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a b s t r a c t

When dealing with several populations of functional data, equality of the covariance oper-
ators is often assumed even when seeking for a lower-dimensional approximation to the
data. Usually, if this assumption does not hold, one estimates the covariance operator of
each group separately, which leads to a large number of parameters. As in the multivariate
setting, this is not satisfactory since the covariance operators may exhibit some common
structure, as is, for instance, the assumption of common principal directions. The exist-
ing procedures to estimate the common directions are sensitive to atypical observations.
For that reason, robust projection-pursuit estimators for the common directions under a
common principal component model are considered. A numerical method to compute the
first directions is also provided. Under mild conditions, consistency results are obtained.
A Monte Carlo study is performed to compare the finite sample behaviour of the estima-
tors based on robust scales and on the standard deviation. The usefulness of the proposed
approach is illustrated on a real data set.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The common principal components model introduced by Flury (1984) for pth dimensional data, generalizes proportion-
ality of the covariance matrices by allowing the matrices to have different eigenvalues but identical eigenvectors, that is,
6i = β3iβ

t, i = 1, . . . , k, where 3i are diagonal matrices and β is the orthogonal matrix of the common eigenvectors.
This model can be viewed as a generalization of principal components to k groups, since the principal transformation is
identical in all populations considered while the variances associated with them vary among groups. In biometric applica-
tions, principal components are frequently interpreted as independent factors determining the growth, size or shape of an
organism. It seems therefore reasonable to consider a model in which the same factors arise in different, but related species.
The common principal components model clearly serves this purpose.

In this paper, we go further and consider several populations of functional data instead of finite-dimensional ones. As
in the p-dimensional case, in many situations, one collects functional data Xi,1, . . . , Xi,ni from k independent samples with
mean µi and different covariance operators 0i which may exhibit some common structure to be taken into account in the

∗ Correspondence to: Departamento de Matemáticas, FCEyN, UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires, C1428EHA, Argentina. Fax: +54 11
45763335.

E-mail addresses: lbali@dm.uba.ar (J.L. Bali), gboente@dm.uba.ar (G. Boente).

http://dx.doi.org/10.1016/j.csda.2016.08.017
0167-9473/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2016.08.017
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2016.08.017&domain=pdf
mailto:lbali@dm.uba.ar
mailto:gboente@dm.uba.ar
http://dx.doi.org/10.1016/j.csda.2016.08.017


J.L. Bali, G. Boente / Computational Statistics and Data Analysis 113 (2017) 424–440 425

estimation procedure. The simplest generalization of equal covariance operators consists of assuming their proportionality,
i.e., 0i = ρi01, for i = 1, . . . , k and ρ1 = 1. On the other hand, a natural extension of functional principal components
to several populations, which also corresponds to a generalization to the functional setting of the common principal
components model introduced by Flury (1984), is to assume that the covariance operators 0i have common eigenfunctions
φj but different eigenvalues λi,j, i.e.,

0i =

∞
j=1

λi,jφj ⊗ φj, (1)

where to identify the directions, we assume that the eigenvalues of the first population are ordered in decreasing order, that
is, λ1,1 ≥ λ1,2 ≥ · · · ≥ λ1,j ≥ λ1,j+1 · · ·. This model is usually denoted the functional common principal component model
(fcpc) and provides a framework for analysing different population data that share their mainmodes of variation φ1, φ2, . . .
using a parsimonious approach. When the eigenvalues preserve the order across populations, i.e., if

λi,1 ≥ λi,2 ≥ · · · ≥ λi,j ≥ λi,j+1 · · · , for i = 1, . . . , k (2)

as assumed, for instance, in Benko et al. (2009) and Boente et al. (2010), the common directions will represent, as in the
one-population setting, the main modes of variation for each population. A more general setting than (2), is to assume that
the largest d eigenvalues may not preserve the order among populations, that is,

λi,j ≥ λi,d+1 ≥ λi,d+2 ≥ · · · ≥ 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ d. (3)

In this case, φ1, . . . , φd represent the modes of variation that are common to each group, even when the ordering across
groups changes. As mentioned in Coffey et al. (2011), the eigenvalues λi,j, 1 ≤ j ≤ d, determine the order of the
common directions in each group and may allow to study the differences in the distribution of the variation across groups.
As in principal component analysis, the functional common principal component model could be used to reduce the
dimensionality of the data, retaining as much as possible of the variability present in each of the populations.

