguada de Lomas, Peru Late Miocene Pujos and Salas 2004a

17 Achiri, Bolivia Late Miocene St-André 1996; Pujos et al. 2012a

18 Maímara, Argentina Late Miocene Pujos et al. 2012b

19 San Gerardo de Limoncito, Costa Rica Late Miocene Laurito and Valerio 2012

20 Estado Zacapeta (Juchipita Fm.), Mexico Late Miocene Carranza-Catañeda et al. 2008

Pliocene 21 Pomata-Ayte, Bolivia Early Pliocene St-André et al. 2010; Pujos et al. in press

22 Choquecota, Bolivia Early Pliocene St-André et al. 2010

23 Yauca, Peru Early Pliocene Muizon et al. 2004

24 Ayo Ayo – Vizcachani, Bolivia Early and middle Pliocene St-André 1994; St-André and De Iuliis 2001;
St-André et al. 2010

25 Codore Fm., Venezuela Pliocene Carlini et al. 2006b

26 Inchasi, Bolivia Late Pliocene Anaya and MacFadden 1995

Pleistocene 27 El Bosque, Nicaragua Early Pleistocene Page 1978

28 Barranca del Sisimico, El Salvador Early-middle Pleistocene Webb and Perrigo 1985

29 Río Tomayate, El Salvador Early-middle Pleistocene Cisneros 2005

30 Tarapoto, Peru Late Pleistocene Pujos and Salas 2004b

31 BAmazona,^ Brasil Late Pleistocene Marshall et al. 1984

32 Río Napo, Ecuador Late Pleistocene Marshall et al. 1984

33 Amazonas State, Brasil Late Pleistocene Fátima Rossetti et al. 2004

34 Curaçao Late Pleistocene White and MacPhee 2001

35 Puerto Rico Late Pleistocene White and MacPhee 2001

36 Cuba Late Pleistocene White and MacPhee 2001

37 Hispaniola Late Pleistocene White and MacPhee 2001

38 El Hatillo and La Coca, Panama Late Pleistocene Gazin 1957

39 Hormiguero Quarry Site, El Salvador Late Pleistocene Stirton and Gealey 1949

40 Río de la Pasión, Guatemala Late Pleistocene Woodburne 1969

41 Actun Lak, Belize Late Pleistocene De Iuliis et al. 2015

42 La Brea – Talara, Peru Late Pleistocene Lemon and Churcher 1961; Pujos and Salas 2004b

22 J Mammal Evol (2017) 24:19–38

Author's personal copy



During the late Paleogene, sloths are predominantly repre-
sented in the late Oligocene Patagonian locality of La Flecha
with the mylodontoidsOctodontotherium andOrophodon and
the megalonychid Deseadognathus (Pujos et al. 2012c). Sloth
remains are generally scarce and fragmentary in other
Oligocene localities (McDonald and De Iuliis 2008; Pujos et
al. 2012c; Gaudin and Croft 2015). In the tropics, sloths are
recorded from three late Oligocene localities from Peru
(Contamana, Antoine et al. 2016a) and Bolivia (Salla and
Lacayani, Hoffstetter et al. 1971; Engelmann 1987; Pujos
and De Iuliis 2007; Shockey and Anaya 2011). The enigmatic
Bglypto-sloth^ Pseudoglyptodon, present since the early
Oligocene in Chile and Patagonia (McKenna et al. 2006), is

also present later in the Bolivian locality of Salla (Engelmann
1987; Pujos and De Iuliis 2007). It is commonly considered as
the first sloth and characterized by trilobed molariform teeth
(as occurs also in glyptodontid armored xenarthrans;
Fig. 2a–b). The presence of Megalonychidae is demonstrated
in Salla by fragmentary remains (isolated teeth and
mandibular remains, Pujos and De Iuliis 2007) that are suffi-
ciently diagnostic to be assigned to this clade. Mylodontidae
are represented at the end of the Paleogene by a fragment of a
robust tooth from Contamana (CTA-61 locality, Antoine et al.
2016a), the distal extremity of a femur from Lacayani
(Hoffstetter et al. 1971), and a partial skull (i.e.,
Paroctodontotherium, Shockey and Anaya 2011) belonging

Table 1 (continued)

