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Abstract. In this contribution we study mathematical properties of scattering solutions of Schrödinger-
type equations with nondecaying, outgoing type, driven terms. We analyze in some details the two-body
frame, where an analytical treatment is possible, and find how the scattering solution is expected to con-
tain a beating type structure. The analytical formulation is first presented, and then fully and successfully
confirmed with two numerical implementations: the Exterior Complex Scaling and the Generalized Stur-
mian Functions methods. Our results illustrate the underlying mathematical structure that can be found
in, for example, the photoionization of atoms or molecules, in the case when several photons are absorbed
or in second order calculations for a single photon absorption. A test case within the three-body frame is
also presented, illustrating numerically the presence of beat structures in separately the single and double
continuum channels.

1 Introduction

The two-body quantum scattering equation is often dis-
cussed in atomic physics textbooks [1,2] considering a
right hand side (RHS) composed of a short ranged po-
tential and a stationary wave as an unperturbed (or pre-
pared) state. Formal and technical difficulties appear if
the potential in the RHS has a Coulomb tail or, worse,
if it is a constant value, in combination with a station-
ary wave. However, if the RHS is composed of a constant
value potential times a function with outgoing asymptotic
behavior, the problem is well posed, and can be analyt-
ically studied and numerically solved as shall be demon-
strated here.

As detailed below, in atomic and molecular scatter-
ing physics, equations with nondecaying sources may ap-
pear. Whether in two or three-body problems, one may
be faced with coupled non-homogeneous Schrödinger-like
equations with equal or unequal energy. Two features are
noteworthy. First, as observed in other similar mathemati-
cal/physical situations, the solution of such a system may
exhibit beat structures; to our knowledge, this interest-
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ing phenomenon has not been discussed previously within
scattering studies. Second, the extraction of physical in-
formation (i.e. physical observables such as scattering am-
plitudes and thus, finally, cross sections that can be com-
pared to experimental data) is not at all obvious because
the underlying mathematical structure differs from that of
the standard scattering theory. The main goal of this ar-
ticle is to study these two features: the presence and char-
acterization of these beating-type structures as well as the
extraction of the relevant scattering information. We also
support our mathematical findings with numerical exam-
ples for two-body and three-body cases. To illustrate the
emerging beating-type solutions, we shall use the Gener-
alized Sturmian Functions (GSF) method [3]; thus, a sec-
ondary aim of the present paper is to show that GSF, used
successfully to solve more traditional scattering problems,
can easily solve also situations involving Schrödinger-like
differential equations with nondecaying driven terms.

In order to show that such coupled equations see real
applications in atomic and molecular physics, consider a
general scattering Schrödinger equation [H−E]Ψfull = 0;
without great restrictions one may assume that H =
H0 + λW where H0 is a simplified Hamiltonian, W
a perturbation and λ is a parameter whose numerical
value is finally set to 1. Suppose that the system is in
a given initial, prepared, state Ψ (0), of energy E0, that
solves exactly [E0 −H0]Ψ (0) = 0. As a pure three-body
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example, we have electron-hydrogen inelastic scattering,
where Ψ (0) would be a continuum state (for the incom-
ing electron) times a bound hydrogen state [4–7]. One
way to deal with such problems is to make the ansatz
Ψfull = Ψ (0) +Ψsc [1,8] with Ψsc containing all the infor-
mation on the scattering dynamics. The inclusion of the
parameter λ associated to W suggests writing the solution
as an expansion

Ψsc =
∞∑

n=1

λnΨ (n)
sc . (1)

Including also the initial state equation, the successive
orders Ψ

(n)
sc satisfy the following system of differential

equations

[E0 −H0]Ψ (0) = 0, (2a)

[E1 −H0]Ψ (1)
sc = WΨ (0), (2b)

[E2 −H0]Ψ (2)
sc = WΨ (1)

sc , (2c)
...

[En −H0]Ψ (n)
sc = WΨ (n−1)

sc , (2d)

where the notation Ei (i > 1) is specified in two examples
hereafter.

As a first example, consider an electron scattering
problem where W is a sufficiently short-range interaction
potential. In this case, for the projectile-target system all
energies Ei of equations (2) are equal to the initial to-
tal energy E0. Starting from a known Ψ (0) composed of
an incident-projectile momentum eigenstate and a target
bound state, the first order scattering equation (2b) for the
target subsystem has a driven term (the RHS) that is short
ranged because of the bound nature of the initial target
state: a scattering solution Ψ

(1)
sc with pure outgoing be-

havior can be obtained. One should be able to proceed to
the next order equations although they may present some
numerical difficulties; indeed, the RHS, WΨ

(n−1)
sc (n ≥ 2),

is more spread out in space – and oscillating– since it con-
tains target scattering states, but is still short-ranged be-
cause ofW . A structurally similar set of equations is found
when studying multiphoton ionization by a laser (both
types, pulsed and continuous), i.e., with the perturbation
coming from the laser instead of an interparticle inter-
action. Considering up to a two-photon-capture requires
the solution of equations (2a)–(2c) with E2 �= E1 �= E0.
The operator W in this physical scenario corresponds to
the dipole field. In a recent investigation of the two-photon
ionization of hydrogen by a laser pulse [9,10] it was indeed
observed that the numerical resolution of the coupled non-
homogeneous equations, although feasible, requires special
attention. In this case, the finite duration of the pulse ends
up shaping a limited-extension RHS. The presented ion-
ization probability showed good agreement with a sepa-
rate time-dependent calculation. When considering two-
photon ionization by a continuous laser source, the RHS
is spatially non-vanishing [10]: a beating type second or-
der function ensues, which is more difficult to calculate
and to extract ionization amplitudes from.

