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A B S T R A C T

Piezoelectric energy harvesting devices convert mechanical energy into electrical energy due to the mechanical
deformations of the structures. Energy harvesting prototypes are used to feed low-power electronic devices and
sensors. In this work, a one-dimensional finite element is developed for modeling three-dimensional rotational
energy harvesters. The rotating piezoelectric beam is formulated by means of a geometrically nonlinear finite
element with six mechanical degrees of freedom and one electrical degree of freedom per node. Using
Timoshenko beam theory for the mechanical domain and a first-order theory for the electrical field, the elec-
tromechanical equilibrium equations of motion are then derived using D’Alembert principle. In order to validate
our finite element formulation, two energy harvesting devices are built and tested, getting insights into the
generation of electrical power, natural frequencies and time responses of the dynamical variables. An Arduino
board is implemented as the data acquisition system that transfers the voltage signal via Bluetooth, avoiding the
complexity of slip-rings mechanisms for data transmission. Finally, the results of our formulation are compared
with those obtained using a commercial software (Abaqus) and the experimental results. A good correlation
between the three methods is obtained, providing evidence that our formulation accurately predicts the behavior
of rotational energy harvesters.

1. Introduction

The dynamic behavior of rotating structures has been studied for
many years. There are numerous reports in the literature that analyze
the vibration of rotating beams. Carnegie [1] investigated the vibration
of rotating cantilever blading, obtaining a theoretical expression for the
work done due to centrifugal and Coriolis effects. Boyce and Han-
delman [2] studied the transverse vibration and the influence of a tip
mass placed at the free end of a cantilever beam taking into account a
constant speed. Hoa [3] proposed a finite element (FE) method to in-
vestigate the vibration frequency of a rotating cantilever beam with a
tip mass. The finite element method was based on a third-order poly-
nomial for the variation of the lateral displacement. Geradin and Kill
[4] developed a new approach to finite element modeling applied to
flexible rotors in order to perform the stability analysis. Their models
were developed with the rotating frame and the inertial frame ap-
proaches. In both cases an asymmetric finite element is proposed. Air-
craft wings and blades are applications of the investigations about the
dynamic behavior of rotating structures. Recently, composite materials

have been widely used in the main structure for increasing the per-
formance of the blades or wings. Saravia et al. [5] investigated the
dynamic stability behavior of thin-walled rotating composite beams
using the finite element method. Due to the flexibility of composite
structures, control of the vibrations is essential [6]. For this reason, in
the last decades the inclusion of smart materials in the main structure
has been studied. The suppression of vibrations is improved using ac-
tive control in the structures with piezoelectric actuators. Piezoelectric
materials are usually of interest when designing smart structures that
can be used as sensors or actuators [7,8]. In the last few years, energy
harvesting has received increasing attention due to its applications. It
converts the waste energy into usable electrical energy, or in other
words, mechanical vibrations are converted into electrical energy used
to power mobile devices and wireless sensors networks [9]. Many re-
searchers have derived mathematical models for energy harvesting
beams [10]; most of them have used the Euler–Bernoulli beam theory
with a harmonic base excitation. Erturk and Inman [11,12] studied a
distributed parameter electromechanical model for cantilevered pie-
zoelectric energy harvesters. Mitcheson et al. [13] presented a state-of-
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art review of energy harvesting devices including possible applications
and future developments.

