1	Running Head: LOCAL VISUAL CUES IN TOADS
2	
3	
4	Use of local visual cues for spatial orientation in terrestrial toads
5	(Rhinella arenarum): The role of distance to a goal
6	
7	M. Florencia Daneri
8	Instituto de Biología y Medicina Experimental (IBYME-CONICET),
9	Universidad de Buenos Aires (UBA) and Departamento de Biología, Bioquímica y
10	Farmacia, Universidad Nacional del Sur (UNS), Argentina
11	Emma B. Casanave
12	Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR-CONICET-UNS)
13	Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur
14	(UNS), Bahía Blanca, Argentina
15	and
16	Rubén N. Muzio
17	Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Universidad
18	de Buenos Aires (UBA), Argentina
19	
20	Corresponding autor:
21 22 23 24 25 26 27	Dr. Rubén N. Muzio Grupo de Aprendizaje y Cognición Comparada Laboratorio de Biología del Comportamiento Instituto de Biología y Medicina Experimental (IBYME-CONICET) Vuelta de Obligado 2490. CP 1428 - Buenos Aires ARGENTINA E-mail: rnmuzio@gmail.com

29 Abstract

The use of environmental visual cues for navigation is an ability present in many groups of
animals. The effect of spatial proximity between a visual cue and a goal on reorientation in
an environment has been studied in several vertebrate groups, but never previously in
amphibians. In this study we tested the use of local visual cues (beacons) to orient in an
open field in the terrestrial toad <i>Rhinella arenarum</i> . Experiment 1 showed that animals
could orient in space using two cues located near the rewarded container. Experiment 2
used only one cue placed at different distances to the goal and revealed that learning speed
was affected by the proximity to the goal (the closer the cue was to the goal, the faster toads
learned its location). Experiment 3 showed that the position of a cue results in a different
predictive value. Animals preferred cues located closer to the goal more than those located
farther away as a reference for orientation. Present results revealed, for the first time, that
(i) toads can learn to orient in an open space using visual cues, and that (ii) the effect of
spatial proximity between a cue and a goal, a learning phenomenon previously observed in
other groups of animals such as mammals, birds, fish and invertebrates, also affects
orientation in amphibians. Thus, our results suggest that toads are able to employ spatial
strategies that closely parallel to those described in other vertebrate groups, supporting an
early evolutionary origin for these spatial orientation skills.

Keywords: spatial learning, local visual cues, beacons, toads

Staying in one place or moving to another may mean accessing a resource or avoiding a predator. In this sense, choosing where to settle and how to move to a new location is clearly relevant for an animal. Much evidence suggests that natural selection has shaped these decisions adaptively, and certain mechanisms are required to ensure that they are effective. With the goal of reaching a desirable location, an animal needs to decide where to go and how to get there (Barnard, 2004).

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Animals use a range of strategies to navigate to a specific goal. These include the use of a single salient cue (a beacon, usually a large local cue near the goal), path integration, and learning a sequence of responses and creating a global, spatial representation of environmental cues (a cognitive map). In the latter case, the goal is defined by its spatial relationship to a number of different landmarks (usually distal cues that surround an experimental space); such a map is highly adaptive, as the removal of any single landmark does not necessarily disrupt navigation (Shettleworth, 2010). Another possibility might be the use of a view-matching strategy of reorientation, where animals would navigate so as to minimize the difference between the panoramic image of the rewarded site and the panorama perceived from the current location. Recent comparative research on insects and computer modelling suggest that this strategy could be used both by insects and vertebrates (Pecchia & Vallortigara, 2010). According to Tommasi and colleagues (2012), when encoding distance and direction from simple objects, the simplest form of spatial orientation is that involving a goal directly associated with a visual object. When the spatial location of a landmark coincides with the goal, the orientation behavior simply requires that the navigating organism recognizes the landmark in its local space and moves toward it.

There are studies conducted in vertebrates that focus on the use of proximal visual cues to guide navigation. For example, Ingle & Sahagian (1973) revealed that goldfish can learn to swim in a constant direction relative to proximal visual cues within a small enclosure; this response was observed even if animals approached the choice point from different directions (Salas et al., 1996). Fish also revealed sensitivity to environmental shape and dimensions in spatial navigation (such as encoding of geometry and size of the experimental space; see e.g., Lee et al., 2013, and Sovrano et al., 2005, 2007). López and colleagues (2000, 2001) revealed that turtles (*Pseudemys scripta*) in a cue guidance procedure solved a task by directly approaching to a single, individual intramaze cue associated with a goal. If we analyze the phenomena, it seems that the behavioral control by a visual cue increases as the absolute spatial proximity between the cue and a goal decreases. There is evidence that animals rely preferentially on closer cues to locate a goal (e.g., the work in digger wasps by Tinbergen & Kruyt, 1938). Spatial contiguity favors cues at the goal or very near the goal as the best predictors of its location in rats (Chamizo & Rodrigo, 2004). The fact that animals with the cue positioned closer to the goal learned the task faster has also been observed in other mammals like dogs (Milgram et al., 1999). This phenomenon seems to be quite general because is also present in invertebrates such as honeybees (Cheng et al., 1987). Furthermore, Spetch (1995) showed in pigeons and humans that the control over the response acquired by a cue at a given distance from the target could be reduced or overshadowed by the presence of another cue closer to the target. The same result was also observed in European jays, a food storing corvid (Bennett, 1993). Chamizo and colleagues (2006) studied the competition between cues in spatial learning by rats, analyzing the role of distance to the goal. The spatial proximity of a cue to the platform (the goal) affected not only how well it could be used to locate the platform (better

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

when it was near), but also its ability to prevent learning about other cues (worse when another cue was introduced to form a new configuration). Similar results were also observed in invertebrates. In the study by Cheng et al. (1987), honeybees, trained to forage at a small source of sucrose placed at a constant location within a particular array of cues, weighed nearer cues more heavily than distant ones.