A two-active-electron example is found in atomic or
molecular photoionization by absorption of several suc-
cessive photons of energy �ω. In the resulting Dalgarno-
Lewis driven equations (see, e.g., Refs. [11,12] for two-
photon absorption) the Ei are not equal. In equation (2b)
E1 = �ω − E0 − Up (where Up is the ponderomotive
energy), and the dipole operator W acts upon an initial
target bound state Ψ (0); the solution Ψ

(1)
sc corresponding

to the ejection of an electron takes outgoing behavior.
With an absorption of a further photon, the driven equa-
tion (2c), with a different energy E2 = 2�ω − E0 − Up,
has a driven term which has an outgoing behavior. By
iteration, with absorption of n photons, one searches out-
going solutions to driven equations with energies En =
n�ω − E0 − Up. For such equations the main difficulty lies
in the fact that the driven term is not spatially confined,
since the long-but-finite nature of the laser is not taken
into account, and therefore the RHS continues to con-
tribute at all radial coordinate values. This introduces the
same challenges mentioned above for the single-electron
analog: first, the scattering wave function numerical cal-
culation requires additional care, and second, the transi-
tion amplitude evaluation becomes less clear from an an-
alytical standpoint. The complexities are further stressed
due to the inherently more difficult nature of a calculation
with two active electrons. Examples of experimental stud-
ies have been presented for sequential and nonsequential
multiphoton ionization of helium [13,14] and neon [14,15].
Even when the first photon is not energetic enough to
produce double continuum, the second order driven term
would be nonvanishing for large values of either one elec-
tron radial coordinate. The corresponding wave function
for these configurations is then expected to contain beat-
ing type oscillations.

In order to study the consequences of nonvanishing
driven terms that may appear in calculations of real phys-
ical two- and three-body problems, we devised some tests,
in the form of two coupled equations as (2b)–(2c) with
either E1 = E2 or E1 �= E2. The two-body case allows for
analytical manipulations and presents the simplest frame
on which to expose the underlying mathematical struc-
ture. We are aware, however, that two-body problems have
lost relevance, presenting little numerical challenge for
the computational resources available nowadays. There-
fore, we derive here the semi-analytical expressions in the
more tractable two-body case, and then proceed with a
solely numerical illustration for the more complex three-
body frame. Knowledge of the underlying mathematical
structure extending to the three-body case can hint more
efficient ways of extracting the transition amplitudes from
the wave function itself.

For the two-body case, the chosen benchmark we con-
sider is a set of two generalized scattering equations, with
one of them depending on the result of the other one. On
the left hand side (LHS) of both equations we use the fa-
miliar Coulomb potential, since its Green operator expres-
sion is known and allows us to carry out analytical studies.
The formal solution of the second one involves an integra-
tion of a nondecaying integrand. Since that integrand has
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outgoing-wave type behavior, the integration can still be
performed via an integrating factor as in reference [16].
We obtain semi-analytical results that allow one to ob-
serve the emerging nature of the solutions, and we com-
pare and validate them with two alternative numerical
approaches. The first one is a two-body Exterior Complex
Scaling (ECS) implementation with high order finite dif-
ferences for arbitrary (real or complex) radial grids. Under
the ECS approach [17], the scattering equation is solved
using a radial coordinate that lies on the complex plane.
Beyond a given radius, the radial coordinate follows a con-
tour that departs from purely real values to the positive
half plane, and this reduces any type of outgoing wave to
an exponentially damped oscillation. Thus, a zero can be
enforced on the solution at the largest radius considered
in the calculation, independently of the particular asymp-
totic energy. The second one is the GSF method [3] which
has been proven to be a cost-efficient and adaptable tool
to study a variety of single and double continuum collision
processes such as electron impact ionization [18–20] and
photoionization [21,22]. By numerically solving the pro-
posed benchmark equations, we shall show that GSF may
solve scattering problems also with nondecaying driven
terms.

Finally, in some future investigation, we intend to
use the GSF approach to tackle numerically the inher-
ently more complex three-body problem with nondecay-
ing sources. This would appear, for example, in a second
order calculation of the double ionization of helium by
fast charge projectiles [18,23–25]. In these references, the
system of equations (2a)–(2d) is proposed. For relatively
high incident electron energies, the authors solved the first
order equation (2b) – which is equivalent to a first order
Born approximation – and made a successful comparison
with experimental results [26,27]. To investigate electron
or proton impact experimental data at lower incident en-
ergy regimes (for example, [27,28]), one would need to
solve the second order equation (2c), with a nonvanishing
driven term. The GSF method has very good scaling prop-
erties when extended to the three-body context, requiring
comparatively moderate computational resources [22,29].
Here we limit ourselves to the resolution of a coupled sys-
tem of equations (similar to Eqs. (2b)–(2c)) within a s-
wave approach of the three Coulomb interactions. As for
the two-body case, the second equation contains a driven
term with an outgoing type behavior. The GSF method
is employed to illustrate numerically that the beat phe-
nomenon can present itself in three-body problems. Since
it appears in both single and double continuum channels,
the analysis is clearly more intricate.

The outline of the paper is as follows. In Section 2 we
define the mathematical problem and provide general ana-
lytical expressions for the solution of the two-body driven
equation. Section 3 is devoted to show numerical examples
using the theory derived in the previous one. We further
support those results with two independent numerical ap-
proaches. A test three-body case is presented and illus-
trated numerically in Section 4. Concluding remarks are
provided in Section 5.

Atomic units (� = e = me = 1) are used unless other-
wise stated.

