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Abstract

In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble 
walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In 
this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic 
detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and 
the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions 
of the net force acting on the wall, which can be readily evaluated for specific models. We also study the 
back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force 
away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from 
detonations and runaway walls.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A first-order phase transition of the universe proceeds by nucleation and expansion of bub-
bles, and may have different cosmological consequences, depending on the velocity of bubble 
growth. For instance, the generation of the baryon asymmetry of the universe in the electroweak 
phase transition is most efficient for non-relativistic bubble walls, and is suppressed as the bub-
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ble wall velocity approaches the speed of sound in the plasma [1]. In contrast, the formation of 
gravitational waves may be sizeable if the wall velocity is supersonic [2]. These cosmological 
consequences generally depend not only on the wall velocity but also on the bulk motions of the 
plasma caused by the wall. For instance, gravitational waves are generated by bubble collisions 
[2–4] as well as by turbulence [5–7] and sound waves [8].

The propagation of the phase transition fronts (bubble walls) is affected by hydrodynamics in 
a non-trivial manner (see, e.g., [9–13]). The wall motion is driven essentially by the difference 
of pressure between the two phases. This force grows with the amount of supercooling, i.e., the 
further down the temperature descends below the critical temperature, the larger the pressure 
difference between phases. As a consequence, the driving force is very sensitive to the (inhomo-
geneous) reheating which occurs due to the release of latent heat.

Besides, the microscopic interactions of the particles of the plasma with the wall cause a fric-
tion force on the latter (see, e.g., [15]). Computing the friction force is a difficult task, and for 
many years only the non-relativistic (NR) case was studied [16]. In this approximation, a wall 
velocity vw � 1 is assumed, and the friction force scales as vw. Beyond the NR regime, a depen-
dence vwγw was usually assumed, where γw = 1/

√
1 − v2

w . As a consequence of this scaling, the 
wall would always reach a terminal velocity. More recently, the total force acting on the wall was 
calculated in the ultra-relativistic (UR) limit, γw � 1 [17]. The result does not allow to discrim-
inate the friction or the hydrodynamic effects. Nevertheless, the net force Fnet is independent 
of vw , which means that the friction saturates as a function of vwγw . As a consequence, the wall 
may run away. For intermediate velocities, microscopic calculations of the friction were hardly 
attempted [18,19]. To compute the wall velocity, phenomenological interpolations between the 
NR and the UR limits have been considered in Refs. [20,21].

Leaving aside the determination of the wall velocity, the perturbations caused in the plasma 
by the moving wall have been extensively studied for the case of a stationary solution [22–25]. 
Different hydrodynamic regimes can be established, depending on the wall velocity. For a sub-
sonic wall the hydrodynamic solution is a weak deflagration, in which the wall is preceded by a 
shock wave. For a supersonic wall, we have a Jouguet deflagration if the wall velocity is smaller 
than the Jouguet velocity. In this case, the fluid is disturbed both in front and behind the wall. 
For higher wall velocities, the solution is a weak detonation. For the detonation, the velocity is 
so high that the fluid in front of the wall is unaffected. In this case, the wall is followed by a 
rarefaction wave.

The steady-state hydrodynamics can be investigated as a function of thermodynamic param-
eters (such as the latent heat) and of the wall velocity (i.e., considering vw as a free parameter). 
Thus, in particular, the kinetic energy in bulk motions of the plasma, which is relevant for the 
generation of gravitational waves, was computed in Refs. [20,24] for the whole velocity range 
0 < vw < 1. These results are useful for applications, as they do not depend on a particular 
calculation of the wall velocity for a specific model.

For the runaway case, the hydrodynamics was considered in Ref. [20]. However, the results 
rely on the decomposition of the total force into driving and friction forces, and are sensitive 
to approximations. The decomposition of the UR force was discussed also in Ref. [21]. Since 
the net force is known [17], it is actually not necessary, in the UR limit, to determine the friction 
component in order to study the wall motion. However, identifying the forces acting on the wall is 
useful, in the first place, to understand the hydrodynamics, and, in the second place, to construct 
a phenomenological model for the friction, which allows to compute the wall velocity away from 
the UR limit.
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In this paper we consider ultra-relativistic walls and we study, on the one hand, the hydrody-
namics as a function of the wall acceleration, and, on the other hand, the role of hydrodynamics 
and friction in the determination of the net force. In particular, we obtain the energy in bulk fluid 
motions as a function of the net force Fnet, in the whole range of runaway solutions. We also dis-
cuss the effect of reheating on the force, and we compare with approximations used in previous 
approaches. We apply these results to the estimation of the gravitational wave signal from phase 
transitions.

The paper is organized as follows. In Sec. 2 we review the dynamics of the Higgs–fluid system. 
In Sec. 3 we consider the hydrodynamics of detonations and runaway walls for given values of 
the wall velocity and acceleration, while in Sec. 4 we consider the wall equation of motion and 
we analyze the dependence of the energy distribution on thermodynamic and friction parameters. 
In Sec. 5 we estimate the amplitude of the gravitational waves as a function of all these quantities. 
We summarize our conclusions in Sec. 6. In Appendix A we find analytic results for the efficiency 
factor for the case of planar walls, and we provide fits for the case of spherical walls.

2. The Higgs–fluid system

To describe the phase transition, we shall consider a system consisting of an order-parameter 
field φ(x) (the Higgs field) and a relativistic fluid (the hot plasma). The latter is characterized by 
a four-velocity field uμ(x) and the temperature T (x). The phase transition dynamics is mostly 
determined by the free-energy density, also called finite-temperature effective potential. For a 
given model, it is given by

F(φ,T ) = V (φ) + VT (φ), (1)

where V (φ) is the zero-temperature effective potential and VT (φ) the finite-temperature correc-
tion. To one-loop order, the latter is given by [26]

VT (φ) =
∑

i

(±gi)T

∫
d3p

(2π)3
log

(
1 ∓ e−Ei/T

)
, (2)

where the sum runs over particle species, gi is the number of degrees of freedom of species i, the 

upper sign stands for bosons, the lower sign stands for fermions, and Ei =
√

p2 + m2
i (φ), where 

mi are the Higgs-dependent masses.
We may have a phase transition if the free-energy density has two minima φ±(T ), correspond-

ing to the two phases of the system. At high temperatures the absolute minimum is φ+, while at 
low temperatures the absolute minimum is φ−. Hence, the system is initially in a state character-
ized by φ(x) ≡ φ+, which we shall refer to as “the + phase”. Similarly, at late times the universe 
is in “the − phase”, characterized by φ(x) ≡ φ−. In the case of a first-order phase transition, 
there is a temperature range in which these minima coexist in the free energy, separated by a 
barrier. The critical temperature Tc is given by the condition F(φ+, Tc) = F(φ−, Tc). Below the 
critical temperature, bubbles of the − phase appear, inside which we have φ = φ−.

The growth of a bubble can be studied by considering the equations for the variables φ, uμ, T . 
The dynamics of the fluid variables can be obtained from the conservation of the energy–
momentum tensor. For the Higgs–fluid system we have (see, e.g. [10])

Tμν = ∂μφ∂νφ − gμν

[
1
∂αφ∂αφ −F(φ,T )

]
− uμuνT

∂F
(φ,T ), (3)
2 ∂T
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with gμν = diag(1, −1, −1, −1). Conservation of T μν gives

∂μ

[
T

∂F
∂T

uμuν −Fgμν

]
=�φ ∂νφ. (4)

These equations govern the fluid dynamics and also contain the interaction of the fluid with the 
scalar field φ. The evolution of φ is governed by a finite-temperature equation of motion of the 
form [15]

�φ + ∂F
∂φ

+
∑

i

gi

dm2
i

dφ

∫
d3p

(2π)32Ei

δfi = 0. (5)

Here, the derivative of the finite-temperature effective potential takes into account quantum and 
thermal corrections to the tree-level field equation, where the thermal corrections are calculated 
from the equilibrium distribution functions f eq

i (p) = 1/(eEi/T ∓ 1). On the other hand, δfi are 
the deviations from the equilibrium distributions. The last term constitutes a damping due to 
the presence of the plasma. Computing δfi generally involves solving a system of Boltzmann 
equations which take into account all the particles interactions.