When dealing with several populations, one possibility to identify and examine the main sources of variability of the
data, is to perform a functional principal component analysis (fpca) separately on each population, using either classical
or robust estimators. However, as mentioned for instance in Coffey et al. (2011) and Fengler et al. (2003), if the principal
directions showa similar structure across population as in (1), itmay bemore sensible fromapractical point of view to obtain
common eigenfunctions estimators for all the groups. Besides, a separate analysis for each population leads to difficulties
in the interpretation of the obtained principal directions specially if the first d components can change their order from
group to group as in (3). In this sense, the functional common principal component model leads to a more parsimonious
model reducing the dimensionality of the functions to be estimated. A related problem was studied by Benko et al. (2009)
who considered the case of k = 2 populations and provided tests for equality of means and equality of a fixed number of
eigenfunctions. Another possibility considered in the literature, see for instance Donoghue et al. (2008), is to aggregate into
a single data set the observations from all populations and then perform a functional principal component analysis based on
the combineddata set. As iswell known, this approach is not satisfactory unless the data from the different groups come from
a unique population. To allow for location differences and avoid mixing between group and within population variability,
the practitioner should centre each group data with respect to an estimator of its mean µi before applying a functional
principal component analysis. It is worth noting that the directions obtained using classical fpca applied to the data after
group-mean centering correspond to the eigenfunctions of the pooled sample covariance operator. Boente et al. (2010)
studied the asymptotic distribution of these family of estimators under (1) and (2) and proposed estimators that correspond,
in the finite-dimensional setting, to the multivariate normal maximum likelihood ones. As shown in Boente et al. (2010),
for Gaussian processes with proportional covariance operators, the eigenfunctions of the pooled covariance operator are
asymptotically less efficient than those obtained using a functional version of the estimatingmaximum likelihood equations
obtained in Flury (1984) for multivariate normally distributed observations.

Besides the abovementioned asymptotic property, the advantage of an analysis based on the fcpcmodel over a functional
principal component analysis of the pooled group-mean centred data set was clearly illustrated by several authors,
including Benko and Härdle (2005) and Benko et al. (2009) who analyse the implied volatility of German stock markets
and Coffey et al. (2011) who studied human movement data. More precisely, Benko and Härdle (2005) and Benko et al.
(2009) used a functional common principal component analysis to analyse log-returns of the implied volatility of options
with different maturities and describe the advantages of the methodology to construct lower-dimensional approximations
for each population and to provide a more parsimonious model for the implied volatility surface. On the other hand, Coffey
et al. (2011) consider the Achilles tendon, ankle dorsiflexion and leg abduction angles between injured and control subjects
and show that the analysis based on a fcpc model reveals differences in the variation of movement patterns of injured
versus control subjects that were not detected by considering the functional principal component analysis of the combined
data. They also mention that, due to these differences, the scores from a functional common principal model can be used to
discriminate groups.

The estimators defined in Boente et al. (2010), as well as the procedures used in Benko et al. (2009) and Coffey et al.
(2011), are based on the sample covariance operators of each population being, therefore, sensitive to atypical trajectories.
Up to our knowledge, robust proposals for functional principal components consider only the one-population case. For
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instance, Gervini (2008) studies a fully functional approach to robust estimation of the principal components by considering
a functional version of the spherical principal components defined in Locantore et al. (1999). Sawant et al. (2012) provide a
robust approach of principal components based on a robust eigen-analysis of the coefficients of the observed data on some
known basis, while Lee et al. (2013) propose a procedure that combinesM-estimation with a smoothness penalty leading to
M-type smoothing spline estimators. Besides, Hyndman and Ullah (2007) give an application of a robust projection-pursuit
approach, applied to smoothed trajectories, but do not study the properties of their method in detail. On the other hand, Bali
et al. (2011) introduce robust estimators of the principal directions based on robust projection-pursuit combined with
different smoothing methods through a penalization in the scale or in the norm and establish their strong consistency. For
sparsely and irregularly observed functional data, Gervini (2009) develops robust functional principal component estimators
and uses them for outlier detection. In the functional setting, when second moment exists, Kraus and Panaretos (2012)
define a ρ-dispersion operator less sensitive to outliers, that has the same eigenfunctions as the covariance operator. The
ρ-dispersion operator is used to construct a test for comparing the second-order characteristics of two functional samples.
However, the order among eigenvalues of the ρ-dispersion operator and the covariance operator may be not be preserved.

