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A B S T R A C T

In this work we address the ground state magnetization in graphene, considering the Zeeman effect and taking
into account the conduction electrons in the long wavelength approximation. We obtain analytical expressions
for the magnetization at T=0 K, where the oscillations given by the de Haas van Alphen (dHvA) effect are
present. We find that the Zeeman effect modifies the magnetization by introducing new peaks associated with
the spin splitting of the Landau levels. These peaks are very small for typical carrier densities in graphene, but
become more important for higher densities. The obtained results provide insight of the way in which the
Zeeman effect modifies the magnetization, which can be useful to control and manipulate the spin degrees of
freedom.

1. Introduction

Since its experimental isolation in 2004, graphene has become one
of the most studied and promising material in condensed matter
physics [1–4]. Its interesting properties are related with its 2D
hexagonal structure, made of two interpenetrating sublattices A and
B which behave as a pseudospin degrees of freedom [5]. Without
impurities or defects, the conduction and valence bands touch at the
Fermi energy, with the valence band full and the conduction band
empty in the ground state [4]. Furthermore, in pristine graphene the
density of states at the Fermi energy is zero, and thus the graphene is a
semiconductor with zero band gap, or a semi-metal [6]. In the long
wavelength approximation the dispersion relation is relativistic and the
electrons behave as massless fermions, moving with a Fermi velocity of
about c/300 [7].

When a magnetic field is applied to graphene, discrete Landau
levels are obtained [9]. For a classical electron gas these levels are
equidistant, due to a parabolic dispersion relation. For a relativistic-
like electron gas, like in graphene, the Landau levels are not equidi-
stant, which is one of the reasons quantum Hall effect can be observed
in graphene at room temperatures [10–15]. Moreover, Landau levels
create an oscillating behavior in the thermodynamics potentials. It is
found that the magnetization oscillates as a function of the inverse
magnetic field, the so called de Haas van Alphen effect [18,19]. The
different frequencies involved in the oscillations are related to the
closed orbits that electrons perform on the Fermi surface [20]. It has

been predicted, in graphene, that the magnetization oscillates periodi-
cally in a sawtooth pattern, in agreement with the old Peierls prediction
[21]. In contrast to 2D conventional semiconductors, where the
oscillating center of the magnetization is zero, in graphene the
oscillating center has a positive value because the diamagnetic con-
tribution is half reduced with that in the conventional semiconductor
[22].

When we consider the Zeeman effect, the Landau levels for each
spin split introducing a gap. This splitting becomes relevant when the
thermodynamical properties are considered [23,24]. Indeed, the split-
ting affects the filling of the energy states when the internal energy is
calculated, and consequently other related functions such as the
magnetization. In general, the parameters that affect the occupancy
of the energy levels are the electron density ne and the magnetic field.
Thus one can conceive a graphene-like system with its valence band
fully occupied and only the conduction band available, in such a way
that ne can be modified. The added electrons could be originated by a
gate voltageVG applied to the graphene sheet so that ne can be varied as
a function of VG. This system may be found useful in the characteriza-
tion of spin-filter [25] and spin-polarized currents in 2D systems [26],
which in turn can be used to calculate transport parameters like charge
and spin conductivity [27]. Motivated by this facts we studied the
magnetization at T=0 K in a general graphene-like system with only the
conduction band available and ne variable, taking into account the
Zeeman effect and the way in which the magnetic oscillations are
altered by this effect.
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2. Graphene in magnetic field

2.1. Theoretical framework

We considered the conduction electrons in our graphene system in
the long wavelength approximation, which implies low energies such
that E t≪ ~3 eV (where t is the NN hopping amplitude [4]). This gives a
relativistic-like dispersion relation E υ k=ℏ F , where υ ~10F