In the bubble configuration, the bubble wall separates the two phases, i.e., the regions with 
φ = φ+ and φ = φ−. Thus, by definition, the field varies only inside the bubble wall. As a 
consequence, away from the wall, Eqs. (4) give equations for the fluid alone,

∂μT
μν
fl = 0, with T

μν
fl = uμuνw − gμνp, (6)

where p is the pressure and w is the enthalpy density. In each phase, these quantities are given 
by the free-energy density F±(T ) =F(φ±, T ) through the well-known thermodynamic relations 
p = −F , w = T dp/dT = e + p, where e is the energy density. The energy involved in the wall 
and fluid motions and in the reheating comes from the difference of energy density between 
the two phases. This energy is released at the phase transition fronts. The latent heat is defined 
as L = e+(Tc) − e−(Tc). For the treatment of hydrodynamics, the wall can be assumed to be 
infinitely thin. Therefore, we shall simplify the system by considering the fluid equations (6)
together with an equation of motion for the wall (rather than for the Higgs field).

An equation for the wall can be obtained from Eq. (5) by multiplying by ∂μφ and integrating 
in the direction perpendicular to the wall (see Sec. 4). In this way, from the first term in (5) we 
obtain a term which is proportional to the wall acceleration. If we ignore hydrodynamics (i.e., 
temperature gradients), the second term gives the difference between the pressures on each side 
of the wall, p− − p+. This is a positive force acting on the wall. In contrast, the deviations from 
equilibrium δfi in the last term turn out to oppose the wall motion. It is well known that, for a 
small wall velocity vw , the last term in (5) gives a term proportional to −vw in the wall equation, 
i.e., a friction force. As a consequence of the friction, the wall may reach a steady-state regime of 
constant velocity. However, it is known that such a steady state does not always exist, either due 
to instabilities which make the wall motion turbulent [13], or just because the friction is not high 
enough to prevent the wall to run away [17]. In the latter case, the wall quickly reaches velocities 
vw � 1, with increasingly high values of the gamma factor.

Interestingly, the ultra-relativistic case turns out to be much simpler than the non-relativistic 
one. This is because particles which cross the UR wall do not have time to interact, and Boltz-
mann equations need not be considered. In this case, it is simpler to compute the complete 
occupancies fi rather than the deviations δfi , i.e., to consider the second and third terms of 
Eq. (5) simultaneously. Macroscopically, this amounts to calculating the total force acting on the 
wall. The result (for particle masses which vanish in the + phase) is a net force given by [17]
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Fnet = V (φ+) − V (φ−) −
∑

i

gici

T 2+m2
i (φ−)

24
, (7)

where ci = 1 (1/2) for bosons (fermions), and T+ is the temperature of the unperturbed fluid in 
front of the wall. Notice that this force does not depend on the wall velocity. As a consequence, 
if the wall reaches the UR regime with a positive Fnet, then it will run away.

In order to determine the actual value of vw, the force acting on the wall in the whole range 
0 < vw < 1 is needed. The friction force seems to be generally a growing function of vw, although 
the usual NR approximations break-down around the speed of sound [19]. The fact that Fnet
becomes independent of vw in the ultra-relativistic limit implies that the friction force saturates 
as a function of vwγw . A phenomenological model for the friction force, which interpolates 
between the NR and UR regimes, was introduced in Ref. [21]. It consists in replacing the last 
term in the field equation (5) with a simpler damping term,

K = f (φ)uμ∂μφ√
1 + [g(φ)uμ∂μφ]2

, (8)

where f and g are scalar functions which can be chosen suitably to give the correct φ dependence 
of the friction. Considering Eq. (8) in the wall frame, it was shown in [21] that this term gives a 
friction force which has the correct velocity dependence in the NR and UR limits. In Sec. 4 we 
shall repeat the derivation in the plasma frame.

3. Hydrodynamics

Let us consider a wall moving with velocity vw. We will assume that the wall is infinitely 
thin, and that the symmetry of the problem is such that the velocity of the fluid is perpendicular 
to the wall (e.g., spherical or planar symmetry). Thus, the fluid is characterized by two variables, 
namely, the temperature T and a single component of the velocity, v. We are interested in super-
sonic walls, i.e., with vw > c+, where c+ = √

dp+/de+ is the speed of sound in the plasma in 
the + phase. Concretely, we shall only consider wall velocities which are so high that the fluid in 
front of the wall is unperturbed. Therefore, in the + phase the fluid velocity v+ vanishes and the 
temperature T+ is set by the nucleation temperature. We will also assume that the fluid behind 
the wall is in local equilibrium, so that the variables T and v are well defined everywhere. Inside 
the bubble, the fluid variables are given by Eqs. (6). Their values v−, T− next to the wall can 
be obtained by integrating the equations ∂μT μν = 0 across the interface. Besides, we have the 
boundary condition that the fluid velocity vanishes at the bubble center.

3.1. Detonations

In the steady-state case, it is usual to consider the reference frame of the wall, so that time 
derivatives vanish. We shall consider instead the rest frame of the unperturbed fluid in front of the 
wall (the plasma frame), where it is easier to take the limit vw → 1. We thus have v+ = 0. We can 
obtain v−, T− as functions of vw, T+ from the continuity equations for energy and momentum.

Consider a piece of wall of surface area A which is small enough that it can be regarded as 
planar. Locally, we place the coordinate system so that the wall moves in the positive z-direction 
with velocity vw . Thus, we only need to consider time and z components of T μν . In a small time 
	t the wall moves a distance 	z = vw	t . During this time, we have an incoming energy flux 
from the left of the wall, given by T 0z− , and an outgoing flux to the right, given by T 0z+ . Therefore, 
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a net energy (T 0z− − T 0z+ )A	t will accumulate in the interface unless it is transferred to the 
plasma. The change of energy in the plasma in the volume A	z is given by (T 00− − T 00+ )Avw	t . 
For a steady-state wall the energy balance gives

T 0z− − T 0z+ = (T 00− − T 00+ )vw. (9)

Similarly, considering the momentum density T z0 and momentum flux T zz, we obtain

T zz− − T zz+ = (T z0− − T z0+ )vw. (10)

On each side of the wall, we have T μν = T
μν
fl given by Eq. (6). In our reference frame we 

have uμ = (γ, 0, 0, γ v), with γ = 1/
√

1 − v2. Since v+ = 0 and v− > 0, we have

T 00+ = e+, T 0z+ = T z0+ = 0, T zz+ = p+, (11)

and

T 00− = w−γ 2− − p−, T 0z− = T z0− = w−γ 2−v−, T zz− = w−γ 2−v2− + p−. (12)

Inserting Eqs. (11)–(12) in (9)–(10), we obtain the system of equations

w−(vw − v−) = (p− + e+)vw(1 − v2−), (13)

w−(vw − v−)v− = (p− − p+)(1 − v2−), (14)

from which we readily obtain

v−vw = p− − p+
e+ + p−

,
v−
vw

= e− − e+
e− + p+

. (15)

These expressions are similar, but different, to the usual expressions for v+ and v− in the wall 
frame.

Since the variables w, p, e, T are related by the equation of state (EOS), Eqs. (15) can be 
solved for, say, w− and v− as functions of w+ and vw . It is not difficult to see that the derivatives 
∂w−/∂vw|T+ and ∂v−/∂vw|T+ diverge for vw such that2

vw − v−
1 − vwv−

= c−, (16)

where c− = √
dp−/de− is the speed of sound in the − phase. The left-hand side of Eq. (16)

gives the value of the fluid velocity in the reference frame of the wall. Therefore, the mentioned 
divergence occurs when the outgoing flow velocity in the wall frame reaches the speed of sound. 
This indicates that the hydrodynamics becomes too strong at this point. For a detonation, the 
incoming flow velocity is given by vw, which is supersonic. Detonations are divided into weak 
detonations, for which the outgoing flow is supersonic too, strong detonations, for which the 
outgoing flow is subsonic, and Jouguet detonations, which are characterized by the condition 
(16). This means that in the plasma frame, weak detonations correspond to smaller values of v−
(i.e., to solutions which do not perturb the fluid strongly) while strong detonations correspond to 
higher values of v−.

