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We study the stochastic dynamics of two electrically coupled networks of excitable FitzHugh–Nagumo 
cells, each of them phase-repulsively linked to form a ring able to develop noise-sustained structures. All 
cells are submitted to Gaussian white noises with common intensity η, while each network is forced with 
opposite phase by an adiabatic subthreshold harmonic signal. In terms of the nonequilibrium potential 
of a four-cell reduced model we have interpreted the dynamics, explained the observed activation and 
synchronization of the structures, and calculated the optimal η level as a function of coupling strength 
between networks. The values obtained from the reduced model coincide in order of magnitude with 
those arising from numerical simulations of the full system.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The constructive effects of noise on the dynamics of com-
plex systems [1–3] is a field of ever increasing interest and ac-
tivity during the last decades which has uncovered phenomena 
like stochastic resonance [4–7], coherent resonance [8], and noise-
sustained synchronization [9,10] in non-linear dynamical systems. 
These phenomena are of particular relevance in understanding key 
issues in neuroscience, where single neurons are often described 
as relaxation oscillators [11] displaying excitable behavior. In this 
sense, it is well known that synchronization is relevant for the 
efficient processing and transmission of information in neural net-
works (see e.g. [12,13]) and experiments have shown that synchro-
nized states can occur in many special areas of the brain, such 
as the olfactory system or the hippocampal region [14–16]. The 
insight gained through detailed theoretical studies of neuron syn-
chronization in networks [17–23] has wide applicability in neuro-
science. Examples are the synchronization of gap-junction coupled 
neurons [21], as well as phase locking and synchronization in neu-
ral networks (studied by means of the phase resetting curve) [24,
25]. Moreover, noise-induced and noise-enhanced synchronization 
have also been reported in neuronal systems [26,27].

In realistic neural networks, excitatory and inhibitory synapses 
are known coexist [28–30]. Previous research has shown that 
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both phase-attractive and phase-repulsive coupling exist in sys-
tems of realistic neurons, associated respectively to excitatory and 
inhibitory synapses. Effects of phase-repulsive coupling on neu-
ronal dynamics have been investigated in [31–33]. For example, it 
has been shown that a pair of excitable FitzHugh–Nagumo (FHN) 
neurons can exhibit various firing patterns (including multistability 
and chaotic firing) when elements interact phase-repulsively [31]. 
Antiphase coupling plays an important role in circadian oscillation 
in the brain [34], synthetic genetic oscillators [35], and the dynam-
ics of astrocyte cultures [36]. It has been also used to investigate 
several aspects of the dynamics of neuronal and FHN coupled mod-
els [36–40], as well as Hodgkin–Huxley neurons [41,42].

The issue of the overall external influence on individual ele-
ments in ensembles is common to many fields, including neural 
networks [43]. A common noise can moreover play a constructive 
role [44]. On the other hand, correlated inputs in interacting neu-
ral networks are frequently used to explore pool’s dynamics and 
potential network capabilities, being the visual system the paradig-
matic case. For example, failures of binocular integration and visual 
threshold have been usually investigated by forcing both eyes with 
conunterphase stimulation at low temporal frequency from a long 
time ago [45,46]. This scenario has also been expanded to include 
spatial frequency in the external forcings (in the case of retina). 
Also, counterphase gratings are a frequently used tool to investi-
gate network dynamics, for example the one associated to binocu-
lar vision [47].

Our focus is the study of synchronization processes in pop-
ulations of interacting nonlinear oscillators. In previous studies 
[48–52] we have been addressing the noise sustained synchro-
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nization of rings whose units (displaying excitable FHN dynamics) 
are coupled in phase-attractive or phase-repulsive way. In all the 
cases, we found coupling induced nonequilibrium structures called 
antiphase state (APS), in which the neurons of the ring alternate 
regularly (except for noise-induced defects) their excitation states 
in space. In particular, we have made theoretical estimations of the 
noise thresholds for activation and synchronization of the APS in 
FHN systems. This analysis was facilitated because nonequilibrium 
potential (NEP) [53] is known for the system [54,55]. The NEP—
a non-equilibrium analog of free energy—provides deep insight on 
the dynamical mechanisms leading to pattern formation, and other 
phenomena where fluctuations play a constructive role [2,56].