Finite element plate models are also used to investigate piezo-
electric structures under base harmonic motion. Marqui Junior et al.
[14] proposed an electromechanical coupled finite element plate model
for predicting the electrical power output of piezoelectric energy har-
vester plates. The excitation is due to the harmonic motion of the base
in the transverse direction. Detwiler et al. [15] formulated a laminated
composite plate with piezoelectric material to analyze the mechanical-
electrical behavior. The top and bottom surface of the beam were
subjected to an electric potential of 1 V across the thickness of the
beam, and the corresponding displacements were determined. On the
other hand, there are several finite element software packages (such as
Abaqus or ANSYS) for the modeling of piezoelectric materials. Kumar
et al. [16] analyzed the performance of lead-free piezoelectric materials
in unimorph cantilever piezoelectric energy harvesters. The finite ele-
ment method was used to model the piezoelectric structure, while ge-
netic algorithm optimization was used to optimize the power output.
Staworko and Uhl [17] presented an overview of modeling techniques
of piezoelectric elements and their comparison with commercial soft-
ware for simulating electromechanical systems. The models built using
Simulink and PSPICE give a slight difference of the frequency of vi-
bration with respect to Ansys simulation, whereas the amplitudes of the
time response using Simulink and PSPICE are three times larger than
those obtained with Ansys. Elvin et al. [18] developed a coupled finite
element-circuit simulation model using finite element software
packages. For the mechanical domain, a finite element method was
used to calculate the dynamic response. In the electronic domain, the
simulation tool SPICE was used to calculate the electrical response. This
approach allows for the modeling of complex mechanical geometries.
However, the solution technique is computationally expensive for large
models. Zhou et al. [19] proposed an equivalent SDOF system to de-
scribe the energy harvesting performance of a cantilever beam. The
peak output power and voltage were compared with numerical simu-
lation using the commercial FE package Ansys.

In the last few years a number of investigations have been published
about rotational energy harvesters. Gu and Livernore [20] presented a
single-degree-of-freedom (SDOF) model taking into account the cen-
trifugal force of the tip mass of a passive self-tuning energy harvester
for rotational vibration applications. Khameneifar et al. [21,22] also
presented an analytical model with a SDOF considering the centrifugal
force of the tip mass and the gravity force of the whole model. Guan and
Liao [23] developed a novel design of a rotating harvesting structure
using an analytical model that assumes the whole system mass in the
centrifugal and gravity forces. They analyzed the device theoretically
and experimentally. Their results do not predict with sufficient accu-
racy the experimental results. Shahruz and Sundararajan [24] proposed
a SDOF mathematical model of a cantilever beam with a tip mass
considering the whole system mass in centrifugal and gravity forces.
They provided a guideline for the scavenger parameters in order to
have it resonate. Yang et al. [25] investigated experimentally an im-
proved the output power of a rotational piezoelectric wind energy
harvester. They proposed an impact force to enable effective excitation.
On the other hand, Hsu et al. [26] used a finite element software
package (COMSOL) to simulate a rotating cantilever beam with a tip
mass. They analyzed self-frequency tuning piezoelectric energy har-
vesters for rotational motion. Their FE model takes into account the
shear deformation, piezoelectric effect, and stress stiffening effect in-
duced by the centrifugal forces of the entire mass. Their results were
compared with an analytical model and experimental tests.

In the above references the analysis of energy harvesting devices
was limited to simple geometries such as cantilever beams [20–22]. In
Refs. [23,24] the centrifugal and gravitational forces applied to the
SDOF system were considered in the FE model, but the softening effect
induced by the rotation speed was neglected. In [26] Hsu et al. devel-
oped a FE model using a commercial software (COMSOL) based on

three dimensional (3D) solid elements to model the rotational energy
harvester. This approach allows to solve the difficulties mentioned
above, but it has a large computational cost due to the 3D elements. In
the present work, in contrast to current scientific literature, a one-di-
mensional finite element is developed to model 3D rotational energy
harvesting devices. Within this approach it is possible to model complex
geometric configurations, the geometrically nonlinear effect induced by
the centrifugal forces and the electromechanical coupling. The piezo-
electric beam is formulated by linearizing a geometrically nonlinear FE
with six mechanical degrees of freedom per node and one electrical
degree of freedom interpolated using standard linear shape functions.
Timoshenko beam theory is used for the mechanical domain [5], and a
first order theory is used for the electrical domain [31].