The behavior of v− as a function of vw is shown in Fig. 1 for a simple equation of state 
(the bag EOS) considered below. The upper branch corresponds to strong detonations, the lower 

2 This can be seen by differentiating Eqs. (13)–(14) for fixed T+ and using the relation dp− = dw−/(1 + c2−) (see 
also [14]).
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Fig. 1. The fluid velocity behind the wall as a function of the wall velocity for the bag EOS (see below), for several values 
of α = L/(3w+). (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

branch corresponds to weak detonations, and the red dots indicate the Jouguet point. The above-
mentioned divergence of ∂v−/∂vw|T+ can be observed in the figure. It causes vw to be a min-
imum at the Jouguet point. As a consequence, for detonations the wall velocity is in the range 
vJ ≤ vw < 1, where vJ (T+) is velocity of the Jouguet detonation. It is well known that strong 
detonations are not compatible with the solutions for the fluid profile behind the wall. Therefore, 
the upper curves in Fig. 1 do not correspond to physical solutions. Weak detonations become 
weaker (i.e., v− decreases) for higher wall velocities. In the limit vw → 1, Eqs. (15) become

e− − p− = e+ − p+, v− = p− − p+
e+ + p−

= e− − e+
e+ + p−

. (17)

The first of these equations gives the temperature T− as a function of T+ for an ultra-relativistic 
stationary solution. The second one gives the fluid velocity behind the interface.

3.2. Runaway walls

If the wall is accelerated, we have to take into account the fact that a part of the energy 
accumulates in the wall [17]. In the time 	t , an amount of energy A	σ is accumulated in a 
surface area A of the interface, where σ is the surface energy density. Hence, the energy balance 
now gives

T 0z− − T 0z+ = (T 00− − T 00+ )vw + dσ

dt
. (18)

Similarly, since the momentum of a piece of wall is given by Aσvw, we have

T zz− − T zz+ = (T z0− − T z0+ )vw + d(vwσ)
. (19)
dt
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After a certain (generally short) period of time, the accelerated wall will either reach a terminal 
velocity or accelerate to ultra-relativistic velocities. The ultra-relativistic accelerated regime is 
similar to the steady-state case in the sense that the wall velocity is essentially a constant, vw � 1
(although γw and σ vary). In this limit we have

dσ

dt
= d(vwσ)

dt
= Fnet, (20)

where Fnet is the net force per unit area acting on the wall. Inserting Eqs. (11)–(12) in (18)–(19)
we obtain

e− − p− = e+ − p+ − 2Fnet, v− = w− − w+
w− + w+

. (21)

For Fnet = 0, Eqs. (21) match the ultra-relativistic detonation case, Eq. (17). From Eqs. (21) we 
may obtain the temperature T− and the velocity v− as functions of Fnet and T+. We see that, for 
a constant net force, v− and T− are constant, like in the stationary case.

3.3. Fluid profiles

The profiles of v and T behind the wall are a solution of Eqs. (6) with boundary conditions 
v = v−, T = T− at the wall. For a system with spherical, cylindrical or planar symmetry, the 
problem is 1 + 1 dimensional, since the fluid profile depends only on time and on the distance r

from the center, axis or plane of symmetry [22]. Besides, since there is no distance scale in the 
fluid equations, it is customary to assume the similarity condition, namely, that the solutions 
depend only on the variable ξ = r/t . With this assumption, one obtains the equation for the wall 
velocity [24]

γ 2(1 − vξ)

[
1

c2−

(
ξ − v

1 − ξv

)2

− 1

]
v′ = j

v

ξ
, (22)

where a prime indicates a derivative with respect to ξ , and j = 2, 1, or 0 for spherical, cylindrical, 
or planar walls, respectively. The enthalpy profile is given by the equation

w′

w
=

(
1

c2−
+ 1

)
ξ − v

1 − ξv
γ 2v′. (23)

It is important to note that the similarity condition is compatible with a wall which is placed at 
a fixed value of ξ , namely, ξw = vw . For an accelerated wall, this condition will not be compati-
ble, in general, with the boundary conditions at the interface. Nevertheless, in the ultra-relativistic 
limit, the wall position corresponds essentially to the constant value ξw = 1. Indeed, as we have 
seen, the values of T− and v− are constant in this limit for a constant Fnet. Therefore, the fluid 
profiles for the runaway solution can be obtained from Eqs. (22)–(23), like in the detonation case.

3.4. The bag EOS

In order to solve the hydrodynamic equations we need to consider a particular equation of 
state. We shall consider the bag EOS, in which the two phases consist of radiation and vacuum 
energy. This approximation has been widely used for simplicity, and also in order to obtain 
model-independent results which depend on a few physical quantities. Setting the vacuum energy 
in the low-temperature phase to zero, the model depends on three physical parameters, which we 
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may choose to be the critical temperature Tc, the latent heat L, and the radiation constant of the 
high-temperature phase, a. Thus, we write

p+(T ) = 1

3
aT 4 − L

4
, p−(T ) = 1

3

(
a − 3L

4T 4
c

)
T 4. (24)

The energy density of the high-temperature phase is of the form e+(T ) = aT 4 + ε, where the 
false-vacuum energy density is given by ε = L/4. In the low-temperature phase, the energy 
density is of the form e−(T ) = a−T 4, with a radiation constant given by a− = a(1 − 3αc), 
where

αc = ε/(aT 4
c ). (25)

We define the usual bag variable

α ≡ ε/(aT 4+) = L/(3w+). (26)

The enthalpy density is given by w± = (4/3)a±T 4± (with a+ ≡ a). For the bag EOS the speed of 
sound is the same in both phases, c± = 1/

√
3.

From Eqs. (15) we obtain the fluid variables behind a weak detonation wall,

v− = 3α − 1 + 3(1 + α)v2
w −

√[
3α − 1 + 3(1 + α)v2

w

]2 − 12α(2 + 3α)v2
w

2(2 + 3α)vw

, (27)

w−
w+

= γ 2
w

3

[
1 − 3α + 3(1 + α)v2

w − 2
√(

1 − 3α + 3(1 + α)v2
w

)2 − 12v2
w

]
(28)

(there is also a solution with a + sign in front of the square roots, corresponding to strong 
detonations). Notice that the fluid velocity and the enthalpy ratio depend only on the variable α
and the wall velocity. On the other hand, the temperature is given by

T 4−
T 4+

= 1

1 − 3αc

w−
w+

. (29)

The Jouguet velocity is obtained by considering the condition (16) together with Eqs. (15). For 
the bag EOS we obtain

vJ =
√

2α + 3α2 + 1√
3(1 + α)

. (30)

The ultra-relativistic limit can be obtained either by taking the limit vw → 1 in Eqs. (27)–(28), 
or directly from (17). We have

w−
w+

= 1 + 3α, v− = 3α

2 + 3α
(UR detonation). (31)

For a runaway wall we obtain, from Eqs. (21),

w−
w+

= 1 + 3(α − F̄ ), v− = 3(α − F̄ )

2 + 3(α − F̄ )
(runaway), (32)

where
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Fig. 2. The fluid velocity behind the wall as a function of the wall velocity for the case of a detonation (left panel) and as 
a function of the net force for the case of a runaway wall (right panel).

F̄ ≡ Fnet

aT 4+
= 4

3

Fnet

w+
. (33)

Notice that Eqs. (32) match the detonation case for Fnet = 0. On the other hand, as Fnet increases, 
T− and v− decrease. Hence, the hydrodynamics becomes weaker for larger acceleration. This 
behavior is similar to the detonation case, in which the higher the wall velocity, the weaker the 
hydrodynamics (see Fig. 2). This is related to the fact that the hydrodynamics obstructs the wall 
motion [11,12]. Moreover, we see that for F̄ = α we have w− = w+ and v− = 0, i.e., the fluid 
remains unperturbed after the passage of the wall.

The condition F̄ = α sets a maximum value for the net force, which is given by the false 
vacuum energy density, Fmax = ε. To understand this physically, notice that the force which 
drives the wall motion is essentially given by the pressure difference between the two phases. 
This force vanishes at the critical temperature and reaches its maximum at zero temperature. 
At T = 0 the pressure difference is just given by the zero-temperature effective potential, and 
coincides with the false-vacuum energy density. In the bag model, this is given by the parameter ε

(at finite temperature there is also a friction force due to the plasma, but at zero temperature the 
friction force vanishes). Therefore, Fnet can reach the maximum value ε if the phase transition 
occurs at T+ = 0. However, such an extreme supercooling is not likely in concrete physical 
models.