2 Statement of the problem

Before giving the set of two non-homogeneous equations
we want to explore, let us recall how a driven equation
comes about when describing the scattering of two parti-
cles of reduced mass μ via a central potential VL(r). We
begin with the stationary Schrödinger equation

[
− 1

2μ
∇2 + VL(r) − E

]
Ψ(r) = 0, (3)

and use a partial wave decomposition in terms of angular
momentum eigenstates:

Ψ(r) =
∑

l,m

Y m
l (r̂)

ψl(r)
r

, (4)

each function ψl(r) satisfying the radial equation
[
− 1

2μ
d2

dr2
+
l (l + 1)
2μr2

+ VL (r) − E

]
ψl (r) = 0. (5)

For scattering studies, one may split each partial wave
ψl (r) into two terms [2,30]:

ψl(r) = φl(r) + ψ+
sc,l(r). (6)

The first, φl(r), is a continuum eigenstate of a given, ini-
tial, potential U(r) (e.g., U(r) = 0 for a plane wave):

[
− 1

2μ
d2

dr2
+
l (l+ 1)
2μr2

+ U (r) − E

]
φl (r) = 0. (7)

The scattering function, ψ+
sc,l(r), here taken with outgoing

(+) behavior, solves the following driven equation
[
− 1

2μ
d2

dr2
+
l (l + 1)
2μr2

+ VL (r) − E

]
ψ+

sc,l (r)

= [U(r) − VL (r)]φl (r) ≡ VR(r)φl (r) , (8)

where the label R on the RHS makes it clear that the
potential VR(r) is not the same as the one on the LHS
(labelled L). Mathematically, the solution depends very
much on the nature of the driven term. In the case of
a Coulomb potential VL(r) and a confined source (any
combination of terms written as a power of r times an
exponential decay), a detailed study has been presented
in reference [31].

In this work we want to investigate the situation with
a non-confined source. For this purpose, we consider a
system of two coupled driven equations similar to (8):

[
− 1

2μ
d2

dr2
+
l1 (l1 + 1)

2μr2
+ V

(1)
L (r) − E1

]
ψ

(1)
sc,l1

(r)

= −V (1)
R (r)ϕl0 (r) , (9a)

[
− 1

2μ
d2

dr2
+
l2 (l2 + 1)

2μr2
+ V

(2)
L (r) − E2

]
ψ

(2)
sc,l2

(r)

= −V (2)
R (r)ψ(1)

sc,l1
(r) , (9b)
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each with its energy Ei and angular momentum li (i =
1, 2). In the first equation, we take V (1)

R (r) that asymp-
totically acquires a constant value, and the orbital ϕl0 (r)
is short ranged, decaying exponentially. Consequently,
ψ

(1)
sc,l1

(r) reaches its outgoing asymptotic behavior beyond
a finite range. In the second one, the orbital is a pure out-
going solution of the first equation, and we consider a
nonvanishing V (2)

R (r) that asymptotically also acquires a
constant value. Consequently, the scenario for ψ(2)

sc,l2
(r) is

not the same as for ψ(1)
sc,l1

(r), since the driven term in (9b)
contains asymptotically an outgoing type function. This
fact makes the study of the second driven equation math-
ematically more difficult, with the asymptotic conditions
of ψ(2)

sc,l2
(r) not easily determined.

For compactness in the discussions ahead, let us de-
fine the whole RHS of equation (9b) as g (γ1, k1, r) =
−V (2)

R (r)ψ(1)
sc,l1

(r), while introducing the Sommerfeld pa-
rameters γi = −Zi/ki with ki =

√
2μEi, i = 1, 2. We

denote
ε± (γ, k, r) = e±i[kr−γ log(2kr)], (10)

the distorted (eikonal) spherical waves.
In this work we deal with the specific case of a pure

Coulomb type V (2)
L (r) = Z2

r , for which the Green operator
analytic form is well-known [32,33]:

Gl2(r, r
′) =

2
W
Fl2 (Z2, k2, r<)H+

l2
(Z2, k2, r>) , (11)

where r< (r>) indicates the smaller (larger) of r and r′.
The Wronskian

W = Fl2 (Z2, k2, r)
dH+

l2

dr
(Z2, k2, r)

−H+
l2

(Z2, k2, r)
dFl2

dr
(Z2, k2, r) (12)

is coordinate independent [33], and can be evaluated in the
asymptotic regime, where the analytical expressions of the
regular Coulomb function Fl (Z2, k2, r) and the outgoing-
type Coulomb function H+

l (Z2, k2, r) are simpler to use.
The formal solution of equation (9b) contains the

homogeneous regular solution, Fl (Z2, k2, r), plus a non-
homogeneous part which can be obtained via the Green
operator:

ψ
(2)
sc,l2

(r) = A0Fl2 (Z2, k2, r)

+
∫ ∞

0

Gl2 (r, r′) g (γ1, k1, r
′) dr′. (13)

For the purposes of the present investigation we need a
function ψ

(2)
sc,l2

(r) that possesses outgoing flux, i.e., par-
ticle emission. Since the Green operator does enforce the
proper emissive behavior on the particular solution, any
contribution from the regular solution would introduce an
unwanted incoming or stationary flux; we therefore set
A0 = 0 hereafter. The formalism could be naturally ex-
tended to treat stationary components; this, however, goes

beyond the scope of the article. With the Green operator
form (11), the integral representing the non-homogenous
solution (13) is split into two intervals

ψ
(2)
sc,l2

(r) =
2
W
H+

l2
(Z2, k2, r)

[ ∫ r

0

Fl2 (Z2, k2, r
′)