The present article is organized as follows. After the introduction,
the kinematics of a piezoelectric rotating beam is presented in Section
2. Section 3 presents the details of the variational principle to derive the
equilibrium equations of motion of the problem using D’Alembert
principle. Section 4 presents the formulation of the piezoelectric beam
element. Section 5 contains the experimental setup to validate our FE
approach. Section 6 shows a comparison of the natural frequencies
between our FE formulation and the numerical simulations using
Abaqus. The voltage time response and the voltage and power gen-
eration of our proposed model are also compared with the experimental
results. Finally, Section 7 presents the conclusions.

2. Kinematics

The main aspects of the present rotational energy harvester for-
mulation are the following:

• The kinematics is based on the Timoshenko theory.

• The electrical potential is a linear interpolation through the thick-
ness.

• The piezoelectric material obeys a linear constitutive equation.

2.1. Reference system

The global and local Cartesian reference systems are mainly used as
shown in Fig.1.

• Global reference system {O, x, y, z}.

• Local reference system {T, X′, Y′, Z′}.

A 3D beam is a solid of length L oriented in the longitudinal di-
rection X′. The transverse area A with dimensions in Y′Z′ plane is or-
thogonal to X′ and it is relatively small with respect to the longitudinal
direction. Point c is the shear center of the beam. If the shear center c
and the neutral point T do not coincide, a coupling between axial/
bending and bending in x and y direction exists. The points T, g (neutral
point, gravity center) and c coincide for homogenous solid sections.

Fig. 1. Global reference systems: {O, x, y, z} and local reference systems {T, X′, Y′, Z′}.
Gravity and shear centers (g and c).
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Instead they do not coincide for composite beams.

2.2. Displacements

The Timoshenko beam theory is used for obtaining the dynamics of
a rotating beam [27]. This beam theory is appropriate in order to in-
clude the linearization of the formulation by means of a geometrically
non-linear finite element. It assumes that the shear center c and T do
not coincide, and hence a coupling between axial, bending/shear and
torsion effects exists. Working with the global system {O, x, y, z}, the
following displacement field for an arbitrary point of coordinates (x, y,
z) can be obtained:
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⎡
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=U u x t v x t w x t θ x t θ x t θ x t[ ( , ), ( , ), ( , ), ( , ), ( , ), ( , )]x y z
T (2)

where u, v and w are the global displacements, yT and zT are the co-
ordinates of T, and yc and zc are the coordinates of c. In the local system
{T, X′, Y′, Z′}, the displacement can be rewritten as:

= ′ ′ ′ ′ ′ ′U u x t v x t w x t θ x t θ x t θ x t[ ( , ), ( , ), ( , ), ( , ), ( , ), ( , )]T t c c x y z
T (3)

where the apostrophe indicates that the quantity is related to such local
system. This system is parallel to the global system; displacements have
the same values in both systems, which implies that no apostrophe is
needed.

The instantaneous position vector of a point in the deformed con-
figuration [28] can be written as:

= +R R S UM0 (4)

where R0 is the point of the beam in the non-deformed configuration
(hub length), and SM is the cross sectional matrix.

2.3. Velocity and acceleration vectors

For the general case of a structural element that is rotating in space,
we can write the absolute velocity and acceleration of a point of the
beam [5]. The generalized velocities and accelerations are defined as:

= u x t v x t w x t θ x t θ x t θ x tV [ ̇ , ), ̇ , ), ̇ , ), ̇ ( , ), ̇ ( , ), ̇ ( , )]G x y z
T

( ( ( (5)

=a u x t v x t w x t θ x t θ x t θ x t[ ¨ , ),¨ ( , ), ¨ ( , ), ¨ ( , ), ¨ ( , ), ¨ ( , )]x y z
T

G ( (6)

2.4. Strain field

Let us consider the Green-Lagrange strain tensor according to [29]:

= + +L u u u u1
2

( )ij i j j i k i k j, , , , (7)

where
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u u
Xi j

i

j
,
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The Green-Lagrange strain in vector form is expressed as:

=ε S εR T G (9)

where εG is the generalized strain, and ST is the strain transformation
matrix. The three non-zero components of the Green strain are εxx ,
ε ε,xy xz. Eq. (9) takes into account only the nonlinear components of
the simplified Green Lagrange strains corresponding to the axial-
bending coupling.

