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a b s t r a c t

Using Relativistic Quantum Geometry (RQG), we study the emergence of back-reaction modes with
solitonic properties, on astrophysical and cosmological scales, in a model of pre-inflation where the
universe emerge from a topological phase transition. We found that, modes of the geometrical field that
describes back-reaction effects related to larger scales (cosmological scales), aremore coherent than those
related to astrophysical scales, so that they can be considered a coarse-grained soliton.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The existence of a pre-inflationary epochwith fast-roll of the in-
flaton field would introduce an infrared depression in the primor-
dial power spectrum. This depressionmight have left an imprint in
the CMB anisotropy [1]. It is supposed that during pre-inflation the
universe begun to expand from some Planckian-size initial volume
to thereafter pass to an inflationary epoch. Some models consider
the possibility of a pre-inflationary epoch in which the universe is
dominated by radiation [2]. In this framework RQG should be very
useful whenwe try to study the evolution of the geometrical back-
reaction effects given that we are dealing with Planckian energy
scales, and back-reaction effects should be very intense at these
scales [3]. In a previous work [4] was suggested the metric

dŜ2 =

(πa0
2

)2 1

θ̂2

[
dθ̂

2
+ η̂ijdx̂idx̂j

]
, (1)

to describe the background space–time during pre-inflation. If we
desire to describe an initially Euclidean 4Duniverse, that thereafter
evolves to an asymptotic value θ̂ → 0, we must require θ̂ to be
with an initial value θ̂0 =

π
2 . Furthermore, the nonzero compo-

nents of the Einstein tensor, are

G00 = −
3

θ̂2
, Gij =

3

θ̂2
δij, (2)

so that the radiation energy density and pressure, are respec-
tively given in this representation by ρ(θ̂ ) =

1
2πG

3
(πa0)2

, P(θ̂ ) =
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−
1

4πG
3

(πa0)2
. The equation of state for the metric (1), describes a

vacuum expansion: ω(θ̂ ) = −1. In this case the asymptotic scale
factor, the Hubble parameter and the potential are respectively
given by

a(t) = a0 eH0t ,
ȧ
a

= H0 V =
3

8πG
H2

0 , (3)

so that the background field solution is given by a constant value:
φ(t) = φ0. This solution describes the field that drives a topological
phase transition from a 4D Euclidean space to a 4D hyperbolic
space–time.

In order to describe the exact back-reaction effects, we shall
consider Relativistic Quantum Geometry (RQG), introduced in [5].
In this formalism the manifold is defined with the connections1

Γ α
βγ =

{
α

β γ

}
+ σ α ĝβγ , (4)

where δΓ α
βγ = σ α ĝβγ describes the displacement of the Weylian

manifold [6] with respect to the Riemannian background, which
is described by the Levi-Civita symbols in (4). In our approach,
σ (xα) is a scalar field and the covariant derivative of the metric
tensor in the Riemannian background manifold is null (we denote
with a semicolon the Riemannian-covariant derivative): ∆gαβ =

gαβ;γ dxγ
= 0. However, the Weylian covariant derivative [6] on

themanifold generated by (4) is nonzero: gαβ|γ = σγ gαβ . From the
action’s point of view, the scalar field σ (xα) is a generic geometrical

1 To simplify the notation we denote σα ≡ σ,α .
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transformation that leaves invariant the action [5]

I =

∫
d4x̂

√
−ĝ

[
R̂
2κ

+ L̂

]

=

∫
d4x̂

[√
−ĝe−2σ

] {[
R̂
2κ

+ L̂

]
e2σ

}
. (5)

Hence, Weylian quantities will be varied over these quantities in
a semi-Riemannian manifold so that the dynamics of the system
preserves the action: δI = 0, and we obtain

−
δV

V̂
=

δ

[
R̂
2κ + L̂

]
[

R̂
2κ + L̂

] = 2 δσ , (6)

where δσ = σµdxµ is an exact differential and V̂ =

√
−ĝ is the

volume of the Riemannian manifold. Of course, all the variations
are in theWeylian geometrical representation, and assure us gauge
invariance because δI = 0. The metric that takes into account
back-reaction effects on the background space–time (1), is

dS2 =

(πa0
2

)2 1

θ̂2

[
e2σ dθ̂

2
+ η̂ij e−2σ dx̂idx̂j

]
, (7)

with a determinant V =

√
−ĝ e−2σ . The back-reaction energy

density fluctuations during inflation were calculated in a previous
work, using RQG [7]