× g (γ1, k1, r
′) dr′

]
+

2
W
Fl2 (Z2, k2, r)

×
[ ∫ ∞

r

H+
l2

(Z2, k2, r
′) g (γ1, k1, r

′) dr′
]
. (14)

Let us study the asymptotic behavior of (14). For values
of r > R, with R large enough, the regular and irregular
solutions behave as [34]

Fl (Z2, k2, r) −→
r>R

A+ε
+(γ2, k2, r) +A−ε−(γ2, k2, r)

(15)

H+
l (Z2, k2, r) −→

r>R
AHε

+(γ2, k2, r), (16)

with A± and AH complex valued amplitudes that can be
easily computed. For the present investigation we consider
the case of a strictly outgoing type RHS,

g (γ1, k1, r) −→
r>R

Agε
+ (γ1, k1, r) . (17)

For the range r > R, we replace these asymptotic behav-
iors in (14) and obtain

ψ
(2)
sc,l2

(r) −→
r>R

2
W
AHε

+(γ2, k2, r)

×
[∫ R

0

Fl2 (Z2, k2, r
′) g (γ1, k1, r

′) dr′

+
∫ r

R

(
A+ε

+(γ2, k2, r
′) +A−ε−(γ2, k2, r

′)
)

×Agε
+(γ1, k1, r

′)dr′
]

+
2
W

[A+ε
+(γ2, k2, r) +A−ε−(γ2, k2, r)]

×
[∫ ∞

r

AHε
+ (γ2, k2, r

′)Agε
+(γ1, k1, r

′)dr′
]
.

(18)

We see the appearance of integrals involving the product
of two waves εs1 (γ1, k1, r

′) and εs2 (γ2, k2, r
′) with s1 and

s2 taking the values ±1 (outgoing or incoming type waves,
respectively). For convenience we add an exponential de-
cay e−λr (and an arbitrary r power which may come handy
if one were to deal with a Coulomb potential V (2)

R (r) on
the RHS), and define a class integral which can be worked
analytically. The resulting closed form reads:

Θ
(s2,s1)
λ,p (γ2, k2, γ1, k1, r)

=
∫ ∞

r

εs2 (γ2, k2, r
′) εs1 (γ1, k1, r

′) r′
p

e−λr′
dr′ (19a)

= (2k2)
−is2γ2 (2k1)

−is1γ1 r1−νEν(z̃r), (19b)
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with ν= is2γ2+is1γ1−p and z̃=−(is2k2+is1k1 −λ), and
involves the exponential integral [35]

Eω(z) =
∫ ∞

1

e−zt

tω
dt. (20)

In terms of these functions, the asymptotic behavior (18)
becomes:

ψ
(2)
sc,l2

(r) −→
r>R

2
W
AHε

+(γ2, k2, r)

×
∫ R

0

Fl2 (Z2, k2, r
′) g (γ1, k1, r

′) dr′

+
2
W
AHε

+(γ2, k2, r)A+Ag

×Θ
(+,+)
0,0 (γ2, k2, γ1, k1, R)

+
2
W
AHε

+(γ2, k2, r)A−Ag

×
[
Θ

(−,+)
0,0 (γ2, k2, γ1, k1, R)

−Θ
(−,+)
0,0 (γ2, k2, γ1, k1, r)

]

+
2
W

[
A−ε−(γ2, k2, r)

]
AHAg

×Θ
(+,+)
0,0 (γ2, k2, γ1, k1, r) . (21)

For the analysis which follows we require the limiting ex-
pressions of Eω (z) for small and large argument z [35]:

Eω (z) −→
|z|→0

Γ (1 − ω) zω−1 − 1
1 − ω

[1 + O(z)] (22)

Eω (z) −→
|z|→∞

1
z
e−z

[
1 + O

(
1
z

)]
, (23)

which for Θ(s2,s1)
λ,p (γ2, k2, γ1, k1, r) imply:

Θ
(s2,s1)
λ,p (γ2, k2, γ1, k1, r) −→

r→0
(2k2)

−is2γ2 (2k1)
−is1γ1

×
[
Γ (1 − ν) z̃ν−1 − r1−ν

1 − ν

]
(24)

Θ
(s2,s1)
λ,p (γ2, k2, γ1, k1, r) −→

r→∞

− εs2 (γ2, k2, r) εs1 (γ1, k1, r) e−λrrp

is2k2 + is1k1 − λ
. (25)

Notice that for λ = 0 and s1s2 = −1, the two limits do
not apply in the k1 = k2 case.

Assume first that k1 �= k2. Making use of the limit for
large r, i.e. using (25), we rewrite the asymptotic behav-
ior (21) as

ψ
(2)
sc,l2

(r) −→
r→∞ A+

2 ε
+(γ2, k2, r) + A+

1 ε
+(γ1, k1, r), (26)

where

A+
2 =

2
W
AH

[∫ R

0

Fl2 (Z2, k2, r
′) g (γ1, k1, r

′) dr′

+AgA+Θ
(+,+)
0,0 (γ2, k2, γ1, k1, R)

+AgA−Θ
(−,+)
0,0 (γ2, k2, γ1, k1, R)

]
(27a)

A+
1 =

2
W

2ik2AHA−Ag

k2
2 − k2

1

. (27b)

Expression (26) shows clearly that ψ
(2)
sc,l2

(r) behaves
asymptotically as a superposition of two outgoing waves
ε+ (γ1, k1, r) and ε+ (γ2, k2, r), associated to different en-
ergies E1 and E2 with their respective amplitudes A+

1 and
A+

2 . If we take the limit (25) also with respect to R, A+
2

simplifies into

A+
2 =

2
W
AH

[ ∫ R

0

Fl2 (Z, k2, r
′) g (γ1, k1, r

′) dr′

+ i
AgA+

k2 + k1
ε+ (γ2, k2, R) ε+ (γ1, k1, R)

− i
AgA+

k2 − k1
ε− (γ2, k2, R) ε+ (γ1, k1, R)

]
, (28)

which requires only an integration over the non-
asymptotic part.