For the bag EOS it is relatively simple to obtain the fluid profiles, since c− is a constant. 
However, except for the planar case, the fluid equations (22)–(23) must be solved numerically. 
Behind the wall, the solutions which fulfil the boundary condition of a vanishing fluid velocity 
at ξ = 0 are rarefaction waves, in which v(ξ) actually vanishes for 0 < ξ < c− and grows for 
ξ > c− up to the boundary value v− at ξ = ξw (see e.g. [20,24]). The temperature and pressure 
also decrease away from the wall. These can be computed from the enthalpy profile, which is 
readily obtained by integrating Eq. (23),
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Fig. 3. Fluid velocity and enthalpy profiles for spherical bubbles, for α = 0.1 and different wall velocities. The highest 
curve corresponds to a Jouguet detonation with wall velocity vJ (α) � 0.78. The other blue curves correspond to weak 
detonations with velocities vw = 0.85 and vw = 0.92. The red curve corresponds to the limit of a detonation with vw → 1
or a runaway wall with Fnet → 0. The black curves correspond to runaway walls with Fnet/Fmax = 0.4, 0.6, and 0.8. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

w

w−
= exp

⎡
⎣(

1

c2−
+ 1

) v∫
v−

ξ − v

1 − ξv
γ 2 dv

⎤
⎦ . (34)

In Fig. 3 we show some profiles for the case of spherically-symmetric bubbles.

3.5. Efficiency factors

For the bag EOS, the efficiency factor is defined as the fraction of the released vacuum en-
ergy ε which goes into bulk motions of the fluid,3

κfl ≡ Ekin

εVb

, (35)

where Vb is the volume of the bubble. We have, for the different wall symmetries [24],

κfl = j + 1

εv
j+1
w

∞∫
0

dξ ξj w γ 2v2. (36)

As can be seen from Eq. (34), for detonations or runaway walls the profile of w/w− does not 
depend on w− but only on the profile of v, which only depends on the boundary values vw, v−. 
As a consequence, we can write

κfl = j + 1

v
j+1
w

4

3α

w−
w+

I (vw, v−), (37)

3 The total released energy density at finite temperature, 	e(T+), is actually higher than ε. At T = Tc we have 	e =
L = 4ε, while 	e = ε occurs only at T = 0. See [25] for an alternate definition of an efficiency factor.
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Fig. 4. The efficiency factor for spherical (black) and planar (red) walls, for several values of α. From bottom to top, 
α = 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

with

I (vw, v−) =
vw∫

c−

dξ ξj w

w−
γ 2v2. (38)

For detonations, v− and w−/w+ are functions of α and vw , and therefore the efficiency factor 
depends only on these quantities, κfl = κdet

fl (α, vw). On the other hand, for runaway walls we 
have vw = 1, while w−/w+ and v− depend on α and F̄ . From Eqs. (37) and (32), in this case κfl
is of the form

κ run
fl (α, F̄ ) = j + 1

3

4(1 + 3α − 3F̄ )

α
I1(v−), (39)

where I1(v−) = I (1, v−).
For the planar case the integral (38) can be done analytically [24], while for spherical or 

cylindrical walls it must be calculated numerically. Notice that w− and v− are the same for all 
these cases, but the rarefaction profiles differ. In Fig. 4 we show the value of the efficiency factor 
for spherical and planar walls. The cylindrical case lies between the other two. For steady-state 
walls we plotted κfl as a function of the wall velocity (left panel), while for runaway walls we 
plotted it as a function of the net force (right panel). For the range of values shown in the figure, 
the difference between the two wall symmetries is always less than 10%, while this relative 
difference is exceeded only for Fnet very close to Fmax = ε, where κfl → 0. As already discussed, 
it is not likely that such values of Fnet will be reached in a physical model. Such a small difference 
is interesting, since for planar walls we obtain analytic results (see the appendix). In the appendix 
we also give fits for spherical detonations and runaway walls, where the relative error is smaller 
than 3% in the whole detonation range and in most of the runaway range.
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Fig. 5. The efficiency factor κfl for spherical bubbles. Blue curves correspond to weak deflagrations, red curves to Jouguet 
deflagrations, and black curves to weak detonations or runaway walls. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

For comparison, we show in Fig. 5 the value of κfl in the different regimes, for some values of 
the bag parameter α (for the calculation in the cases of weak and Jouguet deflagrations, see [24]). 
The different types of stationary solutions are divided by the points vw = c− and vw = vJ (α). As 
already discussed, the hydrodynamics of weak detonations becomes weaker as the wall velocity 
increases, and it becomes even weaker for runaway walls. This is reflected in the efficiency factor, 
which is monotonically decreasing in these regimes. On the other hand, for small wall velocities 
(i.e., for weak deflagrations) the efficiency factor increases with the wall velocity, and is maximal 
for supersonic (Jouguet) deflagrations.

In the runaway case, a portion of the released vacuum energy goes into kinetic energy of the 
wall. This will increase the efficiency for gravitational wave generation through direct bubble 
collisions. This fraction is given by

κwall ≡ 	Ewall

ε	Vb

. (40)

Considering a small piece of the thin interface, the energy which goes to the corresponding 
volume 	Vb = Avw	t is given by 	Ewall = 	σA. Therefore, we have, from Eq. (20) and the 
definitions (26), (33),

κwall = dσ/dt

εvw

= Fnet

ε
= F̄

α
. (41)

4. The wall equation of motion

We shall now consider the equation of motion for the wall. At a given point of the thin in-
terface we may place the z axis perpendicular to the wall. Then the field equation (5) with the 
damping (8) becomes
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(∂2
0 − ∂2

z )φ + ∂F/∂φ +K = 0. (42)

If we describe the wall at rest by a certain field profile φ0(z) which varies between the values φ−
and φ+, then, in the plasma frame, we have

φ(z, t) = φ0(γw (z − zw)), (43)

where zw depends on time and we have vw = żw , γw = 1/
√

1 − v2
w . The wall corresponds to the 

range of z where φ varies, and we define the wall position zw(t) by the condition 
∫
(∂zφ)2(z −

zw) dz = 0. Multiplying Eq. (42) by ∂zφ and integrating across the wall, we obtain the equation

σ0γ
3
wv̇w =

+∫
−

∂F
∂φ

∂φ

∂z
dz +

+∫
−

K ∂φ

∂z
dz, (44)

where 
∫ +
− dz means integration between points on each side of the wall (where ∂zφ vanishes) 

and

σ0 =
+∫

−

[
φ′

0(z)
]2

dz. (45)

This integral gives the surface energy density of the wall at rest. We see that it appears in the 
left-hand side of Eq. (44) multiplying the proper acceleration γ 3

wv̇w . Hence, the terms in the 
right-hand side are forces (per unit area) acting on the wall. Since the force which drives the 
wall motion is finite, the factor γ 3

w implies that, in the plasma frame, v̇w decreases as the wall 
approaches the speed of light.

The force terms in Eq. (44) depend not only on the Higgs profile but also on the fluid profiles. 
The first of them is very sensitive to hydrodynamics. For a constant temperature, this term gives 
the pressure difference p− − p+. Since it is always positive, we shall refer to it as the driving 
force Fdr. The term containing K represents the microscopic departures from equilibrium caused 
by the moving wall. It is always negative and velocity dependent. We shall refer to this term as 
the friction force Ffr. Thus, Eq. (44) can be written as

Fnet = Fdr + Ffr. (46)

4.1. Driving force and hydrodynamic obstruction

The driving force can be written in the form [14]

Fdr = p− − p+ −
+∫

−

∂F
∂T 2

dT 2, (47)

which we shall approximate for definite calculations by

Fdr � p− − p+ −
〈

∂F
∂T 2

〉
(T 2+ − T 2−), (48)

where we have approximated the value of ∂F/∂T 2 inside the wall by〈
∂F
∂T 2

〉
≡ 1

2

(
∂F+
∂T 2

+ ∂F−
∂T 2

)
. (49)
+ −
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For the bag EOS, Eq. (48) takes the simple form

Fdr = L

4

(
1 − T 2−T 2+

T 4
c

)
= ε − ε

T 2−T 2+
T 4

c

. (50)

In this approximation, the first term is the zero-temperature part of the force. Indeed, as already 
mentioned, the false vacuum energy density is given by the zero-temperature effective potential. 
Thus, for a physical model the bag constant ε would be given by V (φ+) − V (φ−). The second 
term in Eq. (50) is the temperature-dependent part of the driving force, and contains the effect 
of hydrodynamics. For weak detonations, this effect is to increase T− with respect to the out-
side temperature T+, and hence to decrease the driving force. In this decomposition, the term 
Fhyd = −(L/4)T 2−T 2+/T 4

c can be seen as a force which opposes the wall motion and depends 
indirectly on the wall velocity (through the dependence of the temperature on vw). However, 
this hydrodynamic obstruction does not behave as a fluid friction, since it decreases with the 
wall velocity. Indeed, the reheating behind the wall is highest for vw close to the Jouguet point 
and lowest for vw → 1. It is worth remarking that the approximation (50) preserves this impor-
tant effect of reheating, while simpler approximations such as setting T− = T+ in Eq. (47) (see 
e.g. [20]) overestimate the driving force.