1
ρ̂

δρ̂

δS
= −2

(
π

2a0

)
θ̂σ ′, (8)

where the prime denotes the derivative with respect to θ̂ . Here,
σ ′

=
⟨
(σ ′)2

⟩1/2, such that⟨
(σ ′)2

⟩
=

1
(2π )3

∫
d3k(ξk)′ (ξ ∗

k )
′. (9)

The modes of the field σ : ξk, must be restricted by the normaliza-

tion condition: (ξ ∗

k )
′ξk − (ξk)′ξ ∗

k = iθ̂2
(

2
πa0

)2
, in order for the field

σ to be quantized [5][
σ (x), σµ(y)

]
= i h̄Θµδ(4)(x − y). (10)

Here, Θµ =

[
θ̂2

(
2

πa0

)2
, 0, 0, 0

]
are the components of the back-

ground relativistic 4-vector on the Riemann manifold such that

ΘµΘµ
= 1. (11)

Notice that the commutator (10) tends asymptotically to zero with
the expansion of the universe, i.e., when θ̂ → 0. The equation that
describes the dynamics of the σ -modes, is

ξ ′′

k −
2

θ̂
ξ ′

k + k2 ξk(θ̂ ) = 0. (12)

The quantized solution of (12) results to be

ξk(θ ) =
i
2

(
π

2a0

)
k−3/2 e−ikθ̂

[
kθ̂ − i

]
. (13)

In this work we shall study the decoherence of the modes that
describe the geometric back-reaction, on the cosmological and
astrophysical sector of the spectrum. It is assumed that the modes
that remains coherent during the primordial expansion of the
universe, can be considered as a solitonic package that remains un-
altered during pre-inflation, and later. In these sectors the modes
σk(θ̂ , r⃗) are unstable; mainly on the cosmological sector of the
spectrum. The range of wavelengths, of the astrophysical spec-
trum, is: 2π/(ϵk0) > 2π/k > 2π/k0, such that the wave-number

range, is

ϵk0 < k ≤ k0 =

√
2

θ
, (14)

such that ϵ ≃ 10−2.5. For smaller wave-numbers the spectrum
describes cosmological scales.

2. Energy density fluctuations from pre-inflation: astrophysi-
cal versus cosmological scales

It is supposed that during pre-inflation the universe begun to
expand from some Planckian-size initial volume to thereafter pass
to an inflationary epoch [8]. In this framework RQG should be very
useful whenwe try to study the evolution of the geometrical back-
reaction effects given that we are dealing with Planckian energy
scales, and back-reaction effects should be very intense at these
scales. We are aimed to study solitonic back-reaction effects in
the range of the spectrum which is today astrophysical, to be able
to compare the coherence of the modes for that scale, with those
of cosmological scales. In the astrophysical range of the spectrum
the modes are slightly unstable. Furthermore, because we are
describing an intermediate region of the spectrum, with an upper
wave-number cut k0 =

√
2/θ̂ . The range of validity is given in (14),

and the energy density fluctuations are given by⏐⏐⏐⏐ 1ρ̂ δρ̂

δS

⏐⏐⏐⏐ =
π

a0
θ̂

⟨(
σ ′

)2⟩1/2
, (15)

where we denote with the prime the derivative with respect to θ̂ .
Furthermore,

⟨(
σ ′

)2⟩ is
⟨(

σ ′
)
2
⟩
=

1
2π2

∫ kmax

k0=
√
2/θ̂

dk k2σ ′
k(θ̂ ) σ ′∗

k (θ̂ ). (16)

In other words, the expectation value of squared-σ ′, calculated on
the background metric provide us (δσ ′)2, which means that we
are considering the back-reaction effects as Gaussian. The result
expressed as a function of θ̂ , is⏐⏐⏐⏐ 1ρ̂ δρ̂

δS

⏐⏐⏐⏐
Astro

=
π

4
√
2 a20

(
1 − ϵ4)1/2. (17)

These are the energy density fluctuations due to back-reaction
effects (17), on the astrophysical range of the spectrum. We can
compare this result with the energy density fluctuations on cos-
mological scales:⏐⏐⏐ 1

ρ̂

δρ̂

δS

⏐⏐⏐
Astro⏐⏐⏐ 1

ρ̂

δρ̂

δS

⏐⏐⏐
Cosmo

=
(1 − ϵ4)1/2

ϵ2 ≃ ϵ−2. (18)

This is a relevant result which assures that the ratio between
astrophysical and cosmological energy density fluctuations is 105.