Period Locality and country Age References

43 La Huaca, Piura, Peru Late Pleistocene Pujos and Salas 2004b

44 Cupisnique desert, Peru Late Pleistocene Marshall et al. 1984; Pujos 2000; Pujos and
Salas 2004b; Pujos et al. 2007

45 Uyujalla, Ocucaje, Peru Late Pleistocene Pujos and Salas 2004a, 2004b

46 Sacaco and Aguada de Lomas, Peru Late Pleistocene Pujos and Salas 2004b

47 Celendin, Peru Late Pleistocene Pujos 2006

48 Chingas, Peru Late Pleistocene Pujos and Salas 2004b

49 Cerro de Pasco, Peru Late Pleistocene Pujos and Salas 2004b

50 Yantac, Peru Late Pleistocene Pujos and Salas 2004b

51 Tres Ventavas Cave, Peru Late Pleistocene Engel 1970; Pujos and Salas 2004b

52 Tirapata, Peru Late Pleistocene Pujos and Salas 2004b; Pujos et al. 2007

53 Tarija, Bolivia Late Pleistocene Marshall et al. 1984

54 Ulloma, Bolivia Late Pleistocene De Iuliis and St-André 1997; Marshall et al. 1984;
Marshall and Salinas 1991

55 Minas Gerais caves, Brasil Late Pleistocene Cartelle 2012

56 La Carolina, Ecuador Late Pleistocene Hoffstetter 1952; Marshall et al. 1984;
Román-Carrión 2007

57 Punín, Ecuador Late Pleistocene Hoffstetter 1952; Marshall et al. 1984

58 Riacho Negro and General Bruguer, Paraguay Late Pleistocene Hoffstetter 1978; Marshall et al. 1984

59 Muaco, Venezuela Late Pleistocene Marshall et al. 1984

60 Sao Paulo, Brasil Late Pleistocene Dias Rêgo 1992

61 Bahia, Brasil Late Pleistocene Cartelle 1991; Cartelle et al. 2008, 2009

62 Sergipe, Brasil Late Pleistocene Dantas et al. 2011

63 Rondônia, Brasil Late Pleistocene Rodrigues do Nascimiento 2008;
De Iuliis et al. in press

64 Mato Grosso, Brasil Late Pleistocene Cartelle and Hiroka 2005

65 Serra da Capivara, Piaui, Brasil Late Pleistocene Guérin and Faure 2008

66 Ceará, Brasil Late Pleistocene Ximenes 2008; Araújo-Júnior et al. 2013

67 Rio Grande do Norte, Brasil Late Pleistocene Cabral de Carvalho et al. 1969

68 Mato Grosso do Sul, Brasil Late Pleistocene Salles et al. 2006

69 Cerro Pintado, Zulia State, Venezuela Late Pleistocene McDonald et al. 2013
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to a small-sized taxon that presents affinities with
Octodontotherium from La Flecha (Hoffstetter 1956).

Sloths are poorly represented during the early Miocene in the
tropics. In Patagonia, sloths are also scarce during the
Colhuehuapian SALMA (McDonald and De Iuliis 2008) and
the first significant diversification of sloths takes place during
the late early Miocene Santacrucian SALMA, particularly from
Santa Cruz Province (see list of taxa proposed by Toledo et al.
2014). Sloths are represented in two early Miocene tropical lo-
calities by an upper tooth of an octodontobradyine (cf.
Octodontobradys) from Peru (Contamana, CTA-63 locality,
Colhuehuapian-Santacrucian SALMAs, Antoine et al. 2016a)
and isolated remains of the megalonychid Imagocnus zazae from
Cuba (Domo de Daza, MacPhee et al. 2003). These remains
correspond to the first appearance of Octodontobradyinae
mylodontid (Fig. 2c–d) in South America (Antoine et al.
2016a) and, without doubt regarding age, of sloths in
the West Indies (MacPhee et al. 2003; Fig. 1b–c).

As illustrated in Tables 1 and 2, sloths were much more
abundantly represented during the middle Miocene, and the
first important diversification of sloths occurred during the
early late Miocene. Sloths are present in four tropical middle
Miocene localities in Bolivia (Cerdas, Friasian SALMA, Croft
et al. 2009), Peru (Fitzcarrald, Laventan SALMA Salas-
Gismondi et al. 2006; Antoine et al. 2007, 2016b; Pujos
et al. 2013; Tejada-lara et al. 2015), Venezuela (Sócórro
Formation, Carlini et al. 2006b), and Colombia (La Venta,
Laventan SALMA; Hirschfeld 1985; McDonald 1997;
Villarroel 1998, 2000). The age of the Venezuelan Socorro
Formation is not known precisely. The Cerdas fauna is some-
what older than the Fitzcarrald and La Venta assemblages (see
Croft et al. 2009 and Tejada-Lara et al. 2015). For the first time
Megatheriinae are recorded in the tropics during the Laventan
SALMA at La Venta (McDonald 1997) and Fitzcarrald local
fauna in Peruvian Amazonia (Megathericulus sp.; Pujos et al.
2013; Fig. 2e–f). Tropical megatheriine ground sloths appear
slightly later than the oldest known member of the clade,
Megathericulus patagonicus, from the Friasian SALMA of
southern Patagonia (De Iuliis et al. 2008). Xyophorus
(Fig. 2g–h) from the early middle Miocene of Cerdas (Croft
et al. 2009) is the oldest member of Nothrotheriidae in the
tropics. During the middle Miocene interval, the tropics are
notable for the appearance of small-sized Megatherioidea,
such as the nothrotheriid Huilabradys and the abundance of
Mylodontidae, such as Brievabradys, both from Colombia
(Villarroel 2000), and Eionaletherium from Venezuela
(Rincón et al. 2015). Mylodontid subfamilies Mylodontinae,
Urumacotheriinae (Fig. 2i–l), and Scelidotheriinae are recog-
nized for the first time in the Neotropics during the middle
Miocene in La Venta and Fitzcarrald (McDonald, 1997;
Tejada-Lara et al. 2015). Neonematherium from the late mid-
dle Miocene of La Venta is the oldest tropical scelidothere
(McDonald 1997).