6 m/s is the
Fermi velocity. We suppose that the conduction electrons have an
electron density ne, which may be due to an applied gate voltage. The
long wavelength approximation is valid if ne is such that the Fermi
energy EF obeys E t≪ ~3F eV. If we have N conduction electrons in an
area A, then n N A= /e , and the density of states in the long wavelength
approximation is ρ E d πAE h υ( )= 2 / F

2 2, where d=4 takes into account the
spin and valley degeneracy. Thus

‍∫N πAE
h υ

dE= 8 .
E

F0 2 2

F

(1)

Therefore the condition E t≪F implies

n πt
h υ

≪ 4 .e
F

2

2 2 (2)

For t~3 eV, Eq. (2) is satisfied for typical carrier densities in
graphene [28–31] (about n c<10 me

12 −2). Then we shall take the regime
n n≤0. 1 me

−2.
The graphene Hamiltonian in the long wavelength approximation

is1

σH υ p= ( ⋅ ),F (3)

where σ σ σ=( , )x y are the Pauli matrices, which act in the sublattices A
and B of graphene. Applying a magnetic field, the momentum changes
following the Peierls substitution [32] ep p A→ − , where A is the
vector potential. For a magnetic field BB = (0, 0, ), in the Landau gauge
we have ByA=(− ,0, 0). Considering the Zeeman effect [33], the term
μ μ gBsB⋅ = /2B z is added to H , where s S=2 /ℏz z is the Pauli matrix acting
in the spin state and g≃2. Therefore Eq. (3) now reads

μH υ σ p eBy σ p B= [ ( + ) + ] − ⋅ .F x x y y (4)

Because H only depends on the y coordinate, then we can express
the wave function as ψ e ψ ψ= ( )ikx A B− , with ψ A B/ depending only on y.
Replacing p i=− ℏ∂i i in Eq. (4), the equation Hψ Eψ= becomes

μv σ k eBy i σ ψ EψB[ ( (−ℏ + ) − ℏ ∂ ) − ⋅ ] = .F x y y (5)

Introducing the ladder matrices σ σ iσ= ±x y± and making the
change of variable y k eBy eB′=(−ℏ + )/ ℏ [34] we can write Eq. (5) as

μυ eB σ y υ eB σ y ψ EψBℏ
2

( ′−∂ ) + ℏ
2

( ′+∂ ) − ⋅ = .F y F y
+

′
−

′
⎡
⎣⎢

⎤
⎦⎥ (6)

This Hamiltonian is identical to the quantum harmonic oscillator.
Indeed, defining the ladders operators a y= ( ′−∂ )/ 2y

†
′ and

a y= ( ′+∂ )/ 2y′ we have

ω σ a σ a ω s ψ Eψℏ
2

( + )−ℏ = ,L
Z z+

†
−

⎡
⎣⎢

⎤
⎦⎥ (7)

where ω υ=L F
eB2
ℏ

and ω μ B= /ℏZ B . The energies from Eq. (7) can be

calculated by writing the wave function as

ψ c n A c n B c n A c n B= , ,+ + −1, ,+ + , ,− + −1, ,− ,1 2 3 4 (8)

where + and − represent spin up and down, so that s ± =± ±z .
Then, given that σ A =0+ , σ B A=2+ , σ A B=2− , σ B =0− and
a n n n= +1 +1† , a n n n= −1 , solving Eq. (7) the energies are

E l ω n s ω= ℏ − ℏ ,n s l L Z, , (9)

where n=0, 1, 2… is the Landau level index, s= ± 1 for spin up and
down and l= ± 1 for the valence and conduction band. For the K′ valley
the energies are identical to Eq. (9), so that each state is doubly
degenerate. The Zeeman interaction splits the spin up and down
energies, introducing a gap given by E ωΔ =2ℏ Z . As in the classical case,
the degeneracy of each spin level is given by D AB h e AB ϕ=2 /( / )= / , where
A is the area of graphene sheet and ϕ h e= /(2 ) is half the magnetic unit
flux [7].2

