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a b s t r a c t

We study the dynamics of scalar metric fluctuations in a non-perturbative variational formalism recently
introduced, by which the dynamics of a geometrical scalar field θ , describes the quantum geometrical
effects on aWeylian-likemanifold with respect to a background Riemannian space–time. In this letter we
have examined an example in the framework of inflationary cosmology. The resulting spectral predictions
are in very good agreement with observations and other models of inflation.
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1. Introduction

The inflationary theory of the universe provides a physical
mechanism to generate primordial energy density fluctuations on
cosmological scales [1]. The primordial scalar perturbations drive
the seeds of large scale structure which then had gradually formed
today’s galaxies, which is being tested in current observations
of cosmic microwave background (CMB). These fluctuations are
today larger than a thousand size of a typical galaxy, but
during inflation were very much larger than the size of the
causal horizon. According with this scenario, the almost constant
potential depending of a minimally coupled to gravity inflation
field ϕ, called the inflaton, caused the accelerated expansion of the
very early universe. In particular, back-reaction effects have been
subject of study. Quantum vacuum fluctuations are continuously
generated on sub-Hubble scales. As the wavelengths of these
fluctuation modes exit the Hubble radius, the vacuum oscillations
the modes get squeezed and become the seeds for the observed
inhomogeneities in the distribution of matter and anisotropies.
In this framework, the evolution of scalar metric fluctuations has
been studied in [2].

In this letter, I consider gauge-invariant fluctuations of the
metric using a new variational method recently introduced named
Relativistic Quantum Geometry (RQG). These fluctuations were
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extensively studied using linear perturbative corrections [3].
Nonlinear perturbative corrections were studied in [4]. The scalar
metric perturbations of the metric are associated with the density
perturbations. These are spin-zero projections of the graviton,
which only exist in non-vacuum cosmology. The issue of gauge-
invariance becomes critical when we attempt to analyse how the
scalar metric perturbations produced in the very early universe
influence the global flat, isotropic and homogeneous universe,
described by a background FLRWmetric.

2. Geometrical quantum dynamics

The variation of the metric tensor must be done in a Weylian-
like integrable manifold [5] using an auxiliary geometrical scalar
field θ , in order to the Einstein tensor (and the Einstein equations)
can be represented on a Weylian-like manifold [6], in agreement
with the gauge-invariant transformations obtained in [5]. If we
consider a zero covariant derivative of the metric tensor in
the Riemannian manifold (we denote with a semicolon the
Riemannian-covariant derivative): 1gαβ = gαβ;γ dxγ

= 0, hence
the Weylian-like covariant derivative gαβ|γ = θγ gαβ , described
with respect to the Weylian-like connections1

Γ α
βγ =


α

β γ


+ θα ĝβγ , (1)

will be nonzero
δĝαβ = ĝαβ|γ dxγ

= −

θβ ĝαγ + θα ĝβγ


dxγ . (2)

1 To simplify the notation we shall denote θα ≡ θ,α .
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From the action’s point of view, the scalar field θ(xα) is a generic
geometrical transformation that leads invariant the action [7]

I =


d4x̂


−ĝ


R̂
2κ

+ L̂



=


d4x̂


−ĝe−2θ

 
R̂
2κ

+ L̂


e2θ


, (3)

where we denote with a hat, the quantities represented on the
semi-Riemannianmanifold. Hence,Weylian-like quantities will be
varied over these quantities in a semi-Riemannianmanifold so that
the dynamics of the system preserves the action: δI = 0, and we
obtain

−
δV
V

=

δ


R̂
2κ + L̂




R̂
2κ + L̂

 = 2 δθ, (4)

where δθ = θµdxµ is an exact differential and V =


−ĝ is the
volume of the Riemannian manifold. Of course, all the variations
are in the Weylian-like geometrical representation, and assure us
gauge invariance because δI = 0. Using the fact that the tetra-
length is given by S =

1
2xν Ûν and the Weylian-like velocities are

given by uµ
= Ûµ

+ 2θµS, can be demonstrated that

uµuµ = 1 + 4S


θµÛµ
−

4
3
Λ S


. (5)

The components uµ are the relativistic quantum velocities, given
by the geodesic equations

duµ

dS
+ Γ

µ
αβu

αuβ
= 0, (6)

such that the Weylian-like connections Γ
µ
αβ are described by

(1). In other words, the quantum velocities uµ are transported
with parallelism on the Weylian-like manifold, meanwhile Ûµ

are transported with parallelism on the Riemann manifold. If we
require that uµuµ = 1, we obtain the gauge

∇̂µAµ
= −2

dθ
dS

. (7)