3. Large-scale quasi-coherent spectrum from pre-inflation

Now we can rewrite the scalar field σ (r⃗, θ̂ ) as a Fourier expan-
sion in spherical (r, ϕ, φ)-coordinates

σ (r⃗, θ̂ ) =

∫
∞

0
dk

∑
lm

[
aklm Φ̄klm(r⃗, θ̂ ) + a†

klm Φ̄∗

klm(r⃗, θ̂ )
]
, (19)

where Φ̄klm(r⃗, θ̂ ) = k2 jl (kr) Φ̄kl(θ̂ )Ylm(ϕ, φ), Ylm(ϕ, φ) being the
spherical harmonics and jl(kr) the spherical Bessel functions. If
we consider that the annihilation and creation operators obey the
algebra[
aklm, a†

k′ l′m′

]
= δ(k − k′)δll′δmm′ ,

[aklm, ak′ l′m′ ] =

[
a†
klm, a†

k′ l′m′

]
= 0. (20)
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Because the universe can be considered isotropic and homoge-
neous at large scales, we can study the spherically symmetric
geometrical waves that emerge during pre-inflation. Hence, if we
consider only the cases with l = m = 0, we obtain that the scalar
field σ is

σ (r⃗, θ̂ )

=
1
r

∫
∞

0
dk k2

[
ak00eik(r+∥vk(θ̂ )∥θ̂ ) + a†

k00e
−ik(r+∥vk(θ̂ )∥θ̂ )

]
, (21)

where we have considered that

Φ̄k00(r⃗, θ̂ ) = k2
eikr

r
ξk(θ̂ ), (22)

and the phase velocity for some k-mode is

vk(θ̂ ) =
1

kθ̂
ln

[
ξk(θ̂ )

]
, (23)

with squared norm ∥vk(θ̂ )∥2
= ℜ

[
vk(θ̂ )

]2
+ℑ

[
vk(θ̂ )

]2
. If we define

r = 0 when θ = π/2, we can define the shift phase: Ωk(θ̂ ), of each
k-mode, as

Ωk(θ̂ ) = k
[π

2
∥vk(π/2)∥ −

vk(θ̂ )
 θ̂

]
, (24)

such that when the phase transition begins, all the modes are in
phase: Ωk(θ̂ = π/2) = 0. With this definition, modes with
Ωk(θ̂ ) = 0, for ∀ θ̂ , will be considered as coherent. In the Fig. 1
we have plotted modes with different wave-number k, which cor-
respond to the astrophysical and cosmological sector of the spec-
trum. Notice that the modes with bigger k, are more shifted than
thosewith smaller k, with the evolution of the universe. Thismeans
that those modes corresponding to the cosmological sector of the
spectrum remain coherent during pre-inflation. Thesemodes, with
wavelengths λ > 2π/(ϵ k0) can be considered with solitonic
properties, and the coarse-grained geometrical field σcg (θ̂ , r⃗), can
be expressed (in spherical coordinates), as

σcg

(
θ̂ , r⃗

)
=

1
r

∫
d3k G

(
k, θ̂

)
×

[
ak00 eik(r+∥vk(θ̂ )∥θ̂ ) + a†

k00 e
−ik(r+∥vk(θ̂ )∥θ̂ )

]
, (25)

with the suppression function

G
(
k, θ̂

)
=

√ 1

1 +

(
k0(θ̂ )
k

)N , (26)

and N to be experimentally determined.

4. Final comments

We have studied the properties of the modes related to back-
reaction effects during pre-inflation in order to estimate the rel-
ative amplitude of energy density fluctuation in both, the astro-
physical and cosmological ranges of the spectrum. These are 105

times bigger, on astrophysical scales than on cosmological scales.
However, on cosmological scales the modes of σ remain coherent,
meanwhile on astrophysical scales they shift their phase with

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0
0.5 1 1.50

k=0.9 k=0.6 k=0.1 k=0.0001

Fig. 1. Plot of the shift phase Ωk(θ̂ ), for different wavenumbers of the astrophysical
and cosmological sector of the spectrum. The pre-inflationary epoch begins at θ̂ =

π/2 when all the modes are in phase. During pre-inflation, the modes correspond-
ing to the cosmological sector remain coherent, but those of the astrophysical one,
change their phase with respect to those of the cosmological sector. The mode with
k = k0 corresponds to k = 0.903.

respect to other modes of the spectrum. It is expected for this
effect to be amplified on smaller scales. These results are shown
in the Fig. 1. The mode with k = k0 corresponds to k = 0.903,
with is plotted in blue. Notice that those modes with k < k0 are
unstable and remains more and more coherent as k decrease, such
that wavelengths in the range

√
2πθ̂/ϵ > λ >

√
2πθ̂ can be

considered as a classical soliton (with coherent modes that remain
in phase). For this physical reason, the geometrical back-reaction
fieldσ , can be considered as a coarse-grained (solitonic) scalar field
on cosmological scales.
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