Here we extend that analysis to explore cooperative effects 
between phase repulsive and phase attractive synapses in struc-
tured networks under non-uniform external forcing. In particular 
we consider two networks of phase-repulsively linked units, which 
are externally forced with opposite phases by a subthreshold sig-
nal (this configuration is expected to induce noise-sustained synch 
in counterphase). These networks are in turn phase-attractively 
linked each other by electrical synapses, in order to allow the in-
terplay of both kinds of coupling. A competition scenario is thus 
expected between electric coupling and external forcing: whereas 
coupling tends to keep both networks in phase, external forcing 
favors a counterphase dynamical state. We present numerical ev-
idence of noise-sustained activation and synchronization, and we 
show that the resonant dynamics can be explained in terms of 
noise-sustained transitions between NEP attractors, as they ex-
change adiabatically their relative stability obeying the slow sub-
threshold signals. These are the fundamental ingredients driving 
the dynamics and determining the relevant noise scales.

In Section 2 we briefly review the dynamic equations of the 
model; in Sec. 3 we provide numerical evidence of noise sustained 
synchronization, and characterize the constructive role of noise in 
the process. Then we elucidate the observed dynamics in terms of 
the NEP of a reduced model in Sec. 4, and collect our conclusions 
in Sec. 5.

2. The model

The FHN model is one of the most paradigmatic mathematical 
models in theoretical research on neural networks. It emerges as a 
two-dimensional simplification of the four-dimensional Hodgkin–
Huxley one, in which only the membrane potential and a recov-
ery variable are represented. The FHN model is also an archetypal 
model of activator–inhibitor systems, and a simple representation 
of excitable firing dynamics; it is capable of displaying periodic 
oscillations, stable fixed points, and excitability [57]. The construc-
tive effects of noise on the FHN model have been widely reported 
in literature in a variety of phenomena [1–3].

In order to analyze the synchronization between networks dis-
playing noise-sustained activities, we consider a minimal block of 
a structured FHN neuronal network, composed of two identical 
phase-repulsive coupled rings. One of them (network I) is exter-
nally forced by a subthreshold periodic signal while the other 
(network II) is electrically coupled with the first ring in such a 
way that its external forcing has an opposite phase than the one 
applied to network I (see Fig. 1). Inside each network nearest-
neighbor antiphase-coupling among activator variables is assumed. 
This kind of coupling is known to sustain noise-induced activity 
by a well-established mechanism [49]. Coupling parameters are 
assumed to be independent of the presynaptic and postsynaptic 
membrane potentials, and can therefore be modeled by constants 
D and E , while the coupling between arrays is proportional to 
the difference of presynaptic and postsynaptic membrane poten-
tials (electrical coupling). The equations for the model are
Fig. 1. Schematic graph of the system structure: thin lines denote electrical cou-
pling (E), while thick lines denote antiphase coupling (D). All cells are externally 
forced and the relative phase of the external signals are indicated.

u̇i = bui(1 − u2
i ) − vi + S(t) − D(ui+1 + ui−1)

+ E(pi − ui) + r1 ξ
(u)
i (t) + r2 ξ

(v)
i (t) (1)

v̇ i = ε(βui − vi + C) + r3 ξ
(u)
i (t) + r4 ξ

(v)
i (t) (2)

ṗi = bpi(1 − p2
i ) − qi − S(t) − D(pi+1 + pi−1)

+ E(ui − pi) + r1 ξ
(p)

i (t) + r2 ξ
(q)

i (t) (3)

q̇i = ε(βpi − qi + C) + r3 ξ
(p)

i (t) + r4 ξ
(q)

i (t). (4)