4.2. Friction force

As already discussed, the friction must be obtained from microphysics considerations which 
are much more involved than the calculation of Fdr. Here we shall use instead the phenomeno-
logical damping (8). Hence, we have

Ffr =
+∫

−

f (φ)uμ∂μφ√
1 + [g(φ)uμ∂μφ]2

∂zφ dz. (51)

For the field profile (43), we have

uμ∂μφ = γ (∂0φ + v∂zφ) = φ′
0γ [γw(v − vw) + γ̇w(z − zw)]. (52)

The term γ̇w(z − zw) vanishes in the stationary case. In the runaway regime we can also neglect 
it, since φ′

0 vanishes out of the thin interface.4 We thus have

Ffr =
+∫

−

γwγ (v − vw)f (φ0)(φ
′
0)

2√
1 + γ 2

wγ 2(v − vw)2g2(φ0)(φ
′
0)

2
dz, (53)

where we have used the change of variable of integration γw(z − zw) → z. It is easy to see that 
in the limit γw → ∞ we have Ffr ∼ constant, while for vw � 1 (which implies v � 1 as well) 
we have Ffr ∼ vw . The result (53) is equivalent to that of Ref. [21], as can be seen from the 
transformation γ v → γ γw(v − vw) from the wall frame to the plasma frame.

4 More precisely, γ̇w is proportional to the proper acceleration γ 3
wv̇w which, according to Eq. (44), is bounded by 

∼Fdr/σ0, while z − zw is bounded by l0/γw , where l0 is the wall width at rest.
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The integral in Eq. (53) is of the form 
∫ [φ′

0(z)]2F(z) dz, where the function [φ′
0(z)]2 vanishes 

outside the wall and peaks at the center of the latter. Therefore, we can write this integral as 
F(z̄) 

∫ [φ′
0(z)]2dz = F(z̄)σ0, where z̄ is some point near the wall center. We thus obtain

Ffr = ηγwγ̄ (v̄ − vw)√
1 + λ2γ 2

wγ̄ 2(v̄ − vw)2
, (54)

where γ̄ , v̄ are the values of γ, v at the center of the wall, η = σ0f (φ0(z̄)), and λ is similarly 
given by the function g and details of the wall profile. We shall regard η and λ as free parameters 
which can be chosen appropriately to give the correct numerical values of the friction in the NR 
and UR limits. On the other hand, we shall approximate the value of v̄ by the average5

v̄ = (v− + v+)/2 = v−/2, (55)

and γ̄ = 1/
√

1 − v̄2.
For non-relativistic velocities, Eq. (54) gives a friction force which is proportional to the 

relative velocity, Ffr = −η (vw − v̄), as expected. For a specific model, the value of η can be 
obtained by comparison with the result of a non-relativistic microphysics calculation. Therefore, 
we use the notation η = ηNR. It is out of the scope of the present work to compute the friction for 
specific models. General approximations for ηNR as a function of the parameters for a variety of 
models can be found in Ref. [27]. The friction coefficient depends on temperature. In particular, 
it decreases as T decreases, since the friction depends on the particle populations. Nevertheless, 
in contrast to Fdr, the friction is not sensitive to the temperature difference Tc − T . Therefore, it 
is not very sensitive to hydrodynamics. For specific calculations, in this work we shall assume 
that, roughly, ηNR ∼ T 4+.

In the ultra-relativistic case γw � 1, Eq. (54) gives Ffr = −η/λ. Therefore, we define the 
UR friction coefficient ηUR = −η/λ, so that Ffr = −ηURvw . The value of this parameter for 
a specific model can be obtained from the microphysics result (7). This result, however, gives 
the total UR force Fnet rather than the friction. Notice that the last term in Eq. (7) includes the 
finite-temperature part of the driving force, Fhyd, as well as the friction. We may obtain the UR 
friction force as Ffr = Fnet −Fdr, taking into account the UR limit of the driving force. The latter 
is given by Eqs. (50), (29), and (32). We obtain

ηUR

aT 4+
= α − F̄ − αc

√
1 + 3(α − F̄ )

1 − 3αc

. (56)

For a given model, the quantities α = L/(3w+) and F̄ = 4Fnet/(3w+) can be obtained as func-
tions of the nucleation temperature T+. We remark that, although decomposing the total force 
into driving and friction forces is not relevant for the runaway regime, determining the UR value 
of the friction component is relevant for a correct use of Eq. (54) as an interpolation between the 
NR and UR cases. In terms of the friction coefficients ηNR, ηUR, we have

Ffr = − ηNRηUR γwγ̄ (vw − v̄)√
η2

UR + η2
NR γ 2

wγ̄ 2(vw − v̄)2
. (57)

It is worth commenting on previous approaches. A similar, but simpler, phenomenological 
model for the friction was considered in Ref. [20]. The approximation involves a single free pa-

5 In Ref. [21], a different approximation was used, in which the whole function of v̄ in Eq. (54) was replaced by its 
average value. We have checked that there is no significant numerical difference.
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rameter and is equivalent to setting λ = 1 in Eq. (54). Although this model gives a friction which 
saturates at high γw , it is numerically incorrect as it corresponds to the case ηUR = ηNR (besides, 
the approximation T− = T+ was used in [20] for the driving force; we shall discuss on this ap-
proximation below). The phenomenological model (8) was already considered in Ref. [21]. The 
resulting friction is equivalent to Eq. (54). However, in [21] the hydrodynamics was neglected 
for runaway walls (but not for stationary solutions). That is, the relation T− = T+ was assumed 
for the runaway case. This results in a different value of ηUR, as the right-hand side of Eq. (56)
becomes α − F̄ − αc. Since, on the other hand, the hydrodynamics was taken into account for 
detonations, the stationary solutions did not match continuously the accelerated ones. This is not 
correct since, as we have seen, the hydrodynamics of a runaway wall is similar to that of the 
detonation, and matches the latter for Fnet = 0.

4.3. The wall velocity

From Eqs. (46), (50) and (57), we have, for detonations or runaway walls,

Fnet

aT 4+
= α − αc

T 2−
T 2+

− η̄NRη̄UR (vw − v̄−)√
η̄2

UR(1 − v2
w)(1 − v̄2−) + η̄2

NR (vw − v̄−)2
(58)

where v̄ = v−/2, and we use the notation η̄ = η/(aT 4+) for the two friction coefficients. In the 
UR limit, Eq. (58) becomes

F̄ = α − αcT
2−/T 2+ − η̄UR. (59)

We remark again that the latter equation is just a decomposition of the UR net force, which 
actually defines the value of the friction coefficient ηUR, while the former gives an equation of 
motion for the wall away from that limit. In particular, if the microphysics computation of the 
net force, Eq. (7), gives Fnet < 0, it means that, in fact, the wall will never reach the UR regime. 
Nevertheless, the UR calculation is still useful and Eq. (59) makes sense. The interpretation is 
that the UR friction is so high that the driving force cannot compensate it. In this case we just 
obtain η̄UR from Eq. (56), and then compute the steady-state wall velocity by setting Fnet = 0 in 
Eq. (58).

To solve for vw , we must use Eqs. (27)–(29) for v− and T−. It is worth mentioning that, 
for detonations, the result does not depend on the wall being spherical or planar, since all the 
quantities appearing in Eq. (58) are the same in the two cases. This is because the relations 
between v−, T− and v+, T+ are the same for spherical or planar walls. Besides, for detonations 
the conditions in front of the wall (i.e., v+, T+) are also the same (in contrast, for deflagrations, 
the fluid in front of the wall is perturbed differently for planar or spherical walls).

We show the result in Fig. 6 (solid line) for fixed values of the friction parameters and varying 
the bag quantity α. For concreteness, and in order to compare with previous results, we consider 
the case ηUR = ηNR (for other cases and different parameter variations, see [21]). The vertical 
dashed lines delimit the weak detonation solutions. Increasing α generally increases the driving 
force and, consequently, the wall velocity. The figure does not show the deflagration cases, for 
which vw � c− (there is a discontinuity between deflagrations and detonations).