2.5. Constitutive equations

The components of the stress and the electric displacement tensor

can be derived from the electric enthalpy density as [30]:

= ∂
∂

= − ∂
∂

σ H D H
E

,ij
ij

i
i (10)

The form of the electric enthalpy density in the linearized theory of
piezoelectricity is:

= − −H C ε ε e E ε ε E E1
2

1
2ijkl ij kl kij k ij ij

s
i j (11)

where Cijkl are the elastic constants, ekij are the piezoelectric constants,
and εij

S are the permittivity constants. The superscript s denotes that the
respective constants are evaluated at constant strain.

Using Eqs. (10) and (11) along with the relation ∂ ∂ =ε ε δε/ij ji ij, where
δij is the Kronecker delta, we obtain the linear constitutive equations,
given as:
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where ∼C , e͠ and ̃ε are the elasticity tensor, the piezoelectric tensor and
the permittivity tensor, respectively. It must be noted that εG and σ are
the generalized strain and stress matrices, respectively. E and D are the
electric field and electric displacement vectors.

2.6. Electric field vector

The definition of the electric field vector in terms of electric po-
tential is:

= −∇E ϕ (13)

Now the electric field is defined as [31]:

= −E A ϕ (14)

where ϕ is the electric degree of freedom.

=ϕ ϕ ϕ ϕ ϕ ϕ ϕ[ ]x y y z z x x y yx z zx
T

, , , , , (15)

The function for the electrical potential [32] is:

= + ∂
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A is the electrical transformation:
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The electrical potential is constant in this case.

∂
∂

= = −
z

ϕ x E
h

( ) v
z

e
3 (18)

The electrical constitutive matrix D is obtained by integration over
the cross section:

∫= A D dAD T
A (19)

This expression is similarly obtained by the stress resultant of the
beam [32].

3. Variational formulation

To derive the equilibrium equations of the problem, the d’Alembert
principle is used [33]. The principle of virtual work for dynamical
systems is:

= − +δ δW δW δWΠ int E T (20)

3.1. Virtual strain energy

Let us compute the strain energy as a contribution from the elastic
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and electric energy:

∫ ∫= + = +σε E DδW δW δW dA dV( ) ( )T
int int

d
int
e

V

δ
R V

δ

(21)

The first integral is due to the elastic deformation of the body [34],
and the second integral comes from the electrostatic energy which is
equal to the work done by the moving charge while it moves from a
cathode to an anode. The electric field is constant between electrodes:

= ⎡
⎣⎢

− ⎤
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E
h

0 0 v
e

T

(22)

where he is the electrode distance.

3.2. Virtual work of d’Alembert forces

The virtual work of the inertia forces is defined as:

∫= R RδW ρ δ dV¨T
T V (23)

The inertia forces provide for two terms, the relative and centrifugal
inertia [4].

3.3. Virtual work of the external forces

The virtual work of the external forces can be expressed as:

= UFδW δ EE (24)

where FE is a vector that represents the external forces.Additionally, the
virtual work of the non-conservative force for the electrical charge is:

= VQδQ δ EE (25)

where QE is a vector that represents the electrical load.

4. Finite element formulation

The finite element method provides an approach for the dis-
cretization of a continuum [35]. In this analysis, the beam has 2 nodes
per element with 12 mechanical degrees of freedom per element, 6 at
each node (3 displacements and 3 rotations) and 2 electrical degrees of
freedom per element. Introducing the finite element discretization, the
generalized strains in the generalized nodal displacements are:

=U N Uη( ) (26)

∑=
=

N N Iη η( ) ( )
i

n

i
1

6
(27)

In the above equations, N is the linear shape function matrix, U is
the nodal displacement, X is the nodal coordinate, and I6 is the 6 × 6
unit matrix. The generalized strain matrix is:

=ε B UR i (28)

where Bi is the displacement-deformation matrix according to the strain
tensor of node i. The electric field vector is defined as:

= −E B VE (29)

where V is the nodal voltage, and BE is:

=B h[0 0 1/ ]E e
T (30)

It is important to mention that a linear interpolation through the
thickness for the electric potential is used because the electric field of
the piezoelectric material MIDE QP16N is constant in the thickness.