The activator (ui in network I, pi in network II) is the fast vari-
able, which mimics the action potential off cell i; the inhibitor 
(vi in network I, qi in network II) is the slow—or recovery—
variable, which is related to the time dependent conductance of 
the potassium channels in the membrane [32]. Here i = 1, . . . , N; 
uN+1 ≡ u1, u0 ≡ uN , pN+1 ≡ p1, p0 ≡ pN . The subthreshold exter-
nal signal S = A0 sinωt is injected in both networks with opposite 
phase. ε is the activator–inhibitor timescales ratio, D > 0 is the 
antiphase-coupling strength within each network, while E > 0 is 
the electric coupling strength between networks. Finally, ξ (k)

i are 
Gaussian white noises with 〈ξ (k)

i (t)〉 = 0 and 〈ξ (k)
i (t) ξ (m)

j (t′)〉 =
η δi, j δk,m δ(t − t′), where η is the common noise intensity and 
k, m ∈ {u, v, p, q}.

Throughout the work, the following values have been adopted: 
N = 256, ε = β = 10−2, b = 3.5 × 10−2, C = 2 × 10−2, D = 10−2, 
A0 = 1.1 × 10−2, ω = 2 × 10−3, ε r1 = r3 = cos 0.05 and ε r2 =
r4 = sin 0.05. The values of the parameters are not totally arbi-
trary: the value of D is selected in order to have a well-developed 
regime of noise-sustained synchronization in externally forced iso-
lated networks [50], while the period T = 2π/ω remains above 
the typical deterministic time (i.e. the turnaround time of a single 
spike), so that the signal can be regarded as an adiabatic pertur-
bation. Besides, single-cell parameters and noise coefficients have 
been selected in such a way that they satisfy an integrability con-
dition, required by the theoretical characterization of the dynamics 
[see Eq. (10) in Sec. 4].

3. Noise sustained synchronization

Following [50] we call activated or excited those cells for which 
the activator field exceeds some threshold value uth . To quantify 
the level of activity of each network, we introduce the normalized 
global activity

A(t) = 1

N

N∑
i=1

	[xi(t) − uth]. (5)

Here xi represents either ui or pi (depending on the network we 
refer to), and 	 is the Heaviside step function. As expected, A(t)
is not sensitive to uth for reasonable values of threshold. Hereafter 
we fix uth = 0.4. Due to the fact that an excited neuron inhibits its 
neighbors through the antiphase-coupling, we often observe spa-
tially alternating states of excited and inhibited cells, i.e. APS. Note 
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Fig. 2. Activity record of subsets of 100 neurons in network I (left) and in network II 
(right), with coupling intensity E = 10−4. White: activated cells; black: inhibited 
cells. (a) and (b): 22 periods of the signal, and noise intensities (a) η = 2 × 10−8, 
(b) 5 × 10−8; (c) and (d) 11 periods of the signal, and noise intensities (c) 10−7 and 
(d) 2.2 × 10−7.

that a perfect APS would correspond to A = 1/2. However, A does 
not reach, in general, this value because alternance fails due to the 
local noises.

An indicator of the synchrony of each network with the exter-
nal signal S(t) is the Q -factor, defined by

Q =
√

Q 2
sin + Q 2

cos , with (6)

Q sin = 1

nT

nT∫
0

2A(t) sin(ωt)dt

Q cos = 1

nT

nT∫
2A(t) cos(ωt)dt,
0

Fig. 3. Snapshot of corresponding segments of the networks for E = 10−4 and η =
2 ×10−8 (as in Fig. 2a). For the sake of clarity, the p field is shifted upwards by two 
units. We show a full domain in counterphase configuration limited by in-phase 
state configurations. We remark that for these particular values of the parameters, 
both networks are mainly in phase.

Fig. 4. Q -factor for network I at E = 10−4. The Q -Factor for network II almost 
coincides with this, and cannot be distinguished in the graph.

where n is the number of periods T covered by the integration 
time.

A global view of the dynamics is provided by Fig. 2, which com-
pares the activity records of equivalent subsets of neurons in each 
ring, for E = 10−4 and different noise intensities.