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

But knowledge about spatial learning in amphibians so far is scarce. This fact is surprising because this is a particularly important group from an evolutionary standpoint, since it lies at the transition between aquatic and terrestrial vertebrates (Macphail, 1982; Muzio, 1999, 2012). Nevertheless, some work has been published demonstrating amphibian spatial learning ability. For example, Adler (1980) showed that the green frog (Rana calamitans) is capable of using static visual cues and memorized motor patterns as orientation cues when trained and tested repeatedly in an arena. Lüddecke (2003) has also reported spatial learning in the dendrobatid frog (Colostethus palmatus), using a situation where animals had to orient within an arena with 24 different locations. In another study, Sinsch (1987), using a displacement test in the common toad (*Bufo bufo*), established that vision (use of environmental visual cues) was necessary to orient back to the start location. Another work by Dall'Antonia and Sinsch (2001), in the natteriack toad (*Bufo calamita*), revealed that this species' orientation abilities relied on multisensory cues (visual, magnetic, olfactory) in an octagonal arena. Finally, previous series of experiments on spatial learning performed at our lab (Daneri et al., 2011) revealed that the terrestrial toad Rhinella arenaum may use a fixed visual cue to solve a spatial challenge on a plus maze. In this case, experimental animals learned to find a container full of water directly cued by a proximal, intra-maze visual cue (beacon) located at the end of a reinforced maze arm. With

the exception of these earlier studies, there is no other information about maze learning ability using visual cues in amphibians.

In order to determine the ability of amphibians to use local visual cues, and to reveal if there is any effect of cue-proximity to the goal, we conducted three experiments in an open field setting. Experiment 1 studied how toads orient in an arena using visual cues located near a reward, Experiment 2 revealed the effect of different distances between a cue and the goal, and Experiment 3 studied the competition between two cues in relation with their distance to a goal.

Experiment 1: Use of Local Cues

The objective of our first experiment was to test the spatial abilities of the toad *Rhinella arenarum* in a circular arena (an open field) and the use of proximal visual cues (beacons) for spatial orientation.

Method

Animals. The subjects were eleven experimentally naive adult male toads, Rhinella arenarum (formerly Bufo arenarum), captured in ponds around Bahia Blanca, Argentina. This species is not listed as threatened (IUCN, 2010). Animals were maintained according to the guidelines outlined by the NIH Guide for the Care and Use of Laboratory Animals. Upon their arrival at the laboratory, toads were placed in cages (30 cm long, 21 cm wide and 21 cm high), five to ten animals per cage, where they remained with continually running tap water for at least two weeks. During the first week, subjects were treated with antibiotics and antiparasitics mixed with commercial frog food (approximately 3 g per day per animal). Then, animals were fed only with frog food (once a day during the second week, and after that, once a week). The vivarium was kept at a temperature between 21 and 23°C, and under a 16:8 h light:dark cycle (light from 05:00 to 21:00 h). Before the start of

the experiment, animals were transferred to individual cages with ad libitum deionized water. The day before pretraining, standard weights (weight of the hydrated animal with its urinary bladder empty; Ruibal, 1962) of all animals were obtained. These weights varied between 50 and 102 g. In order to induce water-search behavior, toads were dehydrated to 80% of their standard weights at the beginning of each pretraining and training session (a standard method employed in this species; e.g., see Muzio et al., 1992, 2011).

Apparatus. The experimental environment was composed as an open field made of opaque white Plexiglas; the floor was made of light brown rubber. The open field was 86 cm of diameter and its walls were 75 cm high. On the floor, four positions (goal points) were established (North, West, East, and South). A plastic green water container (13 x 10 x 3 cm, L x W x H) was placed in each of the four goal points against the walls. The water containers were filled with deionized water, but accessibility to the water was controlled by adjusting the water level relative to a metallic grid placed into the container that served as substrate (water level reached the surface of the grid or was underneath). This ensured similar moisture level near both reinforced and nonreinforced containers.

The maze was surrounded by a white curtain that isolated it from any external visual cues. The experimenter was hidden behind the curtain to observe and visually record the animals' behavior (through a small window). Only one observer recorded the data of all the experiments. The arena and the window positions were randomly rotated between experimental sessions. The open field was cleaned between trials to avoid the use of any uncontrolled intra-maze cues. Training was carried out in an experimental room kept at a constant temperature and humidity (21-23 °C, 48-52% RH) and constant background white noise (20-30,000 Hz).

Procedure. To accustom the animals to obtain water from the plastic green containers in the experimental open field, all the toads received two pretraining sessions of 5 minutes (one per day). During these sessions, animals were free to move inside the open field and had access to deionized water in all the plastic containers. Training started on the following day. Each animal received 32 training sessions (one session per day of three trials each).