To study the ground state magnetization we considered that only
the conduction band is available. The valence band, although full in our
model, would still make a continuous non oscillatory contribution to
the magnetization. Since we are interested only in the magnetic
oscillations, we shall omit the valence band and work only with the
conduction electrons. Thus the energies are ε ω n s ω=ℏ − ℏn

s
L Z , where

s= ± 1 for spin up and down. The internal energy for N electrons can be
computed as the sum of the filled Landau levels. The number of totally
filled levels is q q= [ ],c where q N D= /c is the filling factor, and the
brackets means the biggest integer less or equal to qc (the Floor
function). We can also write N D B B/ = /C where B n ϕ=C e (n N A= / )e is
the critical magnetic field at which the degeneracy D equals the number
of electrons N.

In order to calculate the internal energy we first have to sort the
energy levels. It may happen that the splitting is such that for a given
Landau level n, ε ε<n n+1

+ − , which would mean that the states with
energy εn+1

+ are filled before those with energy εn
−. This would happen if

ω n n ωℏ ( +1 − )<2ℏL Z . For q levels filled, considering that each state
may be occupied with spin up or down, the condition at which the
mixing starts can be approximated by

ω q q ωℏ
2

−
2

−1 <2ℏ .L Z
⎛
⎝⎜

⎞
⎠⎟ (10)

In general this condition depends on the electron density ne because
q n ϕ B= [ / ]e . Nevertheless, it can be easily proved that Eq. (10) occurs
only for electron densities that do not satisfy Eq. (2). Therefore there is
no spin mixing at the long wavelength approximation with magnetic
field. In order to study the spin mixing, one would have to take in
consideration the whole dispersion relation of Bloch electrons in
graphene [7], in which case the problem becomes increasingly
difficult [8].

2.2. Ground state magnetization

We call ξm the decreasing sorted energy levels, m being the label
index. We can write ξ ε β ω= − (−1) ℏm m

m
Z

0 , where

ε ω=ℏ [ − (1−(−1) )]m L
m m0
2

1
4

1
2 are the Landau levels, written in such a

way to ensure that for each Landau level we take both spins. We
introduced a parameter β to differentiate the situations without
Zeeman effect (β=0) and with Zeeman effect (β=1).

If we call θ q q N D N D= − = / − [ / ]c the occupancy factor of the last
partially filled Landau level, the ground-state internal energy is

‍∑U Dξ Dθξ= + .
m

q

m q
=0

−1

(11)

Replacing the expression for ξm we have
‍ ‍U D ε βD ω Dθε βD ω= ∑ − ℏ ∑ (−1) + − ℏ (−1)m

q
m Z m

q m
q Z

q
=0
−1 0

=0
−1 0 . The factor

‍∑ (−1)m
q m

=0
−1 is 0 if q is even, or 1 if q is odd. Thus we can write

‍∑ (−1) = [1−(−1) ]/2m
q m q

=0
−1 . Moreover, the term ‍U D ε Dθε= ∑ +m

q
m q0 =0

−1 0 0 is
the energy without Zeeman effect. Therefore

U U β D ω θ= − 1
2

ℏ [1+(−1) (2 −1)].Z
q

0 (12)

The last term in Eq. (12) is associated with the spin magnetization.

1 To find the energies we consider the K valley. 2 The factor of 2 in D takes into account the valley degeneracy.
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To see this, we start from the Pauli magnetization given by

M μ N N= ( − ),P B + − (13)

where N+ and N− are the total number of spin up and down,
respectively. If q is even, the number of spin up and down states
totally occupied are identical, and the last unfilled state is spin up. Then
N N Dθ− =+ − if q is even. On the other hand, if q is odd there is one
unpaired totally filled spin up state and the last unfilled state is spin
down. Then N N D Dθ− = −+ − if q is odd. Therefore in general we can
write N N D θ− = [1+(−1) (2 −1)]/2q

+ − , and Eq. (13) becomes

M μ D θ=
2

[1+(−1) (2 −1)].P B
q

(14)