For weak noise (case not shown) there are only subthreshold 
oscillations, due to the signal. By increasing the noise intensity 
and after a transient, both networks become activated (as shown 
in Fig. 2a, where both systems are in APS). Due to the presence 
of defects, corresponding segments in both networks can be ei-
ther in phase or in counterphase, as illustrated in Fig. 3. Numerical 
simulations show that in-phase activation is more frequent than 
counterphase one, and the asymmetry increases with the coupling 
strength (not shown). Increasing the noise level further (Fig. 2b) a 
larger number of defects arise, and for a suitable noise level the 
networks synchronize with the forcing (Figs. 2c and 2d). As the 
injected signals are in counterphase, we see that whilst one net-
work remains in the APS, the other one is in the uniform state. 
The synchronization degrades for still larger noise level, as shown 
in Fig. 4, where the Q -factor is plotted vs noise intensity. The max-
imum synchronization occurs for η ≈ 2.2 × 10−7.

4. Theoretical description of the dynamics via the NEP

4.1. Nonequilibrium potential

The nonequilibrium potential (NEP) 
 for Langevin-type equa-
tions has been defined [53] as the zero-noise limit of the logarithm 
of the stationary probability density function

P stat(W, η) = Z(W)exp

[
−
(W) +O(η)

]
, (7)
η
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where the variables of the problem have been grouped in a vec-
tor W. The NEP is a Lyapunov function of the deterministic dy-
namics and provides information on the properties of attractors. In 
particular, it determines the height of the barriers separating at-
traction basins, which in turn define the transition rates among 
the different attractors. Another way to define a NEP, which re-
mains valid even outside the small noise limit was proposed by 
Ao [58].

The NEP for a general network of linearly coupled FitzHugh–
Nagumo cells has been derived in [50]. Since the two networks 
defined in our model determine in turn a single network with a 
particular coupling structure, we can apply the results of [50] to 
the present case. We obtain


 =
N∑

i=1

[

s(ui, vi) + 
s(pi,qi) − 2

λ1
S(t)(ui − pi) +

2D

λ1
(uiui+1 + pi pi+1) + E

λ1
(ui − pi)

2
]

, (8)

Z = constant, (9)


s being the NEP for a single cell without signal, given by


s(u, v) = ε

λ2
(v2 − 2β uv − 2C v)

+ 2λε

λ1λ2
(β u2 + 2Cu) − 2

λ1

[
b

2
u2 − b

4
u4

]
,

where λ1 = r2
1 + r2

2 , λ2 = r2
3 + r2

4 and λ = r1r3 + r2r4. Integrability 
conditions—arising from the NEP’s derivation—constrain the pa-
rameters to obey

βλ1 + λ2/ε = 2λ. (10)

The third term in Eq. (8) is the explicit contribution of the signal, 
the fourth one takes into account the antiphase-coupling inside 
each network and the last one, the electrical coupling between 
both rings.

4.2. Reduced four-neuron model

A theoretical study of the dynamics can be done by exploiting 
the properties of the NEP during time-evolution. To this end we 
consider a simplified model, where each network is represented by 
a two-neuron system: a minimal description of an idealized case 
where all the even nodes on one hand, and all the odd nodes on 
the other, have the same stochastic phase-space trajectory. For this 
four-neuron model, the NEP in Eq. (8) takes the form:


(u1, v1, . . . , p2,q2) = 
s(u1, v1) + 
s(u2, v2) +

s(p1,q1) + 
s(p2,q2) − 2

λ1
S(u1 − p1 + u2 − p2) +

4D

λ1
(u1u2 + p1 p2) + E

λ1
[(u1 − p1)

2 + (u2 − p2)
2]. (11)

The critical points (minima and saddles) of the NEP are the fixed 
points of the dynamics, and can be alternatively determined by the 
intersection of the nullclines. Although Eqs. (1)–(4) are not gradi-
ent, the nonvariational contribution to the dynamics also vanishes 
at the fixed points due to the particular structure of the probability 
current [50].

As far as we are interested only in barrier heights—given by 
the NEP difference �
 between saddle points and minima—we 
project out the NEP along the slow manifolds v1,2 = βu1,2 + C , 
q1,2 = βp1,2 + C of Eqs. (1)–(4), which capture all the system’s 
fixed points. We thus concentrate on 
(u1, u2, p1, p2) and proceed 
to characterize their minima and saddles.
Fig. 5. NEP values at the minima (solid lines) and saddles (dashed lines) of the 
four-neuron model, for E = 10−4. State SS has lower NEP value than SS2, but the 
small difference cannot be appreciated in the figure.