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Toads were randomly assigned to one of the following groups: Experimental (n = 6)and Control (n = 6). Standard weights did not differ significantly between groups (F(1, 9) =0.14, p > 0.5). One of the animals in the Experimental group died of unknown causes during training (thereby, this group remained with n = 5). Toads of the Experimental group were trained under a procedure in which the goal (the plastic container full of accessible deionized water) was surrounded by two visual cues: a red rhombus (10 x 10 cm) on the left (when facing the goal container) and a multicolored horizontally striped square (10 x 10 cm) on the right (Figure 1). Both cues were made of rubber sheet and placed on the wall 10 cm away and above the edge of the reinforced container. The position of the reinforced container (with the visual cues) was randomly rotated between trials. Containers with unreachable water were placed at the other three goal points. This procedure was designed to prevent the animals from being guided to the correct goal box by a humidity gradient. For animals in the Control group, the reinforced container was randomly located at any of the four goal points with no visual cues associated with it. The use of the proximal visual cues for spatial orientation was necessary to successfully solve the task for the Experimental group.

At the beginning of each trial, every toad was covered by a cloth to prevent visual access during the approach to the experimental arena and placed under a start container (12)

x 12 x 8 cm, L x W x H) in the center of the open field. It remained under the start container for 30 seconds until it was raised by hand, releasing the toad to move freely in the open field and to choose among the four containers. As a consequence of their movements during the 30 s waiting period, animals started each trial haphazardly facing different directions. Furthermore, prior to each trial, toads were placed into the open field from different positions and oriented in different directions in the start container, effectively eliminating path integration or any other source of information to locate the goal other than the two visual cues placed on the wall. Toads were then allowed to search in the open field until one container was chosen (placing at least one limb on it) or for a maximum of 3 min. The choice was recorded as Correct or Incorrect based on whether or not the toad arrived at the container with reachable water. If the animal chose the correct container, 2 minutes of water access was used as reinforcement. In the case of a incorrect choice (a container with unreachable water) the animal was left for one minute on the metallic grid of the container. then it was gently re-located back to the center of the open field and guided by hand to the correct container in order to gain access to the water for 2 minutes (guided trial procedure).

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Weight variation (g/100 g) was also recorded. Animals were weighed (in grams) before and after each trial to assess the amount of water uptake that occurred during the trial. The difference between these two weights was divided by the standard weight computed before the first pretraining session and multiplied by 100 to provide a relative measure of water uptake corrected for individual differences in body weight, as done in previous studies (e.g., Muzio et al., 1992).

When the trial was finished, the toad was removed from the maze and returned to its home cage for a 2-min inter-trial interval. This movement also served to disorient the animals between trials. An acquisition criterion of a minimum of 5/9 correct choices during

three consecutive sessions was used (i.e., 55.56 % correct trials in the last three sessions, thus exceeding by more than twice what would be expected by chance). After 24 training sessions the criterion was reached, and an overtraining and testing phase then began (8 additional sessions). During this period, animals received four trials per session: three training trials plus one probe trial. Presentation of the probe trials were distributed pseudorandomly among the training trials (probe trials never occurred on the first or last trial). Probe trials were designed to rule out that the toads were locating the goal using only visual cues emanating from the correct water container; therefore, during these trials, all the containers were in the unreachable water condition (i.e., during probe trials toads were not reinforced). For each probe trial, the container chosen was recorded and the response classified as "Correct" or "Incorrect" with respect to the original position of the reachable container during training trials.

Analysis of variance (ANOVA) with repeated measures, followed by pairwise comparisons of groups based on the Least Significant Difference (LSD) Test, was applied for statistical analysis of the data. In all cases, significance was evaluated by setting the alpha value at less than 0.05.

Results and Discussion

Figure 2 presents the percentage of correct responses per training session for each group. Each data point is the average of the data collected from the animals of a particular group. We conducted an ANOVA with a between-subjects factor (condition) and a within-subjects factor (session number). An overall analysis of the acquisition period showed a significant effect for groups (F(1, 9) = 66.94, p < 0.001, partial $\eta^2 = 0.88$). In the first session both groups displayed a similar performance (F(1, 9) = 0.04, p > 0.5), and did not

choose any of the four containers more than expected by chance (groups vs. chance F(2, 14) = 0.17, p > 0.5). But during the last three acquisition sessions (22, 23 and 24) the performance of Experimental group was significantly better than the one of the Control group (F(1, 9) = 14.27, p < 0.01, partial $\eta^2 = 0.61$). Animals in the Experimental group usually began the trial wandering around the start area and then facing towards the container of choice. Performance of this group suggests that they learned how to locate the goal, in contrast with the poor learning of the Control group. In addition, during the last three acquisition sessions, toads from the Experimental group also showed a clear preference for the correct quadrant associated with the rewarded container directly cued by the two visual cues (58% of choices; Figure 3A). In contrast, animals of the Control group chose equally across all quadrants.

As typically observed (e.g., Muzio et al., 1992), weight variation (measured on a trial-by-trial basis) demonstrated that reward resulted in a significant amount of body weight change that paralleled the toads' better performance across training trials (data not shown). Weight variation means (g/100g) were 1.98 +/- 0.09 for the Experimental group, and 1.47 +/- 0.05 for the Control group.

The general performance of both Experimental and Control groups during the overtraining and testing period was not affected by the introduction of the probe trials (i.e., significant differences between groups were maintained, F(1, 9) = 32.16, p < 0.001, partial $\eta^2 = 0.78$; and no changes across sessions nor interaction were observed, ps > 0.5). These probe trials were applied to determine whether toads solved the task on the basis of a visual cue-guided response. An ANOVA reveals significant differences in the mean correct choices of both groups across test trials (F(1, 14) = 39.41, p < 0.001, partial $\eta^2 = 0.73$; see

Figure 3B). This fact indicates that the visual cues had controlled the toads' behavior in the Experimental group, guiding them toward the goal container.

Experiment 2: Effect of Distance from a Visual Cue to the Goal

In the previous experiment we showed that toads are capable of using visual cues for spatial orientation. Experiment 2 explored the effect of the distance from a visual cue to the goal on learning performance.