Consequently the internal energy of Eq. (12) becomes

U U βBM= − .P0 (15)

Thus the energy, and related functions such as the magnetization,
are altered by the Zeeman effect through the spin magnetization. The
magnetization at T=0 K is M U B= − ∂ /∂ . From Eq. (15) we have

M M β M B M
B

= + + ∂
∂

,P
P

0
⎛
⎝⎜

⎞
⎠⎟ (16)

where M U B= − ∂ /∂0 0 is the magnetization without Zeeman effect. From
Eq. (14) we get M B M B μ D θ B∂ /∂ = / + (−1) ∂ /∂P P B

q , with θ B N DB∂ /∂ =− /( ).
Therefore Eq. (16) becomes

M M β M Nμ= + (2 − (−1) ).P B
q

0 (17)

Fig. 1 shows the magnetization (17) for an electron density
n n=0. 1 me

−2 and area A n=100 m2, for the case without Zeeman effect
(β=0) and the case with Zeeman effect (β=1). We can see that the
magnetization oscillates in agreement with the de Haas van Alphen
effect. Moreover, because q is a periodic function with B1/ , therefore M
is also a periodic function with B1/ , as can be observed in Fig. 1(b). We
also notice that the oscillating center of the magnetization has a
positive value, which means that conduction electrons have a ground
state paramagnetism. This differs substantially with what happens in
the conventional semiconductor 2DEG. Thus the results obtained
affords an intuitive explanation of the difference in magnetization
between the monolayer graphene and the conventional semiconductor
2DEG.

As it can be seen in Fig. 1 the Zeeman effect introduces a second
peak in the magnetization. To understand this unusual behavior we
have to analyze in more detail the Eq. (17). Without Zeeman effect we

have M U B= − ∂ /∂0 0 , with ‍U D ε Dθε= ∑ +m
q

m q0 =0
−1 0 0. Then, given that

D B D B∂ /∂ = / , ε B B ε∂ /∂ =(1/2 )( )m m
0 0 and θ B N DB∂ /∂ =− /( ), we can write

M
B

Nε U= 1 − 3
2

,q0
0

0
⎛
⎝⎜

⎞
⎠⎟ (18)

and therefore from Eq. (17) the magnetization with Zeeman effect
becomes

M
B

Nε U M Nμ= 1 − 3
2

+2 − (−1) .Z q P B
q0

0
⎛
⎝⎜

⎞
⎠⎟ (19)

From Eq. (18) we see that the peaks appear at M0 whenever εq
0

changes discontinuously,U0 being continuous. This happens only when

q changes from odd to even ε ωrecall that =ℏ [ − (1−(−1) )]m L
m m0
2

1
4

1
2

⎛
⎝⎜

⎞
⎠⎟,

which corresponds to a change of Landau level. On the other hand,
Eq. (19) gives peaks in Mz whenever q change because of the additional
factor Nμ (−1)B

q; the new peaks are produced by the change of spin.
These results imply that without Zeeman effect there is a jump in the
magnetization only when the last state changes the Landau level, while
with Zeeman effect there is a jump when the last state changes either its
spin or Landau level. This effect can also be related to fractional filling
factors. To see this consider the energy degeneracy DL of each Landau
level with no Zeeman effect, which can be occupied with spin up or
down, so D D AB ϕ=2 =2 /L . Then, q N D N D q= [ / ] = [2 / ]=2L L , where
q N D= [ / ]L L . For the case with Zeeman effect, the change of spin is
associated with q odd, while the change of Landau level with q even. In
terms of qL this implies that the peaks in M given by a change of Landau
level correspond to qL integer, whereas the peaks given by change of
spin correspond to qL fractional. In this way we can say that the peaks
produced by the Zeeman effect correspond to fractional filling factors in
the case without Zeeman effect. Such behavior is similar to the
Fractional Quantum Hall effect in graphene [15–17], where changes
appear in the Hall conductivity for fractional occupancy number due to
the Coulomb interaction between electrons.