4.1. Tangent stiffness

Introducing Eq. (9) into the virtual strain energy expression Eq.
(21), we obtain:

= +δW δW δWint int
d

int
e (31)

  ∫ ∫= +BU CBU E e BU dxδW dx δ( ) ( )T T T
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d

L

δ

L (32)
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Eqs. (32) and (33) can be rewritten as:

    = + −U K U U K U U VδW δ δ δ ΘT
M

T
G

T
int
d (34)

  = −V U V C VδW δ δΘT T T
Pint

e (35)

where KM , KG, Θ, CP are the material and geometric stiffness, and the
electromechanical and capacitance matrices, respectively. Note that the
electric field is assumed to be uniform for d31 harvesting mode, and the
coupling matrix is given by:

 ∫= B V e BUdxΘ ( )E
T T

L

δ

(36)

Now, in order to consider the non-uniform electric field for d33
harvesting mode, we assume the empirical approach [36], yielding the
following coupling matrix:

 ∫= B V e BUα dxΘ ( )E
T T

L

δ

(37)

where α is an empirical constant that is used to consider the non-uni-
form electric field.

4.2. Geometric stiffness matrix

The geometric stiffness matrix can be expressed as:

=K KT x( )G G
U (38)

where T x( ) is the axial beam force acting on any section at a distance x
from the inner edge of the element [5], and KG

U is a unit geometric
stiffness matrix.

4.3. Dynamic matrices

Introducing the finite element approximations in Eqs. (5) and (6):

  ̂= = = =R HX V NV a Na U HU, , ,G G G G0 (39)

where N is the inertia shape function, X is the nodal coordinate, U is
the nodal displacement, VG is the nodal velocity, and ̂aG is the nodal
acceleration.Introducing Eq. (39) into Eq. (23) yields:

 ̂= + +a M K U C V UδW δ( )G
T

R c GT (40)

where M , KR, CC are the mass matrix, the rotation stiffness matrix and
the coriolis matrix, respectively. Note that the rotation stiffness plays
the role of a negative stiffness.

4.4. Equation of motions

The electromechanical equation of motion is formulated in matrix
form as:

   ̂+ + + − =K U DV C V Ma V FΘT G c G G E (41)

 + + =U C V QΘ 0T
P E (42)

where the total stiffness matrix and the damping matrix are, respec-
tively:

= + +K K K KT M G R (43)

= +D M Kα β T (44)
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5. Experimental setup

5.1. Testing system description

The experimental setup built to assess the dynamic behavior of the
rotational energy harvester is shown in Fig. 2.

The harvesting system is placed on a rigid frame that rotates at a
constant angular velocity with respect to its axis of rotation, which is
parallel to the longitudinal axis. The harvester device is mounted on the
hub at 55 mm from the axis of rotation, which is excited by a constant
rotation speed. A variable speed drive is used to control the speed of a
3-Phase Electric Motor of 0.37 KW (manufactured by Altium). An
Arduino board is used to read out the voltage signal in real-time, and
the selected communication protocol was Bluetooth (at 115,200 baud)
because it is available in almost every mobile device, and also in
computers. The proposed acquisition system has two main parts:
hardware and software. The hardware consists of the Arduino platform,
a Bluetooth receiver-transmitter and a notebook. In the case of acqui-
sition, the mechanical motion is converted through the piezoelectric
material into electrical energy. Those signals are acquired through the
analog input ports on the Arduino board, and then converted using the
internal analog-to-digital converter. It is important to note that the
Arduino board is energized by a 9 V battery due to the fact that this is
the first design of the energy harvester; in future works, our goal is to
remove the battery and convert the system into a proper (self-en-
ergized) energy harvesting device. As for the software, an application
programming interface (API) is developed to establish a starting/stop-
ping routine with the Bluetooth connection to save the acquired data
(100 samples per seconds). Note that in the experimental tests reported
in [20–26] data was acquired using wires connected to a slip ring.