The evaluation of Θ
(+,+)
λ,p (γ2, k2, γ1, k1, r) are

performed at radii where the exact Coulomb
functions Fl2(Zi, ki, r) and Hl2(Zi, ki, r) can be
matched by weighted ε+ (γi, ki, r) and ε− (γi, ki, r).
From equation (25) it is clear that the functions
Θ

(+,+)
0,0 (γ2, k2, γ1, k1, r) behave in a bound, oscil-

latory, fashion as r grows. The same applies for
Θ

(−,+)
0,0 (γ2, k2, γ1, k1, r) which possesses either incoming

or outgoing behavior, depending on which momentum is
larger.

Let us now consider the delicate case k1 = k2. The in-
tegral Θ(−,+)

0,0 (γ2, k2, γ1, k1, r) is troublesome since both
ν and z̃ vanish. Clearly divergencies appear in expres-
sions (24) (in the r-independent first term) and in (25).
To deal with this situation, we make use of the fact that
equation (21) involves the difference

Θ
(s2,s1)
λ,p (γ2, k2, γ1, k1, R) −Θ

(s2,s1)
λ,p (γ2, k2, γ1, k1, r)

= (2k2)
−is2γ2 (2k1)

−is1γ1
[
R1−νEν (z̃R) − r1−νEν (z̃r)

]

(s2 = −1, s1 = 1). (29)

We then set k2 = k1 + ε and take the limit ε → 0 after
using (24) :

Θ
(s2,s1)
λ,p (γ2, k2, γ1, k1, R) −Θ

(s2,s1)
λ,p (γ2, k2, γ1, k1, r)

= (2k2)
−is2γ2 (2k1)

−is1γ1

[
r1−ν

1 − ν
− R1−ν

1 − ν

]
. (30)

http://www.epj.org


Page 6 of 11 Eur. Phys. J. D (2017) 71: 54

The subtraction played a key role here, cancelling the
would-be divergent terms in the limit ε→ 0. Setting p = 0
and λ = 0, we have ν = 0 and therefore equation (30) has
a linear growth in r. From equation (21) we get the valid
description for the asymptotic behavior

ψ
(2)
sc,l2

(r) −→
r>R

2
W
AHA−Agε

+(γ2, k2, r) [r + f(R)] , (31)

that is to say a well defined solution which oscillates as dic-
tated by k1 = k2, but grows linearly in amplitude (the r
term quickly outgrows the others collected above in f(R)).
This linear growth would not be present while calculating
photoionization by lasers with a single frequency, since the
second order energy would be strictly different from the
first order one. However, a k1 ≈ k2 situation can be en-
countered when working numerically in two-photon pho-
toionization with pulses which have a whole distribution
of frequencies.

3 Numerical implementations and examples

To illustrate the previous analytical descriptions, we con-
sider now some concrete examples for equation (9b), for
which we shall provide the outgoing solution ψ(2)

sc,l2
(r). We

solve the equation, within a finite domain, with three in-
dependent approaches.

The first approach is based on the ψ(2)
sc,l2

(r) analytical
results outlined in the previous section. For r > R, we
apply directly equation (26) with (27b) and (28) (when
k1 �= k2). For r ≤ R, on the other hand, we rewrite equa-
tion (14) as:

ψ
(2)
sc,l2

(r) =
2
W
H+

l2
(Z2, k2, r)

×
[∫ r

0

Fl2 (Z2, k2, r
′) g (γ1, k1, r

′) dr′
]

+
2
W
Fl2 (Z2, k2, r)

×
[∫ R

r

H+
l2

(Z2, k2, r
′) g (γ1, k1, r

′) dr′

+
∫ ∞

R

AHε
+ (γ2, k2, r

′)Agε
+ (γ1, k1, r

′) dr′
]
.

(32)

The integrations involving the exact (nonasymptotic)
Coulomb functions Fl2 (Z2, k2, r) and Hl2 (Z2, k2, r) are
performed numerically. This semi-analytical approach re-
quires knowledge of the regular and irregular solutions of
the homogeneous version of equation (9b); for the chosen
Coulombic V

(2)
L (r), both are well known (for other po-

tentials, both regular and irregular solutions have to be
obtained in some other way).

The second method employed in this work is com-
pletely numerical in nature. It relies on a high–order fi-
nite difference scheme with arbitrary radial grids. For a

correct imposition of the, in principle not well established,
boundary conditions, the radial grid is chosen to lie on a
complex contour. This generates an exponentially damped
solution for radii larger than the point of rotation to the
complex plane. The implementation profits from the well
established capabilities of the ECS method, which has seen
many applications within the realm of atomic physics in
the past two decades [17].