In the following, U, E and S will respectively denote the uni-
form state, APS and saddle fixed points in each network of the 
reduced model [59]. U is characterized by u1 ≈ u2 ≈ −1 in net-
work I or p1 ≈ p2 ≈ −1 in network II, and corresponds to the 
uniform state in the real network. In E, one neuron becomes ex-
cited and the other one remains inhibited (either u1 ≈ −u2 ≈ 1
or −u1 ≈ u2 ≈ 1 in network I, or correspondingly in network II), 
which corresponds to an APS in the real network. Finally S is an 
intermediate state (e.g. u1 ≈ −1 and u2 ≈ 0 in network I), which 
corresponds to a high-dimensional saddle point lying between the 
rest state and APS in the real network.

This done, we introduce a two-letter code to label the fixed 
points of the reduced model [59] (the first letter corresponds to 
network I, and the second one to network II). Accordingly, UU de-
notes the state where both networks are in the uniform state, and 
EE the one where both networks are in the APS. Now, whereas UU 
is unique, the remaining states are doubly degenerate under simul-
taneous permutations of u1 by u2 and p1 by p2. In one instance 
of some states, the inhibited neurons in each network are elec-
trically coupled; in the other, they are not. We distinguish those 
cases by adding a two in the code for the second case (e.g. we la-
bel as SE2 the state where u1 ≈ −p1 ≈ p2 ≈ −1 and u2 ≈ 0). It is 
worth noting that if at least one letter in the code is S, the whole 
state corresponds to a saddle point in the NEP (that is why the 
single-network intermediate state is labeled as S).

4.3. Activation chains

As we will show, the dynamics can be interpreted mainly as 
a succession of noise-activated transitions between metastable at-
tractors. The process to escape from a given minimum through a 
barrier is an activation process, where the energy for the jump 
comes from the noise. The order of magnitude of noise intensity 
to escape can be obtained as (see Appendix A)

η ≈ �


4
. (12)

To elucidate the dynamics, we consider how the NEP at the 
attractors and repellers involved in the route to synchronization 
behave with the signal. As in the simulations, the system is as-
sumed to start always in the UU uniform state.

The NEP landscape depends on the electric coupling strength. 
For low enough values (E ≤ 6 × 10−4), the reduced model has 
the structure of barriers shown in Fig. 5 for E = 10−4. For low 
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Fig. 6. Schemes of activation transition chains. The upper frame corresponds to 
E ≤ 6 × 10−4, and the lower one to 7 × 10−4 ≤ E ≤ 1.3 × 10−2. Solid arrow: 
noise-induced transition; dashed arrow: deterministic transition; circles: metastable 
states. The ±A0 over arrow indicate at which (approximate) signal value the tran-
sition take place. The deterministic (not saddle-mediated) transition from UE to EE 
is due to the collapse of UE state at S ≈ A0.

noise intensities the system remains in UU, performing subthresh-
old oscillations. A noise level of ηA ≈ 8.8 ×10−9 allows to reach UE 
(across US) at S = −A0. Once in UE, for this level of noise, the sys-
tem jumps to EE at S = A0 (through the SE saddle, with a barrier 
ηB ≈ 6.4 × 10−9). ηA is the threshold for activation, because once 
in EE, the system cannot escape from it. Increasing noise intensity 
to ηC ≈ 10−8, another transition (to EE2, through SE2) becomes 
possible. A sketch of transition chains and branches for low E val-
ues is shown in the upper frame of Fig. 6. Note that since ηB < ηC , 
the upper branch (ending in EE, i.e. in-phase activated networks) 
is more probable than the lower one (ending in EE2, i.e. counter-
phase activated networks). Examples of both states of the model 
can be seen as domains in the real system (Fig. 3).