The dotted line in Fig. 6 is obtained by neglecting the reheating in the calculation of the driving 
force, i.e., setting T− = T+, for which the driving-force term in Eq. (58) becomes α − αc. This 
was used as an approximation in Ref. [20]. We consider it here in order to appreciate the role of 
hydrodynamics. Quantitatively, we see that this approximation overestimates the driving force, as 
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Fig. 6. The wall velocity for αc = 0.05, η̄UR = 0.2, and ηNR = ηUR . The dotted line corresponds to the approximation 
T− = T+.

we obtain higher values of the velocity. Besides, we observe a significant qualitative difference 
between the two results at the lower end of the detonation curve. This end corresponds to the 
Jouguet point. Since the hydrodynamics becomes very strong near this point, Eq. (58) gives two 
solutions for vw , while the approximation T− = T+ completely misses this effect. In Ref. [14] it 
was shown that weak detonations corresponding to the lower branch of solutions are unstable.

The value of α for which the detonation reaches the ultra-relativistic regime in Fig. 6 can be 
obtained from Eq. (59) which, for F̄ = 0, gives α = αcT

2−/T 2+ + η̄UR. Notice that T− actually 
depends on α through Eqs. (29), (31), T 4−/T 4+ = (1 + 3α)/(1 − 3αc). Thus, for given values of αc

and η̄UR we have a quadratic equation for α (or for T−), which yields

α = αc T 2
0 /T 2+ + η̄UR ≡ α0, (60)

where T0 is the corresponding value of T−, given by

T 4
0

T 4+
= 3αc

2(1 − 3αc)

[
1 +

√
1 + 4(1 + 3η̄UR)(1 − 3αc)

3α2
c

]
. (61)

For α > α0, the steady-state equation gives vw > 1, which actually indicates that the friction 
force cannot compensate the driving force and we have Fnet > 0, i.e., a runaway wall.

In the runaway regime, we have a proper acceleration which is proportional to the net force. It 
is interesting to calculate the value of Fnet corresponding to Fig. 6, which can be obtained from 
Eq. (59) [although for a given model one would rather compute Fnet directly from Eq. (7), and 
then determine ηUR]. We must take into account the dependence of T− on Fnet, which is given 
by Eqs. (29), (32),

T 4−/T 4+ = (1 + 3α − 3F̄ )/(1 − 3αc). (62)

From Eqs. (62) and (59) we obtain quadratic equations for F̄ and T−/T+ as functions of α, αc, 
and η̄UR. Nevertheless, the dependence on α cancels in the equation for T−, and we obtain

T− = T0, F̄ = α − αcT
2
0 /T 2+ − η̄UR = α − α0, (63)

with α0 and T0 given by Eqs. (60)–(61). On the other hand, if we use the approximation T− = T+, 
we just neglect Eq. (62), while Eq. (59) gives F̄ = α − αc − η̄UR. This result can also be written 
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Fig. 7. The net force corresponding to Fig. 6.

in the form F̄ = α −α0, but the value of α0 is different, namely, α0 = αc + η̄UR. In Fig. 7 we plot 
the net force, normalized to its maximum value ε, as a function of α for the parameters of Fig. 6. 
We see that neglecting the hydrodynamics gives a higher wall acceleration.

Comparing the solid lines of Figs. 6 and 7, we see that the detonation solution matches the 
runaway solution at α = α0. In Ref. [21] this matching does not occur, due to the assumption of 
different hydrodynamics. As a consequence, the two kinds of solutions were found to coexist in 
a small parameter range. We do not find such a coexistence of detonation and runaway solutions 
here, since the hydrodynamics is continuous with vw and F̄ . In fact, coexistence of solutions 
could arise also due to strong hydrodynamics, even if the hydrodynamics varies continuously 
with the parameters. For instance, we have multiple weak-detonation solutions near the Jouguet 
point, even though v−, T− are continuous functions of α, vw . This does not happen in the UR 
limit, since the perturbations of the fluid vary continuously with α, vw, and F̄ and, besides, the 
hydrodynamics is weaker.

4.4. Microphysics and released energy

In Sec. 3 we computed the fractions of the released vacuum energy which go into bulk mo-
tions of the fluid and into kinetic energy of the bubble wall, as functions of the quantities vw, 
F̄ = (4/3)Fnet/w+, and α = L/(3w+). For a given model, the nucleation temperature and the 
thermodynamical quantities L, w+ can be calculated from the finite-temperature effective po-
tential (1), and the net force can be readily computed from Eq. (7). This gives the values of α
and F̄ . The steady-state wall velocity can be obtained from Eq. (58), after determining the fric-
tion coefficients ηUR and ηNR. The value of ηUR can be obtained from F̄ using Eq. (56), while 
ηNR must be obtained from a microphysics calculation. Such a computation is beyond the scope 
of this paper. Here, we shall only consider the energy distribution among the fluid and the wall 
for the parameter variation of Figs. 6 and 7. As already discussed, this parameter variation be-
comes rather artificial in the runaway regime. It is useful, though, for a comparison with previous 
results.

The fraction of energy accumulated in the interface, κwall, is just given by Fnet/ε, which is 
plotted in Fig. 7. In Fig. 8 we consider a wider range of runaway solutions, and we plot separately 
(in the right panel) the result obtained by using the approximation T− = T+ in the calculation 
of the driving force. The value of κwall is represented by the height of the light shade. Thus, the 
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Fig. 8. The fractions of vacuum energy which go to the wall and the fluid, for the same case of Figs. 6 and 7. The right 
panel corresponds to neglecting the reheating in the calculation of the driving force.

curves delimiting this region in the left and right panels of Fig. 8 correspond, respectively, to 
the solid and dotted lines of Fig. 7. Following Ref. [20], we plot the value of κfl (for spherical 
bubbles) added to that of κwall. This gives the upper curves delimiting the dark shade regions. 
Hence, the fraction of ε which goes into bulk fluid motions is represented by the dark shade. 
Accordingly, the white region indicates the portion of ε which goes into reheating.6 The vertical 
line separates the detonation and runaway regimes. We include the complete detonation range 
(which is different in the two panels).

The right panel of Fig. 8 agrees with the results of Ref. [20]. The values of the parameters, 
namely, ηNR = ηUR = 0.2, a−/a+ = 1 − 3αc = 0.85, correspond to one of the cases considered 
in that work (cf. the left panel of Fig. 12 in [20]). We observe that the two panels of Fig. 8 are 
qualitatively similar, particularly for the runaway regime, where the hydrodynamics is weaker. 
The difference is more apparent for detonations, where the hydrodynamics is strongest. In fact, 
the Jouguet point is never reached in the left panel. The quantitative difference between the two 
calculations is better appreciated in Figs. 6 and 7. For a given α, neglecting the hydrodynamics 
gives higher wall velocities and accelerations and, hence, a larger κwall and a smaller κfl. It is 
worth emphasizing that in both panels we have used the results from Sec. 3 in terms of α, vw

and F̄ , and the discrepancy originates in the computation of vw and F̄ .
For the runaway case we may obtain simple semi-analytical expressions for the efficiency 

factors as functions of the quantities α, αc, and η̄UR. From Eqs. (41) and (63), we have

κwall = 1 − α0/α. (64)

This is valid for the two plots of Fig. 8, with different values of α0(αc, η̄UR). Since κwall gives 
the fraction of ε which goes to kinetic energy of the wall, Eq. (64) indicates that a fraction α0/α

6 In fact, thermal energy is released as well as vacuum energy (whence L > ε). As a consequence, the white regions in 
Fig. 8 only represent a part of the total energy which goes into reheating of the plasma. For a more detailed discussion, 
see [25].
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goes to the fluid (either to bulk motions or reheating). Moreover, using Eq. (63) in Eqs. (39) and 
(32), we have

κ run
fl = 4(1 + 3α0)I1(v−)

α
, with v− = 3α0

2 + 3α0
. (65)

Hence, the runaway efficiency factor can be written as

κ run
fl = κdet

UR α0/α, (66)

where κdet
UR ≡ κdet

fl (α0, vw = 1) is the efficiency factor of the UR detonation. The functional 
dependence of Eqs. (64) and (66) on α agrees with the results of Ref. [20]. The quantitative 
difference, which is illustrated by the two panels of Fig. 8, is due to different values of α0 and 
κdet

UR (in the notation of [20], α0 = α∞ and κdet
UR = κ∞). As already discussed, this discrepancy is 

due essentially to a different treatment of hydrodynamics.
In Ref. [20] an expression for the quantity α0 is provided in terms of microphysics parameters. 