Since was demonstrated in [5] the Einstein tensor can be written
as

Ḡαβ = Ĝµν + θα;β + θαθβ +
1
2
gαβ


(θµ);µ + θµθµ


, (8)

and we can obtain the invariant cosmological constant Λ

Λ = −
3
4


θαθα

+ �̂θ

, (9)

so that we can define a geometrical Weylian-like quantum action
W =


d4x


−ĝ Λ, such that the dynamics of the geometrical

field, after imposing δW = 0, is described by the Euler–Lagrange
equations which take the form

∇̂αΠα
= 0, or �̂θ = 0, (10)

where the momentum components are Πα
≡ −

3
4θ

α and the
relativistic quantum algebra is given by [5]

[θ(x), θα(y)] = −iΘα δ(4)(x − y),

[θ(x), θα(y)] = iΘα δ(4)(x − y),
(11)

withΘα
= ih̄ Ûα andΘ2

= ΘαΘα
= h̄2 Ûα Ûα for the Riemannian

components of velocities Ûα .
3. Power-law inflation

In order to describe an example, we shall consider the case
of an inflationary universe where the scale factor of the universe
describes a power-law expansion, and the line element related
with the background semi-Riemannian curvature, is

dŜ2 = ĝµνdx̂µdx̂ν
= dt̂2 − a2(t)η̂ijdx̂idx̂j, (12)

where the hat denotes that the metric tensor is defined over a
semi-Riemannian manifold. We shall define the action I on this
manifold, so that the background action describes the expansion
driven by a scalar field, which is minimally coupled to gravity

I =


d4x


−ĝ


R̂

16πG
+


1
2
φ̇2

− V (φ)


. (13)

In power-law inflation the scale factor of the universe and the
Hubble parameter, are given respectively by [8]

a(t) = β tp, H(t) =
p
t
, (14)

where β =
a0
tp0
, a0 is the initial value of the scale factor, t0 is the

initial value of the cosmic time, and the background solution for
the inflaton field dynamical equation

φ̈ + 3
ȧ
a
φ̇ + V ′(φ) = 0, (15)

is

φ(t) = φ0


1 − ln


α

4πφ2
0 G

t


, (16)

where p = 4πGφ2
0 , β =

a0
tp0

and α = Hf is the value of the

Hubble parameter at the end of inflation. The scalar potential can
be written in terms of the scalar field

V (φ) =
3

8πGH2
f


1 −

1
12πGφ2

0


e2(φ/φ0), (17)

which decreases with φ.

3.1. Geometrical dynamics of space–time

The geometrical scalar field θ can be expressed as a Fourier
expansion

θ(x⃗, t) =
1

(2π)3/2


d3k


Ak eik⃗.x⃗ξk(t) + AĎ e−ik⃗.x⃗ξ ∗

k (t)

, (18)

where AĎ and Ak are the creation and annihilation operators. From
the point of view of the metric tensor, an example in power-law
inflation can be illustrated by

gµν = diag

e2θ , −a2(t)e−2θ , −a2(t)e−2θ , −a2(t)e−2θ  , (19)

such that the related quantum volume is Vq = a3(t)e−2θ
=

−ĝ e−2θ . The dynamics for θ is governed by the equation

θ̈ + 3
ȧ
a
θ̇ −

1
a2

∇
2θ = 0, (20)

and the momentum components are Πα
≡ −

3
4θ

α , so that the
relativistic quantum algebra is [5]

[θ(x), θα(y)] = −iΘα δ(4)(x − y),

[θ(x), θα(y)] = iΘα δ(4)(x − y),
(21)
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withΘα
= ih̄ Ûα andΘ2

= ΘαΘα
= h̄2 Ûα Ûα for the Riemannian

components of velocities Ûα . By making the map υ = a3/2θ , we
obtain the dynamic equation for the modes of υ

ϋk + ω2
k(t) υk = 0, (22)

where the frequency for each mode with wavenumber k is time
dependent

ω2
k(t) =


k2

β2t2p
−

3p
2t2


3
2
p − 1


. (23)

Notice that when ω2
k(t) > 0 the modes are stable, but when

ω2
k(t) < 0 they are unstable. This is the case of the super-

Hubble modes during inflation. Since θ describes a geometrical
(quantum) Weylian-like evolution of space–time, the unstable
modeswill describe the spill of space–timewhich has been created
at quantum scales with wavelength k. During this processes the
modes suffer a quantum-to-classical transition [8].