The late Miocene interval is the first golden age of sloths as
reflected for example in the late Miocene fauna of
Bconglomerado osífero^ from Entre Ríos Province
(Argentina) with a great diversity of Megatheriinae,
Megalonychidae, and Mylodontidae (Brandoni 2011). In the
tropics, sloths are recorded in eight localities from northern
Argentina to Venezuela including Bolivia, Brazil, and Peru
(see Tables 1 and 2 for further details). Megalonychidae are
extremely scarce during this period, represented only by
Protomegalonyx and Pliomorphus in the Brazilian Amazon
(Ribeiro et al. 2013). This is also true for Megatheriidae, rep-
resented by isolated remains of megatheriines in Venezuela
(Urumaquia ; Car l in i e t a l . 2006a) and Bol iv ia
(undetermined species from Achiri; Pujos et al. 2012a).
Planopsine megatheriids appear, probably for first time in
the tropics, in the Amazon of Acre (cf. Planops from Brazil;
Ribeiro et al. 2013). Mylodontidae are abundant in Colombia,
Venezuela, and Brazil (e.g., Mirandabradys Carlini et al.
2006b and Pseudoprepotherium Collins 1934; Marshall
et al. 1983; Hirschfeld 1985). This clade is particularly well
established in the Amazon with members of the endemic
clades Octodontobradyinae (Octodontobradys; Santos et al.
1 9 9 3 ; An t o i n e e t a l . 2 0 1 6 a ; F i g . 2 c– d ) a n d
Urumacotheriinae (Urumacotherium; Negri and Ferigolo
2004; Antoine et al . 2016a; Fig. 2i–l) . Although
Nothrotheriidae are not common during the late Miocene in
austral regions of South America, they are highly diversified
in the tropics in several localities of Bolivia (Xyophorus sp.
from Achiri; Pujos et al. 2012a; Xyophorus villarroeli from
QuebradaHonda, Fig. 2g–h), Peruvian Amazon (Acre), with a
nearly complete skeleton of the basal nothrotheriine
Mionothropus cartellei (De Iuliis et al. 2011), and the appear-
ance and evolution of the thalassocnine lineage (five species
of Thalassocnus) in the Peruvian coast (Muizon et al. 2003,
2004; Pujos and Salas 2004a; Amson et al. 2015a, 2015b,
2015c). It is also during this period that sloths appear for the
first time in North America (Hemphillian North American
Land Mammal Age [NALMA]) with the megalonychid
Pliometanastes and the mylodontid Thinobadistes
(McDonald 2005). Pliometanastes is also present in Central
America in Costa Rica (Laurito and Valerio 2012) and
Mexico (Carranza-Catañeda et al. 2008). Sloths have not
been recorded from the late Miocene of the West Indies.

Few Pliocene localities have yielded sloths and few genera
are recorded from the tropics (half as many genera as during
the late Miocene, Tables 1 and 2). These localities date from
the early and middle Pliocene of Bolivia (Ayo-Ayo,
Choquecota, Pomata-Ayte, and Vizcachani; St-André et al.
2010; Pujos et al. in press) and Peru (Yauca; Muizon et al.
2004), the BPliocene^ of Venezuela (Codore Formation;
Carlini et al. 2006b), and the late Pliocene of Bolivia
(Inchasi; Anaya andMacFadden 1995). Mylodontidae contin-
ue to be the most diverse group in the tropics (e.g.,
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Glossotheridium, Pleurolestodon, and Mirandabradys) and
for the first time some taxa are found in multiple localities,
such as Simomylodon from the Bolivian localities of Pomata
Ayte and Ayo-Ayo (St-André et al. 2010). The first derived
scelidotheriine is also reported in northern Argentina (i.e.
Proscelidodon, Pujos et al. 2012b). No Amazonian localities
have yielded sloth remains during the Pliocene (Antoine et al.
2016b). Two Nothrotheriidae are signaled, a peculiar form
from the Bolivian Altiplano (Pujos et al. in press) and the last
species of the Thalassocnus lineage from the Peruvian coast
(Muizon et al. 2004). Several derived Megatheriinae are also
present in Venezuela (Proeremotherium elejbe, Carlini et al.
2006b) and in several Bolivian localities (Megatherium
(Megatherium) altiplanicum, St-André and De Iuliis 2001)
and foreshadow the giant Quaternary forms.

During the Pleistocene period, sloths were the dominant
terrestrial herbivores in South America and they colonized
all environments of the continent. The Pleistocenemammalian
localities are too numerous for exhaustive inclusion and we
list the forty most representative sloth faunas and the most
common sloth taxa (Tables 1 and 2).

Fourteen species of late Pleistocene small- to medium-
sized Megalonychidae distributed among six genera
(Acratocnus, Imagocnus, Megalocnus, Neocnus (Fig. 2m–n),
Paulocnus, andParocnus) occupied theWest Indies (Curaçao,
Puerto Rico, Cuba, andHispaniola). None of these small-sized
taxa has as yet been found outside the West Indies, suggesting
they are confined to the West Indian islands. Giant
megalonychids phylogenetically close toMegalonyx are pres-
ent in the tropics in Venezuela (Megistonyx; McDonald et al.
2013) and Brazil (Australonyx and Ahytherium; Cartelle et al.
2009). Large Megalonychidae are almost absent from south-
ern South America but identified for first time in Central
America with Meizonyx and Megalonyx in the early middle
Pleistocene of El Salvador (Webb and Perrigo 1985;
Cisneros 2005) and Megalonyx in the late Pleistocene
of Guatemala (Lucas et al. 2007).