We may obtain a similar expression as follows. If we identify the difference V (φ+) − V (φ−) in 
Eq. (7) with the bag constant ε (notice, though, that the minima, particularly φ−, are temperature 
dependent), then the UR net force vanishes for

ε0 =
∑

i

giciT
2+m2

i (φ−)/24. (67)

For a given T+, this is the value of ε corresponding to α0. Thus, we have α0 = 4ε0/(3w+), which 
can be used in Eqs. (64)–(66). We remark that this approach involves more approximations than 
those used in Sec. 3, where we obtained κrun

fl directly as a function of F̄ .

5. Gravitational waves

The efficiency factors κfl and κwall give the fractions of the released energy which go into 
fluid motions and into the wall, respectively. The values of these factors are the key quanti-
ties in the different mechanisms of gravitational wave (GW) generation in a first-order phase 
transition. Three mechanisms of GW generation have been considered in the literature, namely, 
bubble collisions, turbulence, and sound waves. The bubble collisions mechanism assumes that 
the energy–momentum tensor which sources the GWs is concentrated in thin spherical shells 
[3,4]. For detonations, this is not a bad approximation during the phase transition, since a portion 
κflε	Vb of the released vacuum energy ε	Vb is concentrated as kinetic energy of the fluid in 
a region which follows the bubble wall supersonically. This is also a good approximation for 
runaway walls, for which another portion κwallε	Vb of the vacuum energy is accumulated in the 
infinitely thin interface. Hence, the total energy involved in this mechanism is proportional to 
κtot = κwall + κfl (with κwall = 0 in the detonation case).

On the other hand, fluid motions can remain long after the completion of the phase transition 
and continue producing GWs. This may happen by two mechanisms, namely, magnetohydro-
dynamic (mhd) turbulence [5] or sound waves [8]. Since these are long-lasting sources, they 
are generally more efficient than bubble collisions. However, the energy involved in these “fluid 
motions” mechanisms is proportional to κfl alone. In the runaway regime the hydrodynamics be-
comes weaker and the energy in the fluid is suppressed. As a consequence, it is not clear a priori 
whether these mechanisms will still dominate over bubble collisions.

Depending on the generation mechanism, the peak frequency of the GW spectrum is deter-
mined by a characteristic time or a characteristic length of the source. For a first-order phase 
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transition, the time scale is given by its duration 	t , while the length scale is given by the av-
erage bubble radius R ∼ vw	t . For detonations or runaway walls, we have R ∼ 	t . Therefore, 
the characteristic frequency at the formation of GWs is given by fp∗ ∼ 1/	t . The corresponding 
frequency today (after redshifting) would be given by

fp ∼ 10−5 Hz
( g∗

100

)1/6
(

T

100 GeV

)
1

H	t
, (68)

where H is the Hubble rate during the phase transition, g∗ is the number of relativistic degrees of 
freedom, and T is the temperature at which the phase transition occurred, namely, T ≈ T+ � Tc .

It is interesting to consider the electroweak phase transition, for which we have Tc � 100 GeV
and g∗ � 100. The duration of the phase transition may vary from 	t ∼ 10−5H−1 for very weak 
phase transitions to 	t ∼ H−1 for very strong phase transitions. For the sake of concreteness, 
we shall consider H	t = 10−1, corresponding to strong phase transitions, which is consistent 
with having detonations or runaway walls. This gives fp ∼ 0.1 mHz, which is close to the peak 
sensitivity of the planned space-based observatory eLISA [28]. It is customary to express the 
energy density of gravitational radiation in terms of the quantity

h2�GW (f ) = h2

ρc

dρGW

d logf
, (69)

where ρGW is the energy density of the GWs, f is the frequency, and ρc is the critical energy den-
sity today, ρc = 3H 2

0 /8πG, with H0 = 100 h km s−1 Mpc−1, and h = 0.72. The peak sensitivity 
of eLISA may be in the range �GW ∼ 10−14–10−10, depending on its final configuration.

An approximation for the spectrum of GWs from bubble collisions was given in Ref. [4]. For 
the peak amplitude that would be observed today we have

h2�coll = 1.67 × 10−5
(

κtotα

1 + α

)2 (
100

g∗

)1/3 (
0.11v3

w

0.42 + v2
w

)
(	tH)2 . (70)

The spectrum from mhd turbulence was calculated using analytic approximations in Ref. [6]. For 
the peak amplitude we have [6,7]

h2�turb = 2.6 × 10−5
(

κflα

1 + α

)3/2 (
100

g∗

)1/3
vw	tH

1 + 4π3.5/(vw	tH)
. (71)

Regarding the GW spectrum from sound waves, a fit to the numerical results of Ref. [8] was 
given in [29]. For the peak intensity we have

h2�sw = 2.65 × 10−6
(

κflα

1 + α

)2 (
100

g∗

)1/3

vw	tH. (72)

The quantity α = ε/(aT 4+) gives the ratio of the vacuum energy density to the radiation energy 
density. For the electroweak phase transition we generally have α < 1, i.e., radiation dominates. 
Hence, for g∗ ∼ 100, vw ∼ 1, and 	tH ∼ 10−1 we have h2�coll ∼ 10−8(κtotα)2, h2�turb ∼
10−8(κflα)3/2, and h2�sw ∼ 10−7(κflα)2. We see that the numerical values are similar, and the 
precise results will depend on details of the phase transition dynamics. In particular, the values 
of α and the efficiency factors will determine which of these sources is dominant.

The efficiency factors depend on α. Besides, they depend on the wall velocity (in the deto-
nation case) and on the net force (in the runaway case). In Fig. 9 we plot the GW intensities 
(70)–(72) as functions of the wall velocity and the net force, for some values of α. We see that 
the different sources dominate in different parameter regions. However, in the case of stationary 
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Fig. 9. The peak amplitude of the gravitational wave spectrum from bubble collisions (solid lines), turbulence (dashed 
lines), and sound waves (dotted lines), for g∗ = 100, 	t = 0.1, and for a few values of α. From bottom to top, we have 
α = 0.003, 0.03, 0.3, and 3.

walls the GW signal from bubble collisions is generally smaller, as expected. Besides, in the det-
onation case all the curves behave similarly as functions of vw. This is due to the dependence of 
the GW amplitudes on κfl, which decreases with vw (cf. Figs. 4 and 5). In contrast, for runaway 
walls, the GW signal from bubble collisions grows with the net force, while the other signals 
decrease. This is because the former depends on κwall = Fnet/ε, as already discussed. Also, as 
expected, all the signals grow with α for a given value of vw or Fnet/ε.

The quantities vw , Fnet/ε and α are not actually independent. As we have seen, for fixed 
values of the friction parameters, vw and Fnet/ε are increasing functions of α. In such a case, 
κfl actually decreases with α, as shown in Fig. 8, while κwall increases. In Fig. 10 we plot the 
GW amplitudes corresponding to that parameter variation. We see that the decrease of κfl(α) is 
reflected in the GW amplitudes, even though the latter depend on the product κfl(α) α. Indeed, 
the signals from fluid motions generally decrease with α, while the signal from bubble wall 
collisions grows in the runaway regime due to the increase of κwall.

It is important to notice that this behavior of the GW signals with the quantity α was obtained 
by fixing several parameters, such as the friction coefficients ηNR, ηUR, the bag parameter αc =
ε/(aT 4

c ) (which is equivalent to fixing a−/a+), as well as the time scale 	t . In a concrete model, 
all these quantities will vary together with α, as all of them depend on the model parameters. We 
shall consider concrete models elsewhere. In any case, values of α in the range 0.3 � α � 1
are possible in a very strong electroweak phase transition. Hence, Fig. 10 shows that the GWs 
generated by any of the mechanisms at this phase transition may be observable by eLISA.

6. Conclusions

Several hydrodynamic modes are possible for the growth of a bubble in a cosmological 
first-order phase transition. These include steady-state walls propagating as deflagrations or det-
onations [23], accelerated (runaway) walls [17], or even turbulent motion associated with wall 
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Fig. 10. The peak amplitude of the gravitational wave spectrum from bubble collisions (solid line), turbulence (dashed 
line), and sound waves (dotted line) as functions of α, for g∗ = 100, 	t = 0.1, and the rest of the parameters as in 
Figs. 6–8. The vertical line separates detonations from runaway solutions.

corrugation [13]. Which of these propagation modes will a phase transition front take, depends 
on several factors, such as the amount of supercooling and the friction of the bubble wall with 
the plasma. In this work we have studied the fastest of these modes, namely, ultra-relativistic 
detonations and runaway solutions, which may give an important gravitational wave signal from 
the phase transition.