To advance in the synchronization cycle it is necessary to exit 
from EE, or eventually from EE2 (as in the upper frame of Fig. 7). 
In the first case, reaching EU (across ES) at S = A0 requires a 
noise level ηs = �
/4 ≈ 4.1 × 10−8. In the second, the transi-
tion EE2 → ES2 → EU at S = A0 has a smaller barrier ηs′ =
�
/4 ≈ 3.6 × 10−8. However, the second route requires having 
reached EE2, a less probable event as already stated. In conclu-
sion, with noise intensity ηs the system goes from UE to EU either 
through EE or through EE2. To close the synchronization cycle, the 
system follows the route EU → ES (ES2) → EE (EE2) → SE (SE2) 
→ UE. This route does not introduce any new threshold. As a con-
sequence, ηs is the predicted threshold for synchronization.

Due to the symmetry of the system, (a) the states with two 
repeated letters (UU, EE, EE2, SS, and SS2) are even functions of 
the instantaneous value of the signal, and (b) the states with two 
different letters have a “reflected” state with the same NEP (e.g. US 
and SU) when changing S to −S . For that reason, each transition 
described has its counterpart—with the same value of activation 
but with the sign of the signal changed—and the transition takes 
place between states labeled with exchanged letters. For example, 
although we only mentioned UU → US → EU at S = −A0, we also 
have UU → SU → UE at S = A0.

In some cases, the barriers at S = ±A0 decrease as E increases, 
and can even disappear through saddle-node collapse. Neverthe-
less the states remain for smaller values of the signal. Due to the 
dimensionality of the reduced model, it is not straightforward to 
represent the NEP landscape. A useful indicator is the number of 
critical points for each E interval, as summarized in Table 1. If n is 
the number of critical points found in the table for a given E , then 
the total number of critical points is 2n −1, because UU is the only 
one not degenerated (and it exists for any signal and E values). 
The numbers between parentheses count the critical points that 
are metastable states of the system, i.e. minima of the NEP. Note 
that due to the symmetry of the system (reflected in the symme-
try of the curves in Fig. 5), when a state labeled with two repeated 
letters disappears for S = 0, it disappears for all values of S . The 
last column on the table indicates the critical points in the im-
Table 1
Number of critical points (and of minima, between parentheses), not counting de-
generation, of the NEP for each interval of the electrical coupling E between net-
works.

E interval # crit. p. 
S = 0

# crit. p. 
S = ±A0

disappear at S = A0

and at S = 0 (bold)

[0,6 × 10−4] 13 (5) 13 (5) –
[7 × 10−4,8 × 10−4] 13 (5) 11 (4) UE, SE
[9 × 10−4,1.3 × 10−3] 13 (5) 9 (4) US, SS
[1.4 × 10−3,1.7 × 10−3] 13 (5) 7 (3) EE2, ES2
[1.8 × 10−3,6.1 × 10−3] 13 (5) 5 (3) SE2, SS2
[6.2 × 10−3,6.4 × 10−3] 9 (3) 5 (3) EU, ES, UE, SE
[6.5 × 10−3,1.3 × 10−2] 5 (2) 5 (3) EE2, SE2, ES2, SS2
[1.4 × 10−2,∞) 3 (2) 3 (2) US, SU, EU, ES

mediately upper row that had disappeared. Critical points in bold 
characters disappear at S = 0, otherwise, they disappear at S = A0.

Next, we analyze the predictions (of the four-neuron model), 
for activation processes for larger values of E . We showed that 
for small enough coupling (upper frame in Fig. 6) the threshold 
for in-phase activation is determined by the barrier UU → US (at 
S = −A0) in the chain UU → US → UE → SE → EE. On the other 
hand, the threshold for counterphase activation is determined by 
the barrier UE → SE2 (at S = A0) in the chain UU → US → UE →
SE2 → EE2. Fig. 8 summarizes a NEP analysis performed includ-
ing the coexistence regime of in-phase and counterphase states, 
where all the barriers that organize the dynamics are included. 
Once occupied state UE, the barrier represented by SE2 (counter-
phase activation barrier) grows with E while the alternative barrier 
(to overcome in order to reach SE) decreases. As a consequence, 
the in-phase chain becomes more probable than the counterphase 
one. Eventually, UE disappears at S = A0 (Table 1) and then the 
UE → EE transition becomes deterministic (and the counterphase 
activation virtually impossible), as schematized in the lower frame 
of Fig. 6. This mechanism holds for 7 × 10−4 ≤ E ≤ 1.3 × 10−2.