5.2. Experimental test configuration

In this work, two devices are tested to validate our FE formulation
with the aim of getting insight into the electrical power generation,
natural frequencies and voltage time responses. First, a cantilever beam
with a mass at the free end is tested to verify its performance reliability
at different rotation speeds, as shown in Fig. 3. The cantilever structure
is mounted on the hub at 55 mm from the axis of rotation in the X
direction. The substrate is made of aluminum, and its dimensions are
25 mm× 0.5 mm× 79 mm. The MIDE piezoelectric sheet bonded to
the substrate has dimensions of 20.57 mm× 0.254 mm× 45.8 mm.
The tip mass is made of steel, with dimensions of
28 mm× 4 mm× 16 mm. The piezoelectric performance is analyzed
at low frequencies of rotation from 1 Hz to 5 Hz.

The second device is made of two beams with masses at the free

ends linked with a spring as shown in Fig. 4. The top beam structure is
made of aluminum, with dimensions of 25 mm× 0.5 mm× 79 mm; its
tip mass is made of steel, whose dimensions are
38 mm× 10 mm× 16 mm. The bottom beam structure is made of
steel, and with dimensions are 19 mm× 1 mm× 63 mm; its tip mass is
made of steel, with dimensions 45 mm× 2 mm× 45 mm. The piezo-
electric performance is analyzed at frequencies of rotation from 1 Hz to

Fig. 2. Experimental setup to test the rotational energy harvester.

Fig. 3. Cantilever piezoelectric rotating beam with a tip mass at the free end.

Fig. 4. Two piezoelectric rotating beams with a tip mass and a spring linked at the free
end.
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6 Hz. The device is mounted on the hub in a similar way to the previous
prototype. In all cases a load resistor of 10 kΩ was used due to a lim-
itation in the acquired 5 V voltage of (Arduino-based acquisition
system).

The aluminum, steel and spring properties and the material prop-
erties specified in the MIDE QP16N supplier data sheet are shown in
Table 1.

6. Results

In this section the results of the one-dimensional FE model are
compared with numerical simulations and experimental tests. Firstly,
the effect of rotation on the natural frequencies is compared with the
experimental results and a 3D shell FE model using commercial soft-
ware (Abaqus). Secondly, the voltage time response, the voltage gen-
eration and the power generation are compared with the experimental
results considering several rotation speeds.

Table 1
Material properties for aluminum, steel, spring and MIDE QP16N.

Aluminum MIDE QP16N Spring Steel

Young’s modulus 67 GPa Young’s modulus 67 GPa Stiffness 560 N/m Young’s modulus 210 GPa

Density 2700 kg/m3 Density 7800 kg/m3 Density 7850 kg/m3

Piezoelectric constant d31 −2.1 E + 2 pm/V
Capacitance 125 nF

Fig. 5. Natural frequencies at rotation speeds: (a) 1 Hz and (b) 2 Hz.

Fig. 6. Natural frequencies at rotation speeds: (a) 3 Hz and (b) 4 Hz.