During the Pleistocene, giant Megatheriinae are extremely
common in Central and South America and southern areas of
North America. Eremotherium laurillardi, the tropical gi-
ant megatheriine, is present since the early Pleistocene in
nearly half of the tropical Pleistocene localities, particular-
ly in Brazil, Ecuador, Peru, and Venezuela but also in
Central America in Panama, Nicaragua, and El Salvador
(see Tables 1 and 2 for further details). Megatherium oc-
cupies mostly the southern half of South America, with
Megatherium (Megatherium) americanum ranging approx-
imately from Patagonia to southern Bolivia (Tarija;
Marshall et al. 1984). Several small species of BAndean^
Megatheriinae grouped in the subgenus Megatherium
(Pseudomegatherium) are present in Bolivia, Peru, and
Ecuador. The Brazilian form Nothrotherium maquinense
is the only nothrotheriid identified during the Pleistocene

in South American tropics. Nothrotheriops, the North
American Pliocene-Pleistocene nothrotheriid, has been re-
cently recorded in Belize (De Iuliis et al. 2015), which is
the southernmost presence of the genus. The sudden and
surprising presence of possible Nothrotheriops in
Argentina (Brandoni and McDonald 2015) remains to be
confirmed by more abundant material. Diabolotherium, a
peculiar small-sized megatherioid, is recorded from the late
Pleistocene of the Pacific Peruvian coast and several
Peruvian and Chilean caves (Pujos et al. 2007).

With respect to Mylodontidae, Lestodontinae are only rep-
resented by Lestodon in two tropical localities in Tarija
(Bolivia) and Brazil (Sao Paulo; Dias Rêgo 1992), the
northernmost presence of the genus. It is, however, common
in austral areas of the continent. Scelidotheriinae are abundant
and diversified with three species belonging to Catonyx (which
includes Scelidodon) and one species to Valgipes. Two species
of Catonyx are endemic to Brazil (C. cuvieri cohabiting with
Valgipes) and Bolivia (C. tarijensis) while C. chiliensis is more
widespread, ranging from Ecuador to Chile including Peru and
Bolivia (Cartelle et al. 2009). Four mylodontine genera are
present in the tropics. Glossotherium is the most abundant
mylodontid with four species in fifteen localities of Brazil,
Peru, Bolivia, Ecuador, and Paraguay, whereas Mylodon is re-
stricted to southern areas of South America (i.e., Argentina and
Chile). The northernmost presence of Mylodon is in Ecuador
(Marshall et al. 1984). Finally, among Mylodontinae,
Mylodonopsis and Ocnotherium are rare endemic genera of
Brazil (e.g., Cartelle 1991, 2012). The endemic Amazonian
mylodontid Octodontobradyinae and Urumacotheriinae are
not recognized during the Pliocene or Pleistocene epochs.

Discussion

Paleogeographic Overview of Fossil Sloths in the Tropics

Although likely to appear as early as in the earliest Eocene as
inferred by consensual phylogenetic relationships among
Xenarthra, the earliest undisputable sloths first occur in the
earliest Oligocene of southern South America, as represented
by the Bglypto-sloth^ Pseudoglyptodon from central Chile
and Chubut Province of southern Argentina (Mustersan? and
Tinguirirican SALMAs,McKenna et al. 2006; Fig. 2a–b). The
possible presence of sloths in middle Eocene levels of
Antarctica (Vizcaíno and Scillato-Yané 1995), which would
correspond to the oldest member of the clade, has been
questioned (MacPhee and Reguero 2010). MacPhee and
Iturralde-Vinent (1995) attributed a proximal femoral epiphy-
s is f rom the ear ly Ol igocene of Puer to Rico to
Megalonychidae (Tables 1 and 2). If this taxonomic assign-
ment is correct (clearly more material is necessary for firm
determination), the early Oligocene age for the Juana Díaz
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Formation was frequently discussed (McDonald and De Iuliis
2008). Moreover, an early Oligocene age for Puerto Rican
deposits has been recently confirmed (Vélez-Juarbe et al.
2014). Indeed these deposits yielded rodent incisors of undis-
putable caviomorph affinities, which support the existence of
an early dispersal event from the Neotropics (where
caviomorphs were well settled by late middle Eocene times;
Antoine et al. 2012) toward the Caribbean region around the
Eocene-Oligocene transition. Accordingly, this West Indian
sloth would be nearly contemporaneous with the earliest
Pseudoglyptodon, which would require a reconsideration of
the early phylogenetic and paleobiogeographic history of
sloths in South America and the West Indies.