4.4. Synchronization regimes

For E small enough we saw that the evolution from the rest 
state UU starts with the transition UU → US → UE. Once in UE, 
the periodic evolution is given by the following chain of transi-
tions UE → SE (SE2) → EE (EE2) → ES (ES2) → EU → ES (ES2) 
→ EE (EE2) → SE (SE2) → UE, so closing the cycle (Fig. 7, upper 
frame). Since for S positive enough, EU has a smaller NEP value 
than EE and EE2, the transition through either route toward EU 
proceeds in two steps. The system remains a short time in ei-
ther EE or EE2 before ending up in EU. The same occurs with 
the symmetric states at S = −A0. As discussed when describing 
activation, the chain UE → SE → EE becomes deterministic for 
7 × 10−4 ≤ E ≤ 1.3 × 10−2, simplifying the transition to the de-
cay UE → EE. The new scheme is shown in the lower frame of 
Fig. 7. The highest barrier—which therefore determines the syn-
chronization threshold—is given in both regimes by 
(ES) −
(EE)

at S = A0. Fig. 8 shows the dependence on E of the synchroniza-
tion barrier, which agrees with numerical results for the maxima 
of Q -factors.

Finally for E ≥ 1.4 × 10−2, only three critical points exist 
(Table 1). To exemplify the dynamics in such situation we con-
sider the strong-coupling limit. For E → ∞ we have u1 = p1 and 
u2 = p2 in the reduced model, and its NEP reads


(u1, v1, u2, v2) = 2
[

s(u1, v1) + 
s(u2, v2) + 4D

λ1
(u1u2)

]
.

(13)

The dependence on E naturally disappears in this limit, but also 
the dependence on S . As both networks are perfectly coupled, 
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Fig. 7. Schemes of synchronization transition chains. Upper one corresponds to E ≤ 6 × 10−4, lower one to 7 × 10−4 ≤ E ≤ 1.3 × 10−2. The UE state in dotted circles is the 
one at the beginning of the cycle.
Fig. 8. Relevant barrier heights as functions of the coupling strength E between 
networks, for in-phase activation [
(US) − 
(UU) at S = −A0], synchronization 
[
(ES) − 
(EE) at S = A0], counterphase [
(SE2) − 
(UE) at S = A0] and alter-
native barrier [
(SE) − 
(UE) at S = A0]. Points corresponds to the maxima of 
Q -factor as result of numerical simulations (average over 10 realizations).

there are only three states (UU, EE, and SS). For that reason, 
the NEP in these states takes for any E the same value as in 
the absence of signal, as can be seen by comparing Eqs. (11)
and (13). The NEP analysis also shows that a level noise of 
[
(SS) − 
(UU)]/4 = 4.3 × 10−7 is necessary to escape from UU, 
and this noise intensity is not enough to escape from EE, i.e. it 
is the activation threshold. To exit from EE it is necessary to in-
crease the noise up to [
(SS) − 
(EE)]/4 = 7.8 × 10−7, hence no 
synchronization with the signal is expected. Numerical simulations 
(not shown) confirm these predictions.

5. Conclusions

We have studied numerically (and analytically within a reduced 
model) the stochastic dynamics of a system made of excitable 
FitzHugh–Nagumo neurons, submitted to independent additive 
Gaussian white noises (with the same intensity η) in each field. 
They are assembled into two identical rings of phase-repulsively 
coupled (and thus able to develop noise-sustained structures) 
which are in turn sitewise electrically coupled, and submitted to 
opposed but otherwise identical subthreshold harmonic signals. In-
terplay between phase-attractive and phase-repulsive couplings is 
then generated by the particular wiring.