In the case of Zeeman effect, Fig. 1 also shows that the amplitude of
the peaks corresponding to a change of spin is smaller than the
amplitude corresponding to a change of Landau level.3 In fact, the
amplitude depends on the density of electrons ne, as can be seen in Eq.
(19). If the peak corresponds to a change of spin we have

M Nμ Aμ nΔ =2 =2S
B B e, whereas if it is due to a change in the Landau level

we obtain M ω ωΔ = ℏ − −1 −2ℏL An
B L

q q
Z2 2

e
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ with q an even integer.
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Fig. 1. (a) Ground state magnetization M as a function of B, with and without Zeeman effect. (b) Ground state magnetization M as a function of B1/ , with and without Zeeman effect. In
both cases the density of electrons is n n=0. 1 me −2 and the area A n=100 m2.
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Notice that MΔ S depends only on ne, whereas MΔ L depends on both ne
and the magnetic field B. Moreover, the spin splitting appears as a
reduction factor in the amplitude MΔ L, as expected [35]. The ratio

M MΔ /ΔL S is

M
M

ω
ω

q q qΔ
Δ

= ℏ
2ℏ 2

−
2

−1 −1 ( even integer)
L

S
L

Z

⎛
⎝⎜

⎞
⎠⎟ (20)

where q n ϕ B= /e (ϕ h e= /2 ). In Fig. 2 Eq. (20) is plotted as a
function of ne, for different values of q even. We see that for
n n≤0. 1 me

−2 we always have M MΔ > ΔL S, but M MΔ /ΔL S decreases as
ne increases. For typical carrier densities in graphene, about
n c<10 me

12 −2, we have M MΔ ≫ ΔL S . This would explain why this
phenomenon has not yet been seen experimentally in graphene.
Nevertheless, for higher electron densities the effect would be promi-
nent (see Fig. 1). These results are in concordance with [36], where the
spin splitting appears as a reduction factor in the magnetic oscillations
for 2D normal systems. When the Zeeman splitting becomes a half of
the the Landau level spacing, the amplitude of oscillation of the
fundamental frequency becomes zero. Indeed, Eq. (20) gives MΔ =0L

for q=2 if ω ωℏ =ℏ /2Z L . Nevertheless, given that q n ϕ B= /e , this would
happen for electron densities ne that do not satisfy Eq. (2).

From an experimental point of view, the relations of the peaks can
be controlled by the applied electric field that controls the carrier
concentration, whereas the spin polarization lifetime can be controlled
by the applied gate voltage [37]. This can be useful to improve the
methods for mapping the Fermi surface by taking into account the
Fourier decomposition of the new peaks.

3. Conclusions

We studied the ground state magnetization of conduction electrons
in graphene with Zeeman effect. We considered only the conduction
electrons in the long wavelength approximation, which was shown to
hold for typical carrier densities in graphene. We have derived
analytical expressions for the magnetization at T=0 K, with and without
Zeeman effect. It was shown that the magnetization has peaks
whenever the last energy level changes discontinuously, and its
amplitude depends on the electron density. In the case without
Zeeman effect these peaks appear only when the last Landau level
occupied changes. With Zeeman effect it was shown that new peaks
appear in the magnetization, associated with the spin splitting in the
Landau levels. These new peaks occur whenever the last state changes

only its spin, while the Landau level remains the same. We also studied
the ratio of amplitudes between the peaks produced by a change of
Landau level ( MΔ L) and the new peaks produced only by a change of
spin ( MΔ S). An analytical expression was derived, which shows that

M MΔ ≫ ΔL S for typical carrier densities in graphene, about
n c<10 me

12 −2. Nevertheless, for higher electron densities, about
n n≃0. 1 me

2, the effect should become evident. These new findings can
be verified by studying experimentally graphene at very high carrier
densities and perpendicular magnetic field. The predicted effect will
hopefully help the interpretation of magnetization in experiments.
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