By the end of the Oligocene, Pseudoglyptodon ,
mylodontids, and megalonychids were present in the southern
half of the continent including the southern tropics (e.g.,
Octodontotherium and Deseadognathus in Argentina,
Paroctodontotherium in Bolivia; Fig. 1b–c, Tables 1 and 2).
The recent report by Antoine et al. (2016a) on the presence of
isolated remains of a Mylodontidae in the Deseadan SALMA
of the Peruvian Amazon greatly expands the known distribu-
tion of early sloths. Although the paleogeographical origins of
Mylodontidae and Megalonychidae remain unclear, the defi-
nite presence of Pseudoglyptodon during the Tinguirirican
SALMA in the southern part of South America would suggest
Patagonia as the evolutionary cradle of sloths. The probable
presence, however, of a megalonychid sloth from the Juana
Díaz Formation of Puerto Rico (MacPhee and Iturralde-
Vinent 1995; Vélez-Juarbe et al. 2014) gives rise to a second
scenario, with the megalonychid sloths native to the West
Indies and the mylodontids to central South America or
Patagonia. Moreover, the presence in Pseudoglyptodon of a
strong caniniform and multilobed molariform teeth,
which never occurs in megalonychid sloths, would tend
to place it closer to Mylodontidae. Only the discovery
of new material in better state of preservation will con-
tribute to increasing certainty regarding the phylogenetic
affinities of Pseudoglyptodon. An information gap on
sloths between the late Oligocene (Deseadan SALMA)
and the early Miocene (Colhuehuapian SALMA) in the
tropics as well as in Patagonia (Tables 1 and 2) hinders
our knowledge of the evolution and diversification of
Mylodontidae and Megalonychidae during this period.

In comparison with native ungulates, sloths comprised a
tiny component of the tropical mammalian fauna during the
late early Miocene. This period records the first certain pres-
ence of megalonychid sloths in the West Indies (i.e.,
Imagocnus from Cuba; MacPhee et al. 2003) and the first
appearance in the tropics of Octodontobradyinae (Antoine et
al. 2016a; Fig. 1b–c, Tables 1 and 2). The latter was an en-
demic Amazonian group of tropical mylodontids known only
from craniodentall and mandibular remains and characterized
in particular by the absence of a caniniform tooth, the presence

of four lower elongated molariforms with a single transverse
lophid located on the posterior third of m1-m3 and centrally
on m4, a horizontal mandibular ramus with a straight ventral
margin, and a thin and elongated spout (Fig. 2c–d).
Megatheriidae and Nothrotheriidae are not recorded yet in
Central and North America.

Sloths are not known from the middle Miocene to the early
Pleistocene of the West Indies, which is probably due to the
lack of the appropriate fossiliferous levels. However, sloths
began colonizing the tropics of South America during the
middle Miocene, with Megatheriinae and Nothrotheriidae
present in several localities in the tropics (Fig. 1b–c,
Tables 1 and 2). Nothrotheriid sloths appeared first during
the early middle Miocene in the tropics with Xyophorus in
the Bolivian locality of Cerdas (Fig. 2g–h, Tables 1 and 2).
The Xyophorus specimen from Cerdas is the first recorded
nothrotheriid in the tropics and suggests that this clade may
have appeared first in Patagonia before spreading rapidly to
the rest of the continent in the southern tropics of central South
America and in Patagonia (e.g., Pronothrotherium from the
Huayquerian SALMA of Argentina) and then North America
(i.e., Nothrotheriops from the Irvingtonian and the
Rancholabrean NALMA of USA). Megatheriine sloths
seem originally from Patagonia with Megathericulus
spreading later into northern areas of South America
and the tropics, as recorded from the Fizcarrald fauna
(Figs. 1b–c, and 2e–f, and Tables 1 and 2; Pujos et al. 2013). All
groups of Mylodontidae are present during the middle Miocene
in the tropics (Tables 1 and 2). Scelidotheriinae, originating
probably in the Santacrucian SALMA of Patagonia, were pres-
ent in the middle Miocene of Colombia (La Venta) with
Neonematherium; simultaneously Octodontobradyinae
(Octodontobradys, Fig. 2c–d) are joined by Urumacotheriinae
(Urumacotherium, Figs. 1b–c, and 2e–h) in Fitzcarrald (Tejada-
Lara et al. 2015). Octodontobradyinae and Urumacotheriinae
are present in Acre (Brazilian Amazonia), Urumaco
(Venezuela), and Contamana and Fitzcarrald (Peru).
Urumacotheriinae and Octodontobradyinae are two highly spe-
cialized clades of endemically tropical Mylodontidae, and have
so far been recovered only from the Amazon and surrounding
areas (Tables 1 and 2, see Negri et al. 2010).

Mylodontidae and Nothrotheriidae are well represented in
the tropics. Althoughmylodonts were generally widespread in
South America, Octodontotherium and Urumacotherium
were restricted to the tropics. Nothrotheriids were not partic-
ularly common in the southern part of the continent (e.g.,
Pronothrotherium), but were more abundant and diversified
in the tropics, as represented by Mionothropus from the
Peruvian Amazon, Xyophorus and Lakukullus from the
Bolivian Altiplano, and Thalassocnus from the Pacific coast.
Mylodonts extended into North American by approximately 9
my (Thinobadistes), and so did the megalonychid
Pliometanastes (McDonald 2005). Recent reports (Cozzuol
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2006; Ribeiro et al. 2013) suggested the presence of
Planops, a megatheriid planopsine, in the Huayquerian
of the Brazilian Amazon (Acre). This is based on isolated
remains and the generic determination requires confirma-
tion, as previous records of planopsines (e.g., Planops and
Prepoplanops) are otherwise securely known only from
the Santacrucian SALMA of Argentine Patagonia (Negri
et al. 2010).