The generation of gravitational waves depends on the released energy, which is usually mea-
sured by the ratio α of the vacuum energy density to the radiation energy density. It is also 
important how this energy is distributed, as the wall moves, among the bubble wall and the fluid. 
For a steady-state wall, all the released energy goes to the fluid, either to reheating or to bulk 
motions. The fraction κfl of the released vacuum energy which goes into bulk motions is relevant 
for the formation of gravitational waves through turbulence or sound waves. For runaway walls, 
there is also a fraction κwall of the vacuum energy which goes into kinetic energy of the wall. 
This is relevant for gravitational wave generation from direct bubble collisions. Thus, κfl is an 
efficiency coefficient for the injection of kinetic energy in the fluid, while κwall is as an efficiency 
coefficient for accelerating the wall.

We have studied, on the one hand, the hydrodynamics of a phase transition front, for given 
values of the wall velocity and acceleration, i.e., considering these variables as free parameters. 
Thus, we obtained results for κwall and κfl as functions of the velocity vw and the net force Fnet
acting on the wall. In this way, the results do not depend on the very involved computation of the 
wall dynamics, for which several approximations are generally needed. On the other hand, we 
have also studied the wall dynamics, taking into account the back-reaction of hydrodynamics on 
the wall motion, and we have discussed on the calculation of the wall velocity and acceleration 
as functions of thermodynamic and friction parameters.

We have computed the efficiency factor κfl for different wall symmetries, namely, spherical, 
cylindrical and planar walls. This complements the work of Ref. [24], where we performed a 
similar analysis for stationary solutions. Here we considered the runaway case. For planar walls 
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we obtained analytic results. The result for spherical bubbles is quite similar to the planar case, 
which can thus be used as an analytic approximation for the former. Besides, we provide fits for 
the spherical case as functions of vw, Fnet, and thermodynamic parameters.

For the analysis of the wall dynamics, we considered a phenomenological model for the fric-
tion, which was introduced in Ref. [21] and depends on two free parameters. Thus, the model 
can reproduce the correct value of the friction force in the NR limit, Ffr ∼ ηNR vw as well as in 
the UR limit, Ffr ∼ ηUR. In the UR case it is actually more straightforward, for a given model, 
to compute the net force Fnet. The determination of the friction component of the UR force is 
relevant for the use of this phenomenological interpolation, which allows to calculate the wall 
velocity away from the UR limit. We have clarified the decomposition of Fnet into driving and 
friction forces, taking hydrodynamics effects correctly into account.

Some of the issues discussed in the present paper were previously considered in Ref. [20] (for 
the case of spherical walls). However, a simpler phenomenological friction was used in that work, 
which depends on a single friction coefficient, corresponding to the particular case ηNR = ηUR. 
Moreover, some results, particularly those for the efficiency factor in the runaway regime, are 
given in terms of this friction coefficient (cf. Figs. 10 and 12 in [20]). Therefore, those results 
depend on the wall dynamics. As we have seen, the effect of reheating on the driving force was 
neglected in Ref. [20], which leads to a different distribution of the released energy. Concrete 
expressions for the runaway efficiency factors are given in [20] as functions of α and the UR 
detonation limits α0, κdet

UR. In contrast, we obtained these quantities directly as functions of α
and Fnet. Thus, we provide clean results for κwall and κfl, which can be used to compute the 
production of gravitational waves in a phase transition.

In physical models, strongly first-order phase transitions (i.e., those with a relatively high 
value of the order parameter, φ > T ), generally have large amounts of released energy and con-
siderable supercooling. This gives large values of α, as well as high wall velocities or even 
runaway walls. We have explored the efficiency factors and the generation of gravitational waves 
for such parameter variations.

For detonations and runaway walls, the efficiency factor κfl decreases with the wall velocity 
and acceleration, while it increases with the quantity α. However, for given values of the friction 
parameters, vw and Fnet are increasing functions of α, and it turns out that κfl decreases with α. 
In contrast, κwall increases with Fnet and α. As a consequence, the gravitational wave production 
through fluid motions generally decreases with α, while the production through bubble collisions 
generally increases. This does not mean, though, that stronger phase transitions will be less ef-
ficient in producing gravitational waves through fluid motions. In our parameter variations we 
have fixed some quantities which, for a concrete model, will change as α changes. In Ref. [30]
the electroweak phase transition was considered for several extensions of the Standard Model 
(all of which gave steady-state walls). In those cases, stronger phase transitions gave stronger 
GW signals from fluid motions. We shall consider models with even stronger phase transitions 
in a forthcoming paper [31]. As we have seen, for parameters which are characteristic of such 
strongly first-order electroweak phase transitions, the gravitational waves may be observed in the 
planned observatory eLISA.
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Appendix A. Approximations for the fluid efficiency factor

In Ref. [24] the hydrodynamics was studied for the stationary case, for spherical, cylindrical 
and planar walls. Although the fluid profiles are different in the three cases (corresponding to the 
spreading of the released energy in 3, 2, and 1 dimensions, respectively), the total energy in fluid 
motions is quite similar, particularly for detonations. Therefore, a relatively good approximation 
for the efficiency factor is to consider a planar wall, for which one obtains analytic results. One 
expects the same to hold for runaway walls.

For planar symmetry, the shape of the rarefaction wave behind the wall is quite simple. We 
have constant fluid velocity and enthalpy between the wall and a point which follows the wall 
with velocity v0 = (v− + c−)/(1 + v−c−). Hence, the rarefaction actually begins behind that 
point. In the variable ξ = z/t , this point lies at a fixed position ξ = v0, while the wall is at 
ξ = vw . Between ξ = c− and ξ = v0 we have

v = ξ − c−
1 − c−ξ

, w = w−
(

1 − v−
1 + v−

1 + v

1 − v

) 1
2 (c−+ 1

c− )

. (73)

For the bag EOS, we have c− = 1/
√

3, and the values of v− and w− are given by Eqs. (27)–(28)
for detonations and by Eqs. (32) for runaway walls. For this profile, the integral I (vw, v−) in 
Eqs. (37)–(39) is given by [24]

I = γ 2−v2− (vw − v0) +
3
(

2 − √
3
) 2√

3

4

[
1 − v−
1 + v−

] 2√
3 [

f (v0) − f (c−)
]
, (74)

where f (ξ) =
(

1+ξ
1−ξ

) 2√
3
{

2√
3

− 1 + (1 − ξ)
[
2 − 2F1(1,1, 2√

3
+ 1,

1+ξ
2 )

]}
, and 2F1 is the hy-

pergeometric function [32]. The efficiency factors κdet
pl , κ run

pl for the planar case are obtained by 
inserting Eq. (74) in Eq. (37) (with j = 0) or directly in Eq. (39) for the runaway case. The result 
is shown in Fig. 4, together with that for spherical walls.

Since the planar and spherical results are so similar, we may construct a fit for the spherical 
case by just approximating the difference between the two results. Indeed, correcting the planar 
results with a factor 1.03 + 0.1

√
vw − vJ (α) is a good approximation. We thus have

κdet
fl = κdet

pl (α, vw)
(

1.03 + 0.1
√

vw − vJ (α)
)

, (75)

κ run
fl = κ run

pl (α, F̄ )
(

1.03 + 0.1
√

1 − vJ (α)
)

. (76)

In Fig. 11 we compare these fits with the numerical result. In the whole detonation range, and for 
Fnet/ε < 0.9 in the runaway case, the relative error is smaller than 3%.

In the runaway regime it is easy to find a simple fit (which does not rely on the analytic 
formulas of the planar case), since the integral I1(v−) = I (1, v−) depends on the single parame-
ter v−. In the whole range 0 < v− < 1, this function is well approximated by the polynomial 
I1(v−) � 0.15v2− − 0.132v3− + 0.065v4−, with a relative error which is smaller than 3% for 
v− > 10−3. Inserting in Eq. (39), we have

κ run
fl � (4/α)(1 + 3α − 3F̄ )(0.15v2− − 0.132v3− + 0.065v4−) , (77)

with v−(α, F̄ ) given by Eq. (32). The result is shown in the right panel of Fig. 11.
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Fig. 11. Fits for the efficiency factor for spherical walls, corresponding (from bottom to top) to α = 0.003, 0.01,0.03,

0.1, 0.3, 1, 3, 10. The black dots indicate values of the numerical result. Red dashed lines correspond to the fit of Eq. (77), 
and green lines to the fits of Eqs. (75)–(76). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
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