The third, also numerical, approach is based on the
use of GSF [3]. We wish to show that the GSF method,
developed within our research group, is a viable option
to solve also a not so straightforward two-body chal-
lenge, with a nondecaying source. The GSF, noted Snl(r),
are eigenfunctions satisfying the following linear, non-
homogeneous, equation [3]

[
− 1

2μ
d2

dr2
+
l (l + 1)
2μr2

+ U(r) − Es

]
Snl(r)

= −βnl V(r)Snl(r), (33)

with βnl the eigenvalues. In equation (33), U(r) and V(r)
are respectively the auxiliary and generating potentials.
The former typically includes the same Coulombic tail of
the problem under scrutiny, while the latter dictates the
radial domain in which the basis oscillations will be local-
ized. For the present work, we chose a unitary square well
type V(r), vanishing for r > Rs. The radius Rs thus de-
fines the radial domain where the basis is linearly indepen-
dent (beyond Rs all the basis elements are proportional
to one another). The energy Es, though arbitrary, is gen-
erally chosen to match the problem energy. This makes
for a very efficient basis set, because it matches or ap-
proximates the asymptotic conditions of the problem at
hand. In the present contribution we use GSF with purely
outgoing type asymptotic behavior, noted S+

nl(r), since
equation (9b) represents a particle emission. For the solu-
tion ψ

(2)
sc,l2

(r) of this equation, we propose an expansion
in terms of such a GSF basis set:

ψ
(2)
sc,l2

(r) =
Ns∑

n=1

anl2S
+
nl2

(r). (34)

Introducing it into equation (9b) and making use of (33),
we are left with:

Ns∑

n=1

anl2

(
V

(2)
L (r) − U (r) − βnl2V (r) − (E2 − Es)

)

× S+
nl2

(r) = −V (2)
R (r)ψ(1)

sc,l1
(r) . (35)

The projection of (35) onto every basis element S+
n′l2 (r)

yields a linear system in the, yet to be determined, coeffi-
cients anl2 :

Ha = b, (36)
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A+
1 =

ψ
(2)
sc,l2

(R1)ε
+(γ2, k2, R2) − ψ

(2)
sc,l2

(R2)ε
+(γ2, k2, R1)

ε+(γ1, k1, R1)ε+(γ2, k2, R2) − ε+(γ2, k2, R1)ε+(γ1, k1, R2)
, (39a)

A+
2 =

ψ
(2)
sc,l2

(R2)ε
+(γ1, k1, R1) − ψ

(2)
sc,l2

(R1)ε
+(γ1, k1, R2)

ε+(γ1, k1, R1)ε+(γ2, k2, R2) − ε+(γ2, k2, R1)ε+(γ1, k1, R2)
, (39b)

where matrix H and vector b elements are given by:

Hn′n =
∫ ∞

0

drS+
n′l2 (r)

[
V

(2)
L (r) − U (r)

− βnl2V (r) − (E2 − Es)
]
S+

nl2
(r) , (37)

bn′ = −
∫ ∞

0

drS+
n′l2 (r) V (2)

R (r)ψ(1)
sc,l1

(r) . (38)

Notice that the projection is not conjugated [3]. The linear
system is solved with the routine ZGESV of the LAPACK
library [36].

The calculation of the integrals (37) and (38), requires
some special attention. While they are formally defined
from zero to infinity, it is common in numerical appli-
cations to truncate the integration range at a certain
large radius Rs. In our case, since the asymptotic behav-
ior of the integrand is well-known from Rs > R to ∞,
the remainder can be integrated analytically using expres-
sion (19a). This idea was previously explored by Randazzo
et al. [29], where the authors applied it to the overlapping
integrals between GSF elements in the case of a three-
body problem. In the present work, we needed to use this
procedure for both equations (37) and (38). After this ana-
lytical tuning, the GSF results were in excellent agreement
with the other two methods, as will be seen hereafter.

From expressions (27a) (or its simplified version (28))
and equation (27b), one can evaluate amplitudes A+

1 and
A+

2 without having to actually calculate ψ
(2)
sc,l2

(r). The
challenge would go no further than the evaluation of a
finite range integral and a few eikonals. However, if one
wishes to use a given trusted method providing ψ(2)

sc,l2
(r),

the amplitudes A+
1 and A+

2 can be extracted from the
following formulae:

see equation (39a) and (39b) above
where the evaluation is made at some given R1 and R2

values in the asymptotic regime.
We begin by generating the solution ψ(1)

sc,l1
(r) of equa-

tion (9a) with the following RHS: we have taken an orbital
ϕl0(r) being the third Coulomb bound state with zero an-
gular momentum (l0 = 0) and a 2 a.u. core charge, and
V

(1)
R (r) = 1 for all radii. On the LHS we have chosen an

energy E1 = 2.21 a.u., an angular momentum l1 = 1, and
a Coulomb potential V (1)

L (r) = − 1
r . The function ψ(1)

sc,l1
(r)

was obtained with the GSF and ECS approaches alike, the
results being numerically identical.

Having ψ(1)
sc,l1

(r), we then proceeded with calculating

the solution ψ(2)
sc,l2

(r) of equation (9b), setting for the pur-

pose V
(2)
R (r) = 1, V (2)

L (r) = − 1
r , E2 = 3.51 a.u. and

Fig. 1. Real (top panel, solid, black line) and imaginary (bot-

tom panel, dashed, red line) parts of ψ
(2)
sc,l2

(r) with E1 =
2.21 a.u., l1 = 1, E2 = 3.51 a.u., and l2 = 2. Since GSF, an-
alytical and ECS results are indistinguishable, only the GSF
data are shown.

l2 = 2. The three approaches produced indistinguishable
scattering functions, so we plotted in Figure 1 only the
GSF result obtained with Ns = 200 basis functions in
a Rs = 140 a.u. domain. The solution ψ

(2)
sc,l2

(r) clearly
presents the beating structure, as analytically demon-
strated in the previous section, equation (21) and, more
explicitly, equation (26).

For consistency, we show in Figure 2 that the semi-
analytical scheme produces a continuous function when
switching, at r = 140 a.u., from expression (32) to the
asymptotic one (26) with (27b) and (28). This illustrates
the correctness of these expressions and the weights which
are in turn closely related to the transition amplitudes. In
the figure, we also present an ECS solution with a com-
plex rotation performed at r = 180 a.u., which completely
agrees with the analytical method. It is worth noting that
the ECS method provided an extremely good convergence
of the solution with respect to the radius of complex ro-
tation, i.e., in the non-rotated region the solutions were
independent of the said radius.