Only six tropical Pliocene localities have yielded sloth re-
mains; so they are far fewer in number and diversity than the
notoungulates, litopterns, and other endemic herbivores of
South America. Since the end of the Oligocene, sloths are
far fewer in numbers and less diversified than ungulates.
Little information is available to evaluate in detail the evolu-
tion of the paleobiodiversity of sloths in the tropics during this
period. The Pliocene is notable for the extinction of
Thalassocnus and the appearance of derived giant
megatheriines, Megatherium (M.) altiplanicum in Bolivia
and Proeremotherium elejbe in Venezuela (St-André and De
Iuliis 2001; Carlini et al. 2006a). Conversely, in southern areas
of the continent, the diversity of Mylodontidae and
Megatheriidae increased considerably. Megalonychidae
and Nothrotheriidae, however, are not abundantly repre-
sented. During the Pliocene (late Hemphillian and early
Blancan NALMA), North American Megalonychidae
continued their paleobiogeographic expansion with
Pliometanastes and Megalonyx.

In the Pleistocene, despite the rise of the Panamanian
Isthmus and GABI (Great American Biotic Interchange),
sloths became increasingly diverse and abundant.
Indeed, sloths and cingulates reached their zenith and
were dominant elements in South American faunas dur-
ing this period, and made lasting incursions into Central
and North America as well. The alteration of glacial and
interglacial episodes and the arrival of humans later in
the Pleistocene modified the biodiversity of South (and
North) American faunas, particularly of large mammals
(Barnosky et al. 2004). The end of the Pleistocene
witnessed the extinction of nearly all of these mammals
(see Fariña et al. 2013) and all but the smallest of
sloths disappeared. Abundant remains of these mammals
have been recovered from the tropics (see Tables 1 and 2).

In Central America, the presence in Guatemala of
Megalonyx suggests an early migration from the north (where
the genus had been well established since the Pliocene) to-
wards South America. The megalonychids Megistonyx,
Australonyx, and Ahytherium, phylogenetically close to
Megalonyx (see McDonald et al. 2013), occupied the northern
area of the South American tropics (i.e., Venezuela and
Brazil). Megalonychidae are once again recorded, in abun-
dance, from the West Indies. Meizonyx (El Salvador),
Nothrotheriops (Belize), and Eremotherium (Panama,
Nicaragua, and El Salvador) have also been recovered along

the Panamanian Isthmus and testify to the use of this corridor
by several groups of sloths (McDonald et al. 2005).

Eremotherium is abundantly represented in North America
during the Pliocene mainly by E. eomigrans (De Iuliis and
Cartelle 1999) and in the Pleistocene by E. laurillardi
(McDonald 2005), and it is possible that the latter colonized
northern South America (see De Iuliis and Cartelle 1999).
Megatherium mainly occupied the southern half of South
America, with the giantM. (Megatherium) americanum large-
ly in the Pampas and lowlands and the medium-sized species
of the subgenus M. (Pseudomegatherium) (e.g., M. (P.)
tarijense and M. (P.) medinae) largely in the Pacific corridor
and the Andean plateau (see Pujos 2008). Eremotherium
laurillardi seems to have largely excluded other megatheriines
from its range, whereas range overlap apparently occurred
among species of Megatherium, such as M. (P.) tarijense
and M. (M.) americanum in Tarija (Tables 1 and 2). The
nothrotheriid sister taxa Nothrotherium and Nothrotheriops
(Nothrotheriini; De Iuliis et al. 2011) are abundantly present
on either side of the equator in dozens of localities,
Nothrotheriops to the north (McDonald and Jefferson 2008)
and Nothrotherium to the south (Cartelle and Fonseca 1983).

Among Mylodontidae, Lestodon was the only Pleistocene
lestodontine present in the tropics in southern Bolivia (Tarija)
and Brazil (Bahia). Lestodon armatus, as well as the
mylodontine Mylodon darwini , the scelidotheriine
Scelidotherium, and the megatheriine Megatherium (M.)
americanum are temperately adapted forms, whereas the
scelidotheriines Catonyx sp. (including Scelidodon) and
Valgipes bucklandi were abundantly present in the tropics
principally in Brazil and Peru (Cartelle et al. 2009; Tables 1
and 2). The mylodontine Glossotherium is known from a
widespread geographical area, including both the more tem-
perate and tropical regions of South America. Although three
scelidotheriine genera, (i.e., Scelidotherium, Catonyx, and
Valgipes) inhabited South America during the Pleistocene,
none participated in the GABI. As noted, Glossotherium spe-
cies were abundant throughout South America and possibly
also in North America with BGlossotherium^ chapadmalense
(McDonald 2005), the phylogenetic position of which within
Mylodontinae remains to be resolved. The endemic tropical
ground sloths Octodontobradyinae and Urumacotheriinae dis-
appeared at the end of the Miocene (Tables 1 and 2). Two new
endemic Brazilian mylodontid genera (Mylodonopsis and
Ocnotherium) appeared during the late Pleistocene but they
are considerably different from and not phylogenetically close
to Octodontobradyinae and Urumacotheriinae.

Considering the Origin of Suspensory Sloths?