Method

Animals and apparatus. Eighteen experimentally naive adult male toads were obtained and maintained as described in the previous experiment. Standard weights varied between 98 and 125 g and were not statistically different across groups (ANOVA, F(2, 15) = 0.09, p > 0.5). Other conditions of maintenance and apparatus used were the same as in Experiment 1.

Procedure. Pretraining was the same as described in Experiment 1. Training started the following day. All animals received a total of 24 training sessions (one session per day, also of three trials each). Toads were randomly assigned to one of three groups: Above (n = 6), Near 10 (n = 6) and Near 30 (n = 6). Animals of the Above group had the accessible water container directly cued by a visual cue (beacon) located 10 cm above the container on the wall of the open field. Animals of the Near 10 and Near 30 groups had the cue displaced 10 and 30 cm respectively to the right (when facing the water container; Figure 4). The cue used in all cases was a multicolored horizontally striped square ($10 \times 10 \text{ cm}$) made of rubber (one of the cues used in Experiment 1). For all trials, the cue and associated container was placed at randomly changing goal points relative to the starting location. Similar containers with unreachable water were always placed at the other three goal points. Thus, animals could only solve the task using the visual cue as a reference. Toads

could not use the presence of reward as cue because, as in Experiment 1, it was also ensured the constancy of sensory cues from water in the four containers, both reinforced and nonreinforced (see Apparatus and Procedure sections of Experiment 1, reachable/unreachable water). Other procedural details were the same as described in Experiment 1.

Results and Discussion

reach criterion).

Figure 5A shows the percentage of correct responses for each group. An overall analysis of the training period revealed significant effects for group (F(2, 15) = 22.19, p < 0.001, partial $\eta^2 = 0.74$), across sessions (F(23, 345) = 6.35, p < 0.001, partial $\eta^2 = 0.30$), but no interaction between factors (F(46, 345) = 0.85, p > 0.5).

Weight variation means (g/100g) were also recorded and were 1.38 +/- 0.08 for the Above group, 1.20 +/- 0.07 for the Near 10 group, and 1.32 +/- 0.08 for the Near 30 group. In order to identify the source of the difference in correct choices observed among the groups, the number of sessions necessary to reach the learning criterion was analyzed (Figure 5B). An ANOVA revealed significant differences among the groups (F(2, 15) = 45.90, p < 0.001, partial $\eta^2 = 0.86$); all the three groups required a different number of sessions to reach criterion (LSD test, all comparisons p < 0.005). These results reveal that learning rate changes with the distance between the goal and the visual cue: the closer the

Experiment 3: Predictive Value and Competition between Visual Cues

visual cue to the goal the faster an animal learns to locate the goal (i.e., fewer sessions to

The fact that animals weighed nearer cues more heavily than distant ones was previously observed in a wide variety of groups of animals (see introduction) but never

before in amphibians. Thus, the Experiment 3 was designed in order to test in toads the competition between two visual cues in relation to their distance to the goal, analyzing how the distance to the goal affects the predictive value of each cue.

Method

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

Animals and apparatus. Fourteen experimentally naive adult male toads were obtained and maintained as described in the previous experiment. Standard weights varied between 80 and 130 g and were not statistically different across groups (F(1, 8) = 0.30, p > 0.5). Other conditions of maintenance and the apparatus used were the same as in the previous experiments.

Procedure. Pretraining was the same as described in Experiment 1. Training started the following day. This training protocol consisted of the same training session procedure as in the two previous experiments (one session per day of three trials each). Training was divided into two periods: acquisition (number of sessions to reach the learning criterion of 5/9 correct choices during three consecutive sessions) and overtraining and testing (a phase of 6 additional sessions). Toads were randomly assigned to one of two groups: Near-Near (n = 7) and Near-Far (n = 7). Animals of the Near-Near group were trained under a procedure in which the container with accessible water was surrounded by two visual cues: a red rhombus (10x 10 cm) on the left and a multicolored horizontally striped square (10 x 10 cm) on the right when facing the cues (Figure 6, Left panel). The cues were placed on the wall 10 cm away and up from the edge of the reinforced container (same condition as the Experimental group in Experiment 1). The position of the cues was inverted (i.e., rhombus on the right and square on the left) for three animals of this group for control purposes. Animals of the Near-Far group had one of the cues also positioned at 10 cm distant from the reinforced container (near cue) on the left, but the other one (far cue) was

located at the same height but between the opposite container and the container to the right (Figure 6, Right panel). In this case, the near cue was the rhombus for four animals and the square for three of them for control purposes.

As the goal container was placed at a randomly changing goal point relative to the starting point, for each trial the only way to reach the reinforced container was by using the visual cues as a reference. Other procedural details were the same as described in Experiment 1. Once the acquisition criterion was reached, the overtraining and testing phase began. The probe trials were intended to determine the predictive value of each visual cue according to its position relative to the goal. Tree types of probe trials were presented, two times each: 1) with both cues present, 2) with the cue on the right present and 3) with the cue on the left present. Water reward was removed during the probe trials (toads were not reinforced). Depending on the container chosen, the response was classified as either "Correct" or "Incorrect".

The percentage of correct responses per training session and body weight variation were recorded during acquisition. Unfortunately, for technical reasons, the weight variation data from four animals were lost. As such, the weight analysis only includes five animals in each group. During the test trials weight variation was not recorded as the animals did not have access to water.