On the other hand, when dealing with several populations of multivariate observations, robust estimators under a
common principal components model are considered in Boente and Orellana (2001). Further developments are given
by Boente et al. (2006) who define a general class of projection-pursuit estimators in order to improve the efficiency of the
robust estimators for a given scale and also, to recover the maximum likelihood estimators when the scale is the standard
deviation.

Taking into account that the common principal component model leads to a more parsimonious model, reducing the
dimensionality of the functions to be estimated and the sensitivity of the classical estimation proposals to atypical curves,
the problem of robust estimation of the common direction becomes relevant. For that reason, themain purpose of this paper
is to introduce a general class of robust estimators of the common directions under a fcpc model providing consistency
results from a fully functional approach to the problem, as done in the one-population setting by Gervini (2008), Bali et al.
(2011) and Kraus and Panaretos (2012), among others. The estimators to be considered are defined through a projection-
pursuit procedure and can be viewed as an extension of those proposed by Boente et al. (2006) in the multivariate setting
as well as a generalization to several populations of those given in Bali et al. (2011).

In the finite-dimensional setting, several authors, such as Critchley (1985), Jaupi and Saporta (1993), Shi (1997), Croux
and Haesbroeck (1999) and Croux and Ruiz-Gazen (2005) have suggested statistical diagnostics and graphical displays for
detecting outliers in principal component analysis for one population, such as side-by-side boxplots of the scores obtained
from a robust principal component analysis. Under a fcpc model, the scores obtained from a robust functional common
principal analysis may also be used to detect influential observations in the samples. Furthermore, as in the one-population
setting, the estimation of the common directions provides a dimension reduction tool where the use of robust methods
becomes important to obtain reliable directions. As noted above, the functional common principal model assumes that the
same directions contribute to the variation in each population, while the distribution of their variation may differ between
populations. Hence, as in Coffey et al. (2011), the robust estimation of the common directions and their size provide a
meaningful and more resistant way of comparing the dispersion structure across populations.

This paper is organized as follows. In Section 2, we introduce the notation to be used and we recall the definition of
the projection-pursuit estimators defined in Bali et al. (2011). In Section 3, the robust projection-pursuit estimators for the
common directions and their related functional are introduced. An algorithm to compute the estimators is also described
in Section 3.1. Fisher-consistency of the proposals is discussed in Section 4.1, while strong consistency results for the given
proposals and for the numerical approximation described in Section 3.1 are stated in Sections 4.2 and 4.3, respectively.
Section 5 summarizes the results of a Monte Carlo study conducted to compare the performance of the robust proposals
between them and also with that of the classical estimators based on the sample variance. The proposed estimators are
applied to a real data set in Section 6 where they are helpful to detect influential observations and to discriminate between
groups. Some final comments are given in Section 7. Proofs are relegated to the online supplement where also some
additional results may be found.

2. Basic definitions and notation

The observations to be considered in this paper are elements of a separable Hilbert space H with inner product ⟨·, ·⟩ and
related norm ∥α∥

2
= ⟨α, α⟩. Let ⊗ stand for the tensor product on H , e.g., for u, v ∈ H , the operator u ⊗ v : H → H is

defined as (u ⊗ v)w = ⟨v, w⟩u. From now on, V1 stands for {α : ∥α∥ ≤ 1} while S1 = {α : ∥α∥ = 1}.
If X ∈ H is a random element with finite second moment, i.e., E(∥X∥