Fig. 7. Natural frequencies at rotation speed: 5 Hz.
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Fig. 8. Voltage time response at 4 Hz: (a) Present formulation, (b) Experimental.
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6.1. Cantilever beam with a tip mass

6.1.1. Natural frequency validations
The first flexural mode for the non-rotating system is 18.50 Hz for

our FE model, 18.40 Hz for the experimental test and 18.47 Hz for the
Abaqus simulation. Figs. 5–7 show the normalized modal shapes and
frequency values for different rotation speeds comparing the results of
our FE model with the Abaqus 3D shell model. In the case of rotation,
the spin-softening effect is analyzed for different speeds from 1 Hz to
5 Hz (equivalent to 60–300 rpm). Thus, when this effect is activated
due to the centrifugal load, the natural frequencies of the rotating
system decrease with increasing rotation speed [1].

It can be observed that our FE model shows a good match with the
experimental results and the Abaqus simulation.

6.1.2. Time response
The generalized equations of motion are solved in time using

Newmark’s time integration method [37] to compare the voltage gen-
eration and the time response between the results of our FE model and

those of the experimental tests. Fig. 8 shows the voltage time response
at a rotation speed of 4 Hz (240 rpm) for 15 s approximately. As pre-
sented in this figure, the maximum voltage remains 0.1 V over the in-
terval.

A comparison between our FE model and the experimental results
for the voltage time response at 4 Hz (240 rpm) for 0.5 s approximately
is presented in Fig. 9. As expected, the time waveform response ob-
tained with the present numerical model is smoother in comparison
with the experimental results. This difference may be due to noise
fluctuations in the wireless acquisition process.

In energy harvesting, the voltage and power generation parameters
are usually analyzed to design an optimum energy harvester. Fig. 10
shows a comparison between the results of our FE model and the ex-
perimental test for voltage and power generation for a rotation speed
variation from 1 Hz to 5 Hz.

The maximum voltage versus rotating frequency occurs at 5 Hz
reaching 0.15 V, respectively. The maximum power obtained occurs at
the same rotating frequency (5 Hz) reaching 2.2 μW. This prototype is a
typical configuration of an energy harvester, and its analytical solution
can be easily found in the literature [21–24]. The aim of this example is
to calibrate the electromechanical parameters and study the perfor-
mance of our model before we evaluate a complex model. It can be
observed that the generation of energy increases with rotation speed,
and it will continue increasing until the resonance condition is satisfied
(see Fig. 7).

6.2. Two beams with a tip mass linked with a spring

6.2.1. Natural frequency validations
When a more complex geometry is required, it is not possible to

formulate an analytical solution [26]. For that reason, our proposed FE
formulation is useful for modeling complex piezoelectric devices. The
first flexural mode for the non-rotating system is 14.07 Hz for our FE
model, 14.06 Hz for the experimental test and 14.10 Hz for the Abaqus
simulation. The normalized modal shapes and frequency values for
rotation speeds from 1 Hz to 6 Hz (60–360 rpm) are shown in
Figs. 11–13. In order to obtain convergent results, the FE model built
with Abaqus is discretized using S4R shell elements with 4-nodes, re-
duced integration to avoid shear and membrane locking and hourglass
control. The element type SPRING is associated with displacements
degrees of freedom, these variables are the force and relative dis-
placement. The mesh contains 659 shell elements and 1 spring element,
and the total CPU time to calculate the rotating natural frequencies is
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Fig. 9. Voltage time response for the FE model and experimental test at 4 Hz.
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Fig. 10. (a) Voltage generation and (b) Power generation for a rotation speed variation from 1 Hz to 5 Hz.
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80 s. The analysis ∗STATIC is used in Abaqus as the first step of the
calculation, together with the option NLGEOM to consider the non-
linear geometric effect in the pre-loaded state. Then, in a second step,
the procedure ∗Frequency is used for the dynamic analysis of the
structure. On the other hand, our FE model is discretized using 24 beam

elements and 1 spring element, and the total CPU time is significantly
reduced compared to Abaqus, yielding in our case only 0.12 s.

As expected, the natural frequency for the rotating systems de-
creases with increasing rotation speed. Our FE model shows good
agreement with the experimental results and Abaqus simulation. It

Fig. 11. Natural frequencies at rotation speeds: (a) 1 Hz and (b) 2 Hz.