Results and Discussion

Figure 7A shows the percentage of correct responses during training sessions for each group. A global analysis with a repeated-measures ANOVA for acquisition revealed significant differences between groups (F(1,12) = 9.19, p < 0.05, partial $\eta^2 = 0.43$) and across sessions (F(15, 180) = 2.64, p < 0.005, partial $\eta^2 = 0.18$), but no interaction effect (p

> 0.5). This result suggests that animals in both groups learned the location of the goal, but with some differences in their performance. The two groups reached the acquisition criterion at different times: the Near-Near group took an average of 16 sessions to reach criterion, while Near-Far group took 18 sessions. In order to determine the source of this between group difference during the acquisition period, learning rate (number of sessions to reach criterion) was analyzed (Figure 7B). An ANOVA revealed significant differences $(F(1, 12) = 17.45, p < 0.005, partial \eta^2 = 0.59)$, suggesting that the Near-Near group needed statistically fewer training sessions to locate the goal than the Near-Far group (16 sessions versus 18 sessions, respectively). According to these results, the cues presented to the animals in the Near-Near group seem to be more effective in learning to locate the goal, allowing animals to learn the task and orient faster (i.e., these toads took fewer sessions to reach criterion).

Means of weight variation (g/100g) were also recorded and were 1.16 +/- 0.06 for Near-Near group, and 1.15 +/- 0.06 for Near-Far group.

During the overtraining period the presentation of the probe trials did not affect performance in either group (group, session and interaction factors, all ps>0.5). By analyzing data from the different testing conditions, we established the predictive value of each cue (Figure 8). An ANOVA revealed nonsignificant differences between the groups' performance in each testing condition with two cues (F(1, 12) = 0.16, p > 0.5) or the cue available on the left -the near one for both groups- (F(1, 12) = 1.09, p > 0.1). When the test involved the cue on the right –in this case, near for one group and far for the othersignificant differences appeared (F(1, 12) = 8.33, p < 0.05, partial $\eta^2 = 0.41$). The results suggest that both cues seemed to be equally salient for animals of the Near-Near group;

they easily oriented using either of them alone. On the other hand, the cue on the right (far from the container) seemed to provide very little predictive value for animals of the Near-Far group. Hence, when the right cue was only available, animals found it difficult to locate the goal (in the latter case, their choice distribution did not differ from chance; groups vs.

chance F(1, 12) = 6.25, p > 0.1).

383 General Discussion

The goal of this study was to investigate cue-based navigation in an amphibian, the terrestrial toad *Rhinella arenarum*, under laboratory conditions and provide novel information for comparisons with findings in other groups of animals. In our series of three experiments we proved that an open field with intramaze visual cues can be used to test the importance of different visual cues for orientation by the toad *Rhinella arenarum*.

Results of Experiment 1 reveal that toads can use proximal intramaze visual cues as beacons to orient in space in an open field situation. The association between the visual cues and the position of the reinforced container could be easily established by toads in the Experimental group after 24 training sessions. This learning strategy enabled toads to maximize water gain during exposure to the reinforcement.

From the results of Experiment 2 it may be concluded that one visual cue (independent of its distance to the goal -above, 10 or 30 cm away-) was sufficient to orient toward the goal. However, a graded effect of distance was observed during acquisition.

Increasing distance with respect to the goal negatively affected the rate of acquisition; thus, the number of sessions necessary to reach the learning criterion was larger. As previously observed in mammals (Chamizo & Rodrigo, 2004), in the absence of any other relevant or causally related event, learning was possible even at relatively long distances between the

cue and the goal. In addition, this experiment reveals for the first time that this phenomenon is also present in amphibians.

Finally, the results of Experiment 3 accord with those expected on the basis of previous observations in mammals, birds, fish and invertebrates (see introduction): in amphibians increasing the distance from visual cues to the goal also diminishes their predictive value. This fact suggests that cues closer to the goal are considered more reliable for spatial orientation and "overshadow" more distant cues.

In this sense, our present results in toads confirm that proximity to the goal is determinant to establish cue relevance during spatial orientation, as predicted by the Rescorla and Wagner model (1972). Moreover, the terrestrial toad *Rhinella arenarum* relies mainly on proximal visual cues when orienting toward a water source in an open field situation. Thus, our data in toads contribute not only to understanding how amphibians process spatial information to locate a goal, but also shed light on this understudied vertebrate class, the first to adapt to terrestrial life. Overall, our current results in amphibians are in agreement with other data obtained from several non-mammal vertebrates, e.g., fish and reptiles, suggesting that the ability to learn and rely on visual cues to orient toward and reach a goal has an ancient evolutionary origin.

418	References
419	Adler, K. (1980). Individuality in the use of orientation cues by green frogs. Animal
420	Behaviour, 28, 413-425. http://dx.doi.org/10.1016/s0003-3472(80)80050-9
421	Barnard, C. (2004). Animal Behaviour. Mechanism, Development, Function and Evolution.
422	Pearson Prentice Hall.
423	Bennett, A. T. D. (1993). Spatial memory in a food storing corvid. <i>Journal of Comparative</i>
424	Physiology A, 173, 193-207. http://dx.doi.org/10.1007/bf00192978
425	Chamizo, V. D. & Rodrigo, T. (2004). Effect of absolute spatial proximity between a
426	landmark and a goal. Learning and Motivation, 35, 102-114.
427	http://dx.doi.org/10.1016/s0023-9690(03)00059-6
428	Chamizo, V. D., Manteiga, R. D. Rodrigo, T., & Mackintosh, N. J. (2006). Competition
429	between landmarks in spatial learning: The role of proximity to the goal. Behavioural
430	Processes, 71, 59-65. http://dx.doi.org/10.1016/j.beproc.2005.11.003
431	Cheng, K., Collett, T. S., Pickhard, A., & Wehner, R. (1987). The use of visual landmark
432	by honeybees: Bees weight landmarks according to their distance from the goal.
433	Journal of Comparative Physiology A, 161, 469-475.
434	http://dx.doi.org/10.1007/bf00603972
435	Dall'Antonia, P. & Sinsch, U. (2001). In search of water: orientation behaviour of
436	dehydrated natterjack toads, Bufo calamita. Animal Behaviour, 61, 617-629.
437	http://dx.doi.org/10.1006/anbe.2000.1627
438	Daneri, M. F., Casanave, E. B. & Muzio, R. N. (2011). Control of spatial orientation in
439	terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology.
440	http://dx.doi.org/10.1037/a0024242.