It is evident from our review that no fossil remains of suspen-
sory sloths have been recovered from the tropical region, the
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rest of continental America, or the West Indies. Over the past
several decades, new Paleogene (e.g., Santa Rosa and
Contamana in Peru) and Neogene (e.g., Urumaco in
Venezuela, Acre in Brazil, Fitzcarrald and Madre de Dios in

Peru) localities have yielded rich and diverse vertebrate
faunas from tropical rainforest habitats or Bopen habitats
under a monsoonal-like tropical climate^ (Antoine et al.
2013: 91). It is precisely in these kinds of environments

Fig. 2 a-b, left mandible ofPseudoglyptodon sallaensis (MNHN-Bol-V-
009623) from the Deseadan SALMA of Salla (Bolivia) in occlusal and
lateral views, respectively; c-d, right mandible of Octodontobradys
puruensis (holotype, UFAC 1803) from the late Miocene of Upper
Solimões Formation (Acre, Brazil) in occlusal and lateral views, respec-
tively; e-f, right mandible ofMegathericulus sp. (MUSM 1564) from the
Laventan SALMA of Fitzcarrald (Peru) in occlusal and lateral views,
respectively; g-h, left mandible of Xyophorus villarroeli (UF 242000)

from the Laventan SALMA of Quebrada Honda (Bolivia) in occlusal
and lateral views respectively; i-l, left maxilla (i-j, Holotype, UFAC
3902) and lef t mandible (k-l , holotype, UFAC 3961) of
Urumacotherium campbelli from the late Miocene of Upper Solimões
Formation (Acre, Brazil) in occlusal (i and k) and lateral (j and l) views;
m-n, right mandible of Neocnus gliriformis (AMNH 16882) from the
Pleistocene of Casimba (Cuba) in occlusal and lateral views, respectively
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that we might expect to find forms related to modern
suspensory sloths.

The very peculiar mode of life of the modern suspensory
sloths Bradypus and Choleopus reflects their remarkable and
independently evolved postcranial specializations. Among
these features, we may note the extreme elongation of long
bones, simplification of articular facets, fusion among carpal
and tarsal elements, reduction in number of digits (three for
Bradypus and two for Choloepus), and hook-shaped ungual
phalanges (Nyakatura 2012). Both genera have an almost ex-
clusively folivorous diet (Chiarello 1998) with a preference
for the leaves of the genus Cecropia. It is also in this type of
tree that sloths spend much of their time and assume a suspen-
sory posture. Sloths can also consume algae-gardens present
on their pelage to augment their strict diet and the existence of
the mutualism characteristic of sloths (Pauli et al. 2014) fur-
ther strengthens the links between tropical environment and
the sloths. It would appear that modern sloths are a product of
the particularities of the rainforests of Central and South
America and entirely dependent on the conditions of
this ecosystem. Sloths descend from trees only to defecate
and predators such Panthera often strike during this vulnera-
ble activity. Extant sloths are capable of only an awkward
Bcrawl^ on the ground and they are excellent swimmers in
fresh and sea water (Anderson and Handley 2001). Lastly,
sloths reproduce during the dry season and give birth in a
suspensory posture. These characteristics clearly demonstrate
that extant suspensory sloths are highly specialized mammals
closely linked to the neotropical environment with functional
constraint to an arboreal habitat. Although they currently
range from Central America (Honduras) to southern Brazil
and are relatively common, there is no evidence in the fossil
record of sloths with this peculiar kind of locomotion and
lifestyle.

The nonsuspensory locomotion (i.e., climbing or semi-
arborality; Pujos et al. 2012c; Gaudin and Croft 2015) of fossil
sloths is plesiomorphic among Pilosa. During their spread
throughout South America, North America, and the West
Indies, sloths diversified and adapted to various environments,
ranging from the Quaternary Pampean steppes (e.g.,
Megatherium), the Mio-Pliocene Andean Altiplano (e.g.,
Simomylodon) , Quaternary Andean caves (e .g . ,
Diabolotherium), theMio-Pliocene deserts of the Pacific coast
(e.g., Thalassocnus), and the Mio-Pliocene Amazonian
rainforest (e.g., Octodontobradys) (Pujos et al. 2012c). They
have also evolved several locomotory modes, such as possible
bipedalism (e.g., Megatherium), quadrupedalism (e.g.,
Scelidotherium), arboreality or semiarboreality (e.g.,
Hapalops), and an aquatic or semi-aquatic lifestyle (e.g.,
Thalassocnus) (Pujos et al. 2012c; Gaudin and Croft 2015;
Amson et al. 2015a, 2015b, 2015c).

We have followed above the main events in the ap-
pearance, evolution, migration, and disappearance of the

major clades of fossil sloths in the tropics, in which, at
one time or another, all groups of sloths were present
and within the expected area of the origin of suspensory
sloths, particularly the Amazonian or proto-Amazonian
rainforest. The abundance of fossiliferous localities that
yield sloth remains during the Oligocene to Pleistocene
(see Table 1), including the Amazonian localities of
Peru, Brazil, and Venezuela, provide an excellent view
of sloths in the tropics. As mentioned above, there is
consensus on the diphyletic origin of modern suspensory
sloths (e.g. Gaudin 2004) with an implied separation
during the early late Oligocene (Delsuc et al. 2012;
Gibb et al. in press), certainly before the appearance
of almost all tropical fossil sloths. And yet there is total
absence of fossil evidence of morphological precursors
of extant suspensory sloths that currently inhabit the
tropical rain forest of nearly half of South and Central
America.