Fig. 12. Natural frequencies at rotation speeds: (a) 3 Hz and (b) 4 Hz.

Fig. 13. Natural frequencies at rotation speeds: (a) 5 Hz and (b) 6 Hz.
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should be noted that the frequency decrease is more pronounced in this
case than in the single-beam device.

6.2.2. Time response
Fig. 14 shows the voltage time response at a rotation speed of 6 Hz

(360 rpm) for 20 s approximately. The maximum voltage remains
0.21 V over the interval. The prediction of the generated voltage of our
FE model is very good compared with the experimental results. As for
the computational cost, the elapsed CPU time to solve the time response
is 1.73 s.

Fig. 15 presents the voltage time response at 6 Hz (360 rpm) for 1 s
approximately (from 18.9 to 19.8 s) for our FE model and the experi-
mental test, which gave a maximum voltage of 0.21 V approximately. It
can also be observed that the numerical result gave a similar time
waveform response compared with the experimental one.

The peak values of voltage and power output versus the rotation
speed from 1 Hz to 6 Hz (60–360 rpm) are presented in Fig. 16.

The results obtained with this FE prototype and the cantilever beam
are similar, with the electric generation increasing with rotation speed.

The figures above show that the results obtained for our FE model have
a good correlation from 1 Hz to 6 Hz rotation speed with respect to the
experimental results. The maximum voltage and power generation
versus rotating frequency occurs at 6 Hz reaching 0.225 V and 5.5 μW,
respectively.

7. Conclusions

The main contribution of this paper is providing a one-dimensional
finite element capable of modeling three-dimensional rotational energy
harvesting devices. A geometrically nonlinear finite element with linear
interpolation was formulated. The finite element was formulated with
six mechanical degrees of freedom and one electrical degree of freedom
per node. The element matrices were obtained from the Timoshenko
beam theory assuming a linear displacement field and a nonlinear strain
field in the mechanical domain. As for the electrical domain, a first
order theory was formulated. D’Alembert principle was used to derive
the electromechanical equilibrium equations of motion. In order to
validate our FE formulation, we built two energy harvesting devices to
be tested with the aim of getting insights into the generation of elec-
trical power, natural frequencies and time responses. The first proto-
type to be tested was a cantilever beam with a mass at the free end. This
prototype was used to calibrate the electromechanical parameters and
analyze the performance of our model. Then a geometrically complex
prototype was tested. It consisted of two beams with a mass at the free
end linked by a spring. Regarding the experimental tests, an Arduino
board with Bluetooth communication protocol (at 115,200 baud) was
used to read out the voltage signal from the piezoelectric element in
real-time, since Bluetooth receivers are available in almost every mo-
bile device and wireless communication prevents cable connections
which may interfere with the testing system. These signals were ac-
quired through the analog input ports on the Arduino board, and sub-
sequently converted using the internal analog-to-digital converter. An
application programming interface was developed to establish the
Bluetooth connection. A starting/stopping routine of 100 samples per
second was set to save the acquired data. The rotating and non-rotating
natural frequencies of our FE model were compared with Abaqus si-
mulations and the experimental results. The voltage time signals and
power generations of our FE model were compared with the experi-
mental results. The results of our FE model show good accuracy with
respect to the experimental results and Abaqus simulations. This work
develops, analyzes and verifies a one-dimensional finite element

18.9 19 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
VOLTAGE

V
o

lt
ag

e 
(V

)

Time (s)

Present
Experimental test (360 RPM)

Fig. 15. Voltage time response for the FE model and the experimental test at 6 Hz.
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Fig. 16. (a) Voltage generation and (b) Power generation for a rotation speed variation from 1 Hz to 6 Hz.

J.M. Ramírez et al. Engineering Structures 153 (2017) 136–145

144



capable of predicting the dynamical behavior of three-dimensional ro-
tational energy harvesters. In future works, our goal is to develop a
more complex rotational energy harvester to investigate the power
generation.
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