- Ingle, D. & Sahagian, D. (1973). Solution of a spatial constancy problem by goldfish.
- 442 *Physiological Psychology*, 1, 83-84. http://dx.doi.org/10.3758/bf03326873
- 443 IUCN (2010) IUCN Red List of Threatened Species. Version 2010.4.
- http://dx.doi.org/10.1080/14888386.2007.9712825
- Lee, S. A., Vallortigara, G., Flore, M., Spelke, E. S. & Sovrano, V. A.. (2013). Navigation
- by environmental geometry: the use of zebrafish as a model. *The Journal of*
- Experimental Biology, 216, 3693-3699. http://dx.doi.org/10.1242/jeb.088625
- López, J. C., Rodríguez, F., Gómez, Y., Vargas, J.P., Broglio, C. & Salas, C. (2000). Place
- and cue learning in turtles. *Animal Learning and Behavior*, 28, 360-372.
- 450 http://dx.doi.org/10.3758/bf03200270
- 451 López, J. C., Gómez, Y., Rodríguez, F., Broglio, C., Vargas, J.P. & Salas, C. (2001). Spatial
- learning in turtles. *Animal Cognition*, 4, 49-59.
- 453 http://dx.doi.org/10.1007/s100710100091
- Lüddecke, H. (2003). Space use, cave choice and spatial learning in the dendrobatid frog
- 455 *Colostethus palmatus. Amphibia-Reptilia, 24,* 37-46.
- 456 http://dx.doi.org/10.1163/156853803763806920
- 457 Macphail, E. M. (1982). *Brain and intelligence in vertebrates*. Oxford University Press.
- 458 http://dx.doi.org/10.2307/1422556
- 459 Milgram, N., Adams, B., Callahan, H., Head, E., Mackay, B., Thirlwell, C. & Cotman, C.
- 460 (1999). Landmark Discrimination Learning in the Dog. Learning & Memory, 6, 54-
- 461 61.
- Muzio, R. N. (1999). Aprendizaje instrumental en anfibios. Revista Latinoamericana de
- 463 *Psicología*, 31, 35-47.

464 Muzio, R. N. (2012). Aprendizaje en anfibios, el eslabón perdido: Un modelo simple 465 cerebral en el estudio de conductas compleias. Cuadernos de Herpetología, 27(2). 466 Online. 467 Muzio, R. N., Pistone Crevdt, V., Iurman, M., Rinaldi, M. A., Sirani, B. & Papini, M. R. 468 (2011). Incentive or habit learning in amphibians? *PLoS ONE*, 6(11), e25798. 469 doi:10.1371/journal.pone.0025798 470 Muzio, R. N., Segura, E. T., Papini, M. R. (1992). Effect of schedule and magnitude of 471 reinforcement on instrumental acquisition and extinction in the toad, *Bufo arenarum*. 472 Learning and Motivation, 23, 406-429. http://dx.doi.org/10.1016/0023-473 9690(92)90004-6 474 NIH Guide for the Care and Use of Laboratory Animals. Eighth Edition. 2011. National 475 Academies Press Ed. 476 Pecchia, T. & Vallortigara, G. (2010). View-based strategy for reorientation by geometry. 477 The Journal of Experimental Biology, 213, 2987-2996. 478 http://dx.doi.org/10.1242/jeb.043315 479 Rescorla, R. A. & Wagner, A.R. (1972). A theory of Pavlovian conditioning: variations in 480 the effectiveness of reinforcement and nonreinforcement. In A. H. Black and W. F. 481 Prokasy (Eds.), Classical Conditioning II: Current Research and Theory (pp. 64-99). 482 New York: Appleton Century Crofts. 483 Ruibal, R. (1962). The adaptive value of bladder water in the toad, *Bufo cognatus*. 484 Physiological Zoology, 35, 218-223. 485 Salas, C., Rodríguez, F., Vargas, J. P., Durán, E., & Torres, B. (1996). Spatial learning and 486 memory deficits alter telencephalic ablation in goldfish trained in place and turn maze