Numerical integration shows that in each ring, local addi-
tive noises sustain extended anti-phase states (APS), where the 
cells alternate their activation state along the network: “activated–
inhibited–activated–inhibited ...”. These APS appear as domains in 
each ring. Correlations are observed between networks: electrically 
coupled domains remain mainly in phase, although some of them 
can be in counterphase. A threshold noise intensity is necessary 
for the activation, namely for the described structures to appear 
and remain in time.

For large enough noise intensities, coherent time behavior is 
observed where both networks exhibit essentially the same syn-
chronized activity—basically a periodic transition in each network 
between the APS and the uniform rest state—in synchrony with the 
external forcing but keeping the counterphase relation induced by 
the signal. Moreover, the Q -factors exhibit maxima as function of 
η, i.e. there is optimal noise intensity for maximal coherence.

The numerical results can be interpreted by considering the 
nonequilibrium potential (NEP) of a four-cell reduced model. Ana-
lyzing the dependence of the NEP landscape on the external signal, 
we have shown that the system dynamics can be explained in 
terms of noise-sustained transitions (and eventually deterministic 
decays) between attractors—i.e. NEP minima—in such a way that a 
chain of transitions explains the activation and the synchroniza-
tion of the system. The noise intensities required for activation 
and synchronization are quantitatively determined by the high-
est barrier height in the chain, corresponding to the highest NEP’s 
saddle point. The numerically observed formation of in-phase and 
counterphase configurations involving extended antiphase states of 
both networks is theoretically explained in terms of the chains of 
(mainly) noise-sustained transitions, that originate the structures 
and their particular correlations. Complete in-phase–counterphase
symmetry is predicted and observed only for uncoupled networks, 
whereas counterphase configurations diminish with coupling in-
tensity E as a reflection of the system’s fixed-point structures and 
their NEP levels. Although naturally, the four-cell model does not 
take into account the formation of defects, it helps elucidating the 
route to synchronization, identifying the relative stability of the 
relevant states and estimating the optimal noise intensity for acti-
vation and synchronization.

In addition, we study the dynamics as a function of network 
coupling. Typically, for small enough noise intensity we have sub-
threshold adiabatic oscillations, and as the noise intensity grows 
there is activation and further synchronization. For large coupling 
(E ≥ 1.4 × 10−2) however, synchronization is no longer possible. 
Levels of activation and synchronization were predicted as func-
tions of E within the four-cell model, and verified by numerical 
simulations.

Since barrier heights depend on the signal amplitude A0, all 
the reported results do. As a rule, η thresholds decrease as A0
increases. Moreover, increasing A0 originates attractor collapse 
(at the extremal values of the signal) much as shown in Table 1
for constant A0 and increasing E .
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As it occurs in related phenomena (e.g. coherence resonance in 
coupled FitzHugh–Nagumo systems [8]), our results are expected 
to depend on both temporal and spatial noise correlations. The 
NEP approach would be useful even in those cases, since dynamics 
driven by space-correlated or colored (Ornstein–Uhlenbeck) noises 
can in principle be described in terms of a suitable NEP [33].
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Appendix A. Noise intensity to escape from a state

Let us call α the departure state, place the origin in α and take 

 = 0 in this state. An expansion of 
 to second order in the NEP’s 
variables X yields


(X) = XT A X, (A.1)

with XT = (x1, x2, . . . , xn) a row vector and A the Hessian matrix 
Aij = ∂2
/(∂xi ∂x j ) evaluated at state α. By the NEP’s definition 
[Eq. (7)], we can approximate the stationary joint probability den-
sity function for X when the system is in state α by

P (X) =
√

det A

πn/2
exp

(
−XT A X

η

)
. (A.2)

Hence the NEP’s mean is 〈
〉 = n η/2. We adopt the criterion 

sad = 〈
〉 and then the estimated noise intensities for the 
transition—having into account that 
sad = (N/2)�
 and n = 4N
(each neuron has two variables)—is

η = 
sad

4
. (A.3)

This equation determine η as an intensive parameter, and then 
improves the cruder approximation in Ref. [59] (obtained from 
equating the height barrier 
sad to the NEP standard deviation).
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