The most recent and comprehensive phylogenetic
analysis of extant and extinct Pilosa recognized
Bradypus as sister taxon of other sloths and Choloepus
as sister taxon to the West Indies Quaternary genus
Neocnus (Gaudin 2004; Fig. 2m–n). We should note that
the postcranial skeleton of extant suspensory sloths is so
modified that it is extremely difficult to compare it with
the homologous elements of fossil sloths to obtain phy-
logenetic information. Indeed, the skull, teeth, and man-
dible of Choloepus exhibit synapomorphies of the
megalonychid clade and are very close to those of the
West Indian megalonychids (i.e., Neocnus, Acratocnus,
Megalocnus, and Parocnus); however, non-postcranial el-
ements reflecting an upside-down posture were discov-
ered in fossiliferous Cuban localities (see White and
MacPhee 2001 for an overview). With regard to
Bradypus, its craniodental characters, including those of
the ear region, separate this taxon from all other sloths,
with some authors (Gaudin 2004) recognizing a separate
family, Bradypodidae, which could represent a pedo-
morphic lineage (Patterson et al. 1992; Gaudin 1995).

The recent and abundant information of fossil sloths
from the tropics, including the West Indies, and the lack
of fossil sloths that share the same mode of locomotion as
modern suspensory sloths suggest that the suspensory pos-
ture was not yet present in sloths at least during the
Miocene and that it appeared twice and much later than
the hypothetical separation suggested between Bradypus
and Choloepus. The discovery of tropical Pliocene and
Pleistocene localities, admittedly still very few in number,
in the Amazonian region, is encouraging, and we suggest
that it is important to continue prospecting for fossiliferous
localities from the end of the Neogene and the Pleistocene
in the Amazon in search of the close fossil kin of extant
suspensory sloths.

J Mammal Evol (2017) 24:19–38 33

Author's personal copy



Conclusion

The recent information available for fossil sloths from
tropical regions during the Paleogene, Neogene, and
Quaternary periods allows us to better understand this
endemic South American clade. It is becoming clear
that sloths were as abundant in the tropics as in the rest
of South America since the end of the Paleogene. Some
eighty species of fossil sloths were present in the
Cenozoic: at least four Oligocene, 14 Miocene, six
Pliocene, and dozens (and perhaps more than a hun-
dred) localities in the region between the Tropics of
Cancer and Capricorn. With regard to the phylogenetic
and paleogeographic history of these sloths, several im-
portant events may be highlighted. Although the oldest
sloths were found in the southern part of South America
near the Eocene-Oligocene transition, mylodontids,
megalonychids, and the Bglypto-sloth^ Pseudoglyptodon
inhabited the tropics beginning in the late Oligocene.
Megalonychidae are present in theWest Indies in the late early
Miocene and the late Pleistocene (no fossils are known from
the middleMiocene to the early Pleistocene) but their relation-
ships with other allied genera from Central, North, and South
America are not yet fully resolved. During the early Miocene
(Colhuehuapian SALMA) and the late middle Miocene
(Laventan SALMA), two endemic groups of mylodontid
sloths, Octodontobradyinae and Urumacotheriinae, appear in
the tropics. The members of these clades are common in
Amazonian localities, where they diversified until their prob-
able extinction at the end of the Miocene. Megatheriinae and
Nothrotheriidae appear in the tropics during the middle
Miocene before members of these clades reached North
America with the formation of the Panamanian Isthmus.
Since the late middle Miocene, all the groups of sloths are
present in the tropics except Planopsinae, given that a single
record in Brazilian Amazon during the Huayquerian SALMA
requires confirmation. Interestingly, nothrotheriid sloths seem
to be more abundant and diversified in the tropics than in the
southern part of South America during the late Miocene. It is
also during this period that mylodontid and megalonychid
fossil sloths began their expansion into North America,
where they diversified and extended their range as far north
as Alaska until their extinction at the end of the Pleistocene.
The Pleistocene period might be regarded as the Bgolden
age^ of fossil sloths as they diversified into numerous
large, including gigantic, forms among Megatheriidae,
Mylodontidae, Megalonychidae, and Nothrotheriidae, and
were, at least in South America, the dominant terrestrial
herbivores, also profiting from the Panamanian Isthmus to
realize new migrations probably in both directions as
attested by their presence in Central America. However,
highly specialized forms like Scelidotheriinae did not mi-
grate to North America.

Despite recent advances in our understanding of fossil
sloths from tropical regions, the origin of suspensory sloths
remains a mystery. Bradypus and Choloepus are closely
linked to the neotropical rain forests in relation to their pecu-
liar mode of life, but their postcranial specializations appeared
independently. Phylogenetic analysis based on craniodental
characters suggests that Choloepus is a megalonychid and
Bradypus is sister taxon to other sloths. Frustratingly, the re-
cent available information on fossil sloths in the tropics has
not shed new light on the diphyletic origins of current sloths
and no fossil remains help explain the evolution of skeletal
features of the suspensory posture of the extant sloths.

However, the complete absence of suspensory sloths in the
tropics in dozens of Paleogene, Neogene, and Pleistocene lo-
calities discovered mainly during the last few decades sug-
gests that the suspensory posture did not exist at least during
the Oligocene and Miocene periods, contrary to what is in-
ferred by molecular data, and appeared much later than the
hypothetical separation between three- and two-toed sloths.
The recent discovery of fossil mammals in numerous tropical
localities should encourage us to continue to prospect and
search for new remains in these areas, especially Amazonian
areas of Acre and Contamana, to uncover remains of direct
fossil kin of suspensory sloths.
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