487	procedures. Behavioral Neuroscience, 110, 965-980. http://dx.doi.org/10.1037//0735-
488	7044.110.5.965
489	Shettleworth, S. J. (2010). Cognition, Evolution, and Behavior. Second Edition. New York:
490	Oxford University Press.
491	Sinsch, U. (1987). Orientation behavior of toads (Bufo bufo) displaced from the breeding
492	site. Journal of Comparative Physiology A, 161, 715-727.
493	http://dx.doi.org/10.1007/bf00605013
494	Sovrano, V. A., Bisazza, A. & Vallortigara, G. (2005). Animals' use of landmarks and
495	metric information to reorient: effects of the size of the experimental space.
496	Cognition, 97, 121-133.
497	Sovrano, V. A., Bisazza, A. & Vallortigara, G. (2007). How fish do geometry in large and
498	in small spaces. Animal Cognition, 10, 159-168.
499	Spetch, M. L. (1995). Overshadowing in landmark learning: Touch-screen studies with
500	pigeons and humans. Journal of Experimental Psychology: Animal Behavior
501	Processes, 21, 166–181. http://dx.doi.org/10.1037//0097-7403.21.2.166
502	Tinbergen, N., & Kruyt, W. (1938). Über die Orientierung des Bienenwolfes (philanthus
503	triangulum Fabr.). III. Die Bevorzugung bestimmter Wegmarken. Zeitschrift für
504	vergleichende Physiologie, 25, 292-334.
505	Tommasi, L., Chiandetti, C., Pecchia, T., Sovrano, V. A. & Vallortigara, G. (2012). From
506	natural geometry to spatial cognition. Neuroscience and Biobehavioral Reviews, 36,
507	799-824. http://dx.doi.org/10.1016/j.neubiorev.2011.12.007
508	

509	Footnote to title page
510	This research was supported by Grant UBACYT P052 from the University of
511	Buenos Aires and by Grant PIP 3196 from the CONICET (Consejo Nacional de
512	Investigaciones Científicas y Técnicas) Argentina, both directed by Dr. Rubén N. Muzio.
513	The authors want to acknowledge Dr. Victoria D. Chamizo, Dr. Verner P. Bingman,
514	and to the three anonymous reviewers for their helpful comments on earlier versions of the
515	manuscript.
516	Correspondence concerning this article should be addressed to Dr. Rubén N. Muzio,
517	Grupo de Aprendizaje y Cognición Comparada. Laboratorio de Biología del
518	Comportamiento, Instituto de Biología y Medicina Experimental (IBYME-CONICET).
519	Vuelta de Obligado 2490, CP 1428 - Ciudad de Buenos Aires, ARGENTINA. E-mail:
520	rnmuzio@gmail.com
521	

522	Figure Legends
523	Figure 1. Diagram of the open field environment used, showing the spatial relationship
524	among the four plastic green water containers (placed North, West, East, and South), only
525	one of which (light blue) would be accessible to deionized water as reward. Toad drawing
526	indicates the central start position used at the beginning of each trial. Schematic is shown
527	for the Experimental group condition of Experiment 1, with the two visual cues on the
528	walls (a red rhombus on the left and a multicolored horizontally striped square on the right
529	when facing the cues and the reinforced water container). The actual reinforced water
530	container position (with the visual cues) was randomly rotated across trials. For the Control
531	group there were no visual cues on the walls.
532	
533	Figure 2. Percentage of correct responses during acquisition (24 sessions), and overtraining
534	and testing (8 sessions) in the Experimental $(n = 6)$ and Control $(n = 6)$ groups of
535	Experiment 1. Means and confidence intervals (alpha = 0.05) are plotted.
536	
537	Figure 3. Panel A: Distribution of percentage of correct quadrant choices across the last
538	three acquisition trials (i.e., when animals had reached criterion) for the Experimental and
539	Control groups of Experiment 1. Quadrants were differentiated as Correct (containing the
540	rewarded container), Right, Left and Opposite (according to relative position with respect
541	to the correct container quadrant). Panel B: Mean percentage of correct choices across test
542	trials (8 tests) for both groups. Means and confidence intervals ($alpha = 0.05$) are plotted.
543	
544	Figure 4. Spatial relationship between the goal (rewarded container) and the cue (a
545	multicolored horizontally striped square) for the three groups of Experiment 2. Above

546 group had the goal directly cued 10 cm above it. Near 10 and Near 30 groups had their cues 547 displaced 10 and 30 cm, respectively, to the right. 548 549 Figure 5. Panel A: Percentage of correct responses during acquisition (24 sessions) for the 550 Above (n = 6), Near 10 (n = 6) and Near 30 (n = 6) groups of Experiment 2. **Panel B**: 551 Number of sessions to reach the learning criterion for each of the three groups. Means and 552 confidence intervals (alpha = 0.05) are plotted. 553 554 Figure 6. Schematic of the open field environment used for the toads of Experiment 3. 555 showing the spatial relationship among the four plastic green water containers (placed 556 North, West, East, and South), with one (light blue) containing accessible deionized water 557 as reward, and the two possible positions of the visual cues on the walls. Group Near-Near 558 had the two cues (a multicolored horizontally striped square on the left and a red rhombus 559 on the right) relatively near to the reinforced water container (Left panel). Group Near-Far 560 had one of the two cues (the multicolored horizontally striped square back on the left) 561 relatively farther away from the goal, and the other cue (the red rhombus on the right) 562 relatively near to the goal (Right panel). Toad drawing indicates the central start position 563 used at the beginning of each trial. 564 565 Figure 7. Panel A: Percentage of correct responses during acquisition (16 and 18 sessions), 566 and overtraining and testing (6 sessions) for the Near-Near (n = 7) and Near-Far (n = 7)567 groups of Experiment 3. Panel B: Number of sessions to reach the learning criterion for 568 both groups of Experiment 3. Means and confidence intervals (alpha = 0.05) are plotted.