The general solution for ξk(t) is

ξk(t) = t−3p/2 
A1 H (1)

ν [y(t)] + A2 H (2)
ν [y(t)]


, (24)

where H (1,2)
ν [y(t)] are the Hankel functions, ν =

3p−1
2(p−1) , y(t) =

k t(1−p)

β(p−1) andβ =
a0
tp0
, such that t0 is the time forwhich inflation starts

and a0 is the initial scale factor of the universe. In order to inflation
can take place, we must require that p ≫ 1. We must require that
the field to be quantized, so thatwe obtain the following conditions
for the modes ξk(t):

ξk(t)ξ̇ ∗

k (t) − ξ̇k(t)ξ ∗

k (t) =
i

a3(t)
, (25)

so that the normalizedmodes that comply with the condition (25),
are

ξk(t) =


π

4(p − 1)
t−(3p−1)/2 H (2)

ν [y(t)]. (26)

3.2. Exact energy density fluctuations

In order to calculate the energy density fluctuations during
power-law inflation we must calculate δT̂αβ on the Weylian-
like manifold. We shall consider that the variation on the semi
Riemannian manifold is null: 1T̂αβ = 0, so that

δT̂αβ

δS
= Tαβ|γUγ , (27)

where

T̂αβ = 2
δL̂

δgαβ
− gαβL̂, (28)

and dxγ
= Uγ dS is the displacement of any component on the

Weylian-like manifold and T̂αβ are the background (semi Rieman-
nian) components of the stress tensor. If we take component T̂00 ≡

ρ̂, we obtain that

1
ρ̂

δρ̂

δS
= −2θ0 = −2θ̇ , (29)

such that θ̇ =

θ̇2

1/2
. In order to calculate (29), we must find the

time derivative of the temporal modes

ξ̇k(t) =
1
2


π

p − 1
t−2p


(1 − 3p)H (2)

ν [y(t)] +
k
β

Hν1 [y(t)]


, (30)
where ν1 =
5p−3
2(p−1) . On large (cosmological) scales, the argument

of the Hankel functions is very small: y(t) ≪ 1, because it takes
into account only themodeswith very small wavenumbers. Hence,
in order to make an estimation of the spectrum on cosmological
scales, will be sufficient with the asymptotic solutions of the Han-
kel functions:

H (2)
µ [y(t)]


y≪1

≃
[y(t)/2]µ

Γ (1 + µ)
±

i
π

Γ (µ) [y(t)/2]−µ , (31)

so that

ξ̇k(t)ξ̇ ∗

k (t)

y≪1 ≃

k−2ν

π(p − 1)(βt)2

Γ (ν1) [2(p − 1)β]ν1

+ (1 − 3p)βΓ (ν) [2(p − 1)β]ν
2

. (32)

The large scales square fluctuations

θ̇2


, are given by

θ̇2
y≪1 ≃

 ϵk0(t)

0

dk
k

Pθ̇ (k, t), (33)

where the power-spectrum on cosmological scales is

Pθ̇ (k, t) =
1

2π2

k3−2ν

π(p − 1)(βt)2

Γ (ν1) [2(p − 1)β]ν1

+ (1 − 3p)βΓ (ν) [2(p − 1)β]ν
2

. (34)

The spectral index is given by ns −1 = 3−2ν, so that once known
ns, it is possible to obtain the power of the expansion of the uni-
verse

p = 1 +
2

1 − ns
. (35)

For ns ≃ 0.96 [9], one obtains p ≃ 51. For this spectral index, the
equation of state P = −


2Ḣ
3H2 + 1


ρ, results to be

ω =
2 − 3p
3p

≃ −0.9869, (36)

which agrees withWMAP9-ωCDM(flat) observations [10] where P
is the pressure and ρ the energy density. Furthermore, this value
corresponds to a ratio for the tensor to scalar indices

r ≡
∆2

t (k∗)

∆2
s (k∗)

≃ 0.106. (37)

This value is in agreement with that one expects for inflationary
models.

4. Final remarks

In Relativistic Quantum Geometry, the dynamics of a geometri-
cal scalar field defined in a Weylian-like integrable manifold pre-
serves the gauge-invariance under transformations of the Einstein
equations and the geometrical vector fields, that involves the cos-
mological constant. The scalar field θ , always can be quantized be-
cause it is free of interactions, and describes a relativistic quantum
algebra: [θ(x), θµ(y)] = −iΘµδ(4)(x − y). In this letter we have
examined an example in the framework of a power-law inflation-
ary cosmology. The results agree perfectly with observations. An
interesting prospect should be the calculation of vector geometri-
cal field dynamics during inflation:

�̂Aν
− ∇̂

ν

∇̂µAµ


= Jν, (38)

which would describe the seed of electromagnetic fields under
the influence geometrical currents, Jν , produced by geometrical
charged fields. For a co-moving relativistic observer the gauge
equations must be ∇̂µAµ

=
Λ

2 θµÛµ, with Uµ
= (1, 0, 0, 0).

However, these calculations are beyond the scope of this letter.
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