As a final application, we evaluate the potentially most
challenging case: coincident energies, i.e., E2 = E1. This
case, according to expression (31), should possess a lin-
early growing envelope instead of the beating structure
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Fig. 2. Real (top panel) and imaginary (bottom panel) parts

of the scattering solution ψ
(2)
sc,l2

(r) for the same parameters as
in Figure 1. Here we show only the long range behavior. For
the analytical results we used equation (32) up to r = 140 (real
part: black empty squares, imaginary part: red empty circles),
and equation (26) beyond (real part: orange full squares, imag-
inary part: green full circles). The ECS representation (real
part: solid blue line, imaginary part: solid green line) is ro-
tated at r = 180 a.u.

depicted in Figure 1. We took E2 = E1 = 2.21 a.u.,
keeping the same potentials V (2)

R (r), V (2)
L (r) as well as

ψ
(1)
sc,l1

(r) and l2 = 2. The analytical result, for this en-
ergy case strictly based on equation (32), is confirmed by
the numerical counterparts (GSF and ECS), all shown in
Figure 3; the GSF calculation was performed with 200
basis functions in a Rs = 60 a.u. domain. The complete
agreement supports both the correctness of the analytical
discussion presented in Section 2, and the quality of the
GSF and ECS numerical approaches.

The three numerical illustrations confirmed the argu-
ments outlined in the previous section over the asymp-
totic behavior of the scattering solution ψ

(2)
sc,l2

(r) of
problem (9b), where the driving term is asymptotically
an outgoing wave. It is clearly incorrect to assume that
we have a pure outgoing wave, unless the source term is
spatially confined. The resulting function behaves asymp-
totically as a superposition of two outgoing waves, dic-
tated by the energies E1 and E2 as well as the asymptotic
Coulomb part of V (2)

L (r) and V (1)
L (r).

4 Three-body test case

For three-body scattering problems, an analytical study
similar to that presented in Section 2 is not feasible, as the
Green operator is not known in the whole space. We shall
therefore only provide a numerical illustration, consider-
ing again a coupled system of equations as (2b) and (2c).

Fig. 3. Real (top) and imaginary (bottom) parts of a scat-
tering solution with E2 = E1 = 2.21 a.u., l2 = 2. Analytical:
black solid line; GSF: blue circles; ECS: green triangles.

They do not correspond to a precise physical problem,
but are related to a first and second order calculation of a
Temkin-Poet model for the fast projectile double ioniza-
tion of helium by electronic impact [18]. The first order
equation (see Eq. (20) of Ref. [18]) has a bound source
containing the target ground state, while the second order
will have a driven term involving the first order outgoing
solution.

For illustration purposes, we consider the following
equations
[
T2+T3− Z

r2
− Z

r3
+

1
r>

−E1

]
Φ

(1)
sc (r2, r3)
r2r3

=
φ0 (r2, r3)
r2r3

(40a)
[
T2+T3− Z

r2
− Z

r3
+

1
r>

−E2

]
Φ

(2)
sc (r2, r3)
r2r3

=
Φ

(1)
sc (r2, r3)
r2r3

,

(40b)

where Z = 2 is the helium nuclear charge, Ti stand for
radial kinetic operators Ti = − 1

2r2
i

∂
∂ri

(
r2i

∂
∂ri

)
, (i = 2, 3),

and r> = max[r2, r3] (as in Refs. [18,19], the target elec-
trons’ distances to the nucleus are r2, r3). In the first equa-
tion we take E1 = 10 eV and φ0 (r2, r3) to be a sim-
ple product of ground hydrogenic functions with Z = 4
(this non-physical choice allows for a better visualization
of the beat phenomenon). In the second equation we take
E2 = 20 eV.

To solve (40a) and (40b) we expand both the first and
second order scattering functions Φ(j)

sc (r2, r3) (j = 1, 2) in
terms of a GSF basis

Φ(j)
sc (r2, r3) =

∑

n2,n3

a(j)
n2,n3

Sn20 (r2)Sn30 (r3) , (41)

with the functions Sn20 (r2) and Sn30 (r3) satisfying
the two-body eigenproblem (33). As in our previous
work [19,23], we choose generating potentials V(ri)
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Fig. 4. Top panel: real part of the scattering function Φ
(2)
sc (r2, r3); the beat structures can be appreciated in the double

continuum hyperspherical fronts (left) and in the single ionization components (right). Bottom panel: real (black line) and

imaginary (red dashed) parts of Φ
(2)
sc (r2, r3) for: (left) a fixed hyperangle α = π/4 cut; (right) a fixed radius r3 = 0.642 a.u. To

guide the eye, in the hyperspherical case we also depict the modulus as the (green) enveloping curve.

of the square-well type for both r2 and r3, and pure
Coulomb auxiliary potentials U(ri). Equations (40a)
and (40b) are converted into a linear system in the expan-
sion coefficients a(j)

n2,n3 after replacing (41) and projecting
onto every product Sn′

20 (r2)Sn′
30

(r3); the reader can find
more details on the use and qualities of the GSF applied
to three-body problems in reference [3].