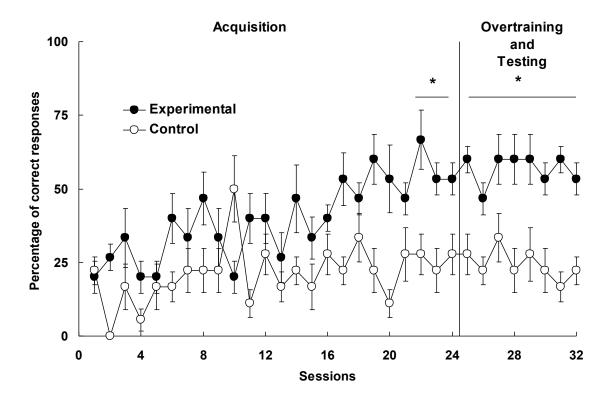
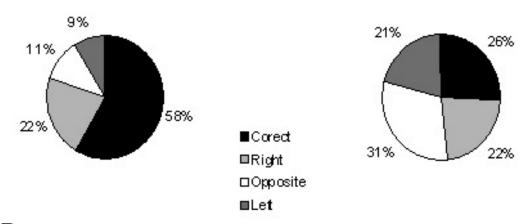
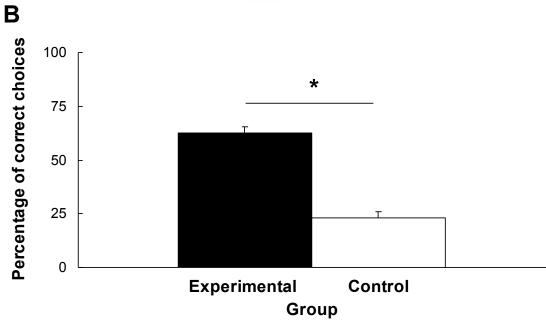
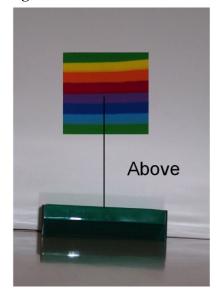
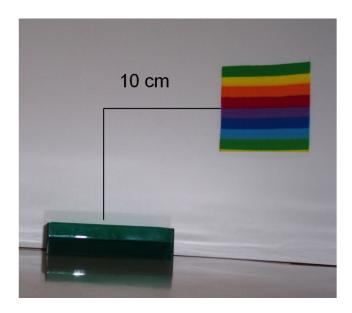
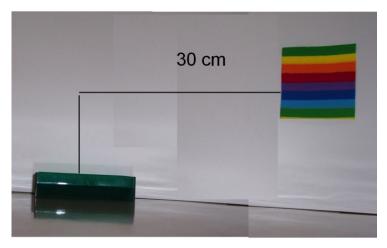

570	Figure 8. Percentage of correct choices during test trials (6 tests, 2 each for the 3 test
571	conditions for all animals) for the Near-Near and Near-Far groups of Experiment 3. Means
572	and confidence intervals (alpha = 0.05) are plotted.
573	

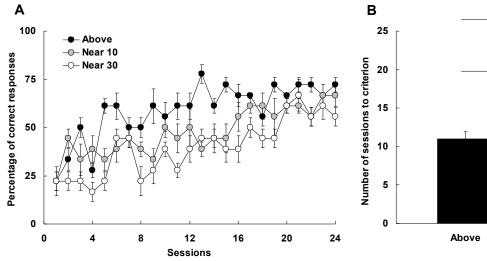
Figure 1 575

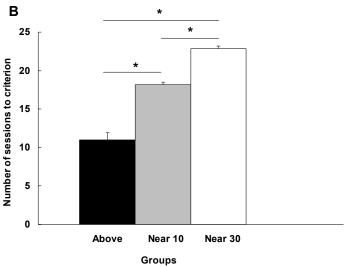
Experimental Group

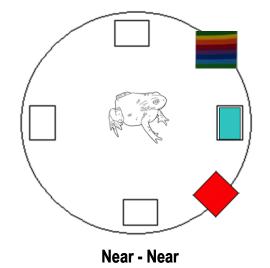

Figure 2

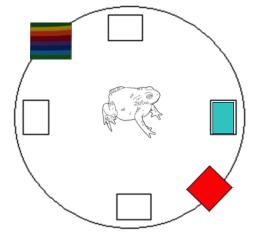
578 Figure 3579

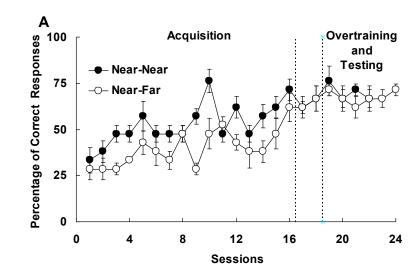





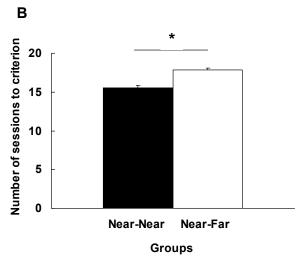

Figure 4






582 Figure 5583


Figure 6 585



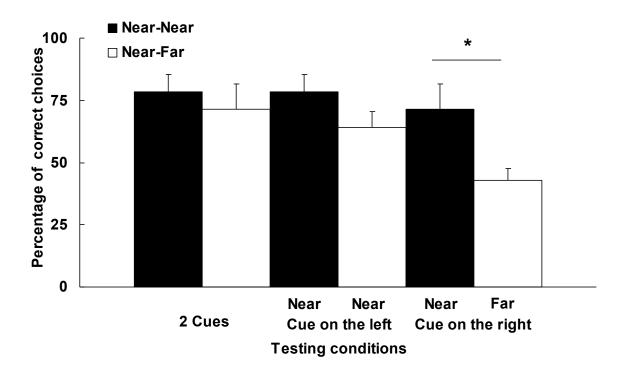

Near - Far

Figure 7 587

Figure 8