The solution Φ
(1)
sc (r2, r3) calculated with the GSF

method is determined with a hyperspherical outgoing be-
havior, which describes the electronic double continuum
(this is not shown here, but can be appreciated in (e, 3e)
calculations in either the physical case [23] or in a s-
wave model [18]); for small values of either r2 or r3,
Φ

(1)
sc (r2, r3) contains the single continuum channels. The

solution Φ
(2)
sc (r2, r3) of the second equation (40b), which

contains now a pure outgoing function, is shown as a func-
tion of r2 and r3 in the top panel of Figure 4; the left panel
allows visualizing the beat structure for the double con-
tinuum channel while the right panel (note the different
scale) allows to see the phenomenon in the single ioniza-
tion channels.

The bottom panels of Figure 4 show details of the beat
phenomenon through cuts of both the real and imaginary
parts of Φ(2)

sc (r2, r3). To describe the double continuum hy-

perspherical coordinates ρ =
√
r22 + r23 and tanα = r3/r2

are more suitable. The cut along the diagonal r2 = r3,
i.e., on a fixed hyperangle α = π/4, clearly illustrates
the beat structure in the hyperradius ρ (left panel). The
observed beating envelope wavelength is in good agree-
ment with the expected 18.2 a.u., determined solely by
the energies E1 and E2. In the right panel, Φ(2)

sc (r2, r3)
is shown for fixed value r2 = 0.642 a.u. When either r2
or r3 are small, the single continuum channels acquire a
very significant amplitude. It is in these regions that the
application of the two-body analysis of Section 2 is ap-
plicable, yet at the same time more intricate in the sense
that many single ionization channels are added up [19].
The most dominant and clearly visible single continuum
channel corresponds to ionization without excitation, eas-
ily identified by its rapid oscillations. The calculated wave-
length (39.6 a.u.) for the enveloping beat structure (it is
related to the chosen energies E1, E2, and also that of the
He+ ground state) matches the one observed in the figure.
To sum up, Figure 4 clearly shows that beat structures
are present in both channels. The mathematical analysis
is more intricate for the three-body case as one should in-
vestigate the asymptotic regimes of the three-body Green
operator in each channel. However, even from a numerical
solution like the one presented in Figure 4, the evaluation
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of the wave function at a given hyperangle α lends itself
to a subsequent reexpansion in terms of two GSF basis
sets (with energies E1 and E2) in ρ, multiplied by the
decay factor ρ−1/2. This procedure (currently an interest
of our investigation) can be a vehicle to easily obtain, for
a given energy sharing, the transition amplitudes, as in
references [18,23,24], for the two energy components.

The scattering function depicted in Figure 4 contains
by design the complexity of a driven term with hyper-
spherically outgoing waves. If, in contrast, the first order
solution should not present such a hyperspherical front,
then the beating structures would be expected to appear
only for small values of either r2 or r3 coordinates. This
extends to below-threshold sequential double photoioniza-
tion calculations corresponding to the experiments dis-
cussed in references [13–15], where the first photon is only
able to excite up to single continuum states. The second
order driven term therefore does not enforce hyperspheri-
cal beats on the solution, and the beating structures can
only exist on the single continuum contributions, localized
where either r2 or r3 is small. The double continuum in-
formation in these cases can be extracted by the methods
shown in references [18,19,23,24].

5 Concluding remarks

In this article we presented the mathematical and the-
oretical background which is to be found in two-body
scattering-like problems when the driven term behaves
asymptotically as a pure outgoing wave. Contrary to the
case when the source is spatially confined, one does not
find a pure outgoing wave.

For the two-body case, we proposed a coupled system
of driven equations, we studied analytically the expected
solution and obtained its asymptotic behavior. The solu-
tion was shown to contain a beating structure, dictated
by the energies of the two equations and by the oscilla-
tions of the driven term of the second one. The analysis is
supplemented with numerical examples; full agreement is
found between the results obtained with the derived for-
mulae, an ECS implementation and a GSF approach. We
focussed on three aspects with an example for each. In
the first one we verified that the beating structures do ap-
pear, and are corroborated by all the considered resolution
methods. The second example shows that the asymptotic
simplifications of the complete analytical expression are
correct. These results should be useful at the moment of
extracting the transition amplitudes of a given physical
scattering problem, as in the field of photoionization of
atoms [9,10] or molecules [21]. The final example consists
of a potentially conflictive situation where the same en-
ergy is taken for the two equations. A linear enveloping
growth is observed, as expected from the equal energy
limit in the analytical expressions. The characterization
of the resulting wavefunction would be by itself interest-
ing, but for practical purposes it is equally important to be
able to extract the transition matrix information. We pro-
vide explicit formulae to extract the relevant amplitudes
for both energy components involved, stemming directly

from our analytical formulation. These expressions can be
used even without having the driven equation fully solved,
as it requires only some details about the driven term. Be-
sides, we also give another expression tailored to extract
the amplitudes from an already calculated wavefunction.

Going beyond the two-body case, applications to a sec-
ond order calculation for double ionization of helium by
electron impact are envisaged; in this case, the three-body
scattering equation has a driven term containing an hy-
perspherical outgoing wave. A full analytical treatment
similar to the one presented in this contribution is then
extremely complicated, if not impossible. However, beat
structures are illustrated here with a simplified s-wave
system of coupled equations. The numerical resolution
through the GSF method in spherical coordinates allowed
us to show them in both the single and double contin-
uum channels, each with its expected wavelength. For the
double continuum, the more adequate hyperspherical co-
ordinates [3] should help for a deeper investigation. The
fact that the hyperspherical beat structure is generated
by the superposition of wave fronts (also hyperspherical)
with energies E1 and E2 can be analyzed via an energy
eigenstate decomposition. This should in turn lead to a
way of extracting the transition amplitude from this intri-
cate scattering function, and is the subject of our current
investigations.
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B. Keitel, R. Treusch, M. Gensch, C.D. Schröter, R.
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