2) < ∞, we denote by 0X = E{(X −µ)⊗ (X −µ)}
its covariance operator, where µ = E(X). The operator 0X : H → H is a linear, self-adjoint, positive semi-definite and
continuous operator. Moreover, 0X is a Hilbert–Schmidt operator so, it has a countable number of eigenvalues, all of which
are real and non-negative. As is well known, one can choose the eigenfunctions of a Hilbert–Schmidt operator so that they
form an orthonormal basis for H . Let {φj : j ≥ 1} and {λj : j ≥ 1} be respectively an orthonormal basis of eigenfunctions of
0X and their corresponding eigenvalues with λj ≥ λj+1. With this notation, the spectral value decomposition for 0X can be
expressed as 0X =


∞

j=1 λjφj ⊗ φj. In this setting, principal components analysis has been successfully extended from the
multivariate setting to accommodate functional data. The jth principal component variable is defined as Zj = ⟨φj, X − µ⟩,
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leading to the Karhunen–Loève expansion X = µ +


∞

j=1 Zjφj with the Zj’s being uncorrelated and having variances λj in
descending order.

When dealingwith several populations, i.e., when Xi,1, . . . , Xi,ni are observations from k independent sampleswithmean
µi and covariance operators 0i = 0Xi,1 satisfying (1) and (3) for some d ≥ 1, the processes Xi,1, i = 1, . . . , k, can be written
as Xi,1 = µi +


∞

j=1 λ
1/2
i,j ξij φj, where ξij are zero mean random variables such that E(ξ 2

ij ) = 1, E(ξij ξis) = 0 for j ≠ s.
In particular if λi,1 ≥ λi,2 ≥ · · · ≥ 0 for all i = 1, . . . , k, the common eigenfunctions exhibit the same major modes of
variation across populations. It is worth noticing that when considering a functional proportional model, Xi,1, i = 1, . . . , k,
can be written as Xi,1 = µi + ρ

1/2
i


∞

j=1 λ
1/2
j ξij φj, with ρ1 = 1, λ1 ≥ λ2 ≥ · · · ≥ 0 and ξij random variables as described

above.

2.1. Projection-pursuit principal component functional in the one-population setting

We recall some definitions given in Bali et al. (2011) which will help to generalize the functional common principal
component model to the situation in which second moments do not exist.

Denote by G the set of all univariate distributions. From now on, σr : G → [0, +∞) stands for a scale functional, that is,
a functional over the set of univariate distributions which is location invariant and scale equivariant, i.e., if Ga,b stands for
the distribution of aY + bwhen Y ∼ G, then, σr(Ga,b) = |a|σr(G), for all real numbers a and b.

Two well known examples of scale functionals are the standard deviation which is not resistant to outliers, sd(G) =

[E{Y − E(Y )}2]1/2, where Y ∼ G, and the median absolute deviation about the median, mad(G) = c median{|Y −

median(Y )|}, where c is a normalization constant typically chosen as c = 1/Φ−1(0.75) that leads to a simple resistant
scale estimator. A broader class of robust scale functionals, which includes as special cases the two previous examples, is
the M-scale functionals (see Huber (1981)). To be more precise, as in Maronna et al. (2006), let ρ : R → [0, ∞) be a
ρ-function, that is, an even function, non-decreasing on |x|, increasing for x > 0 when ρ(x) < limt→+∞ ρ(t) and such that
ρ(0) = 0. When ρ is bounded, it is assumed that supu∈R ρc(u) = ∥ρ∥∞ = 1. Given a univariate distribution G and Y ∼ G,
a location parameter µ and a continuous ρ-function, the M-functional σ(G) satisfies E[ρc{(Y − µ)/σ(G)}] = δ, where
ρc(u) = ρ(u/c), and c > 0 is a user-chosen tuning constant. Their empirical versions are known as M-scale estimators.
To ensure consistency of theM-scale estimator when the data are normally distributed the tuning parameter c is chosen to
satisfy δ = E{ρc(Z)} where Z has a standard normal distribution. If, in addition, δ = ∥ρ∥∞/2 then, theM-estimate of scale
has maximal breakdown point 50%.

From now on, when X ∼ P and α ∈ H , P[α] stands for the distribution of the real random variable ⟨α, X⟩. Given a
probabilitymeasure P and a scale functional σr, Bali et al. (2011) define the robust functional principal components direction
functionals as

φr,1(P) = argmax
∥α∥=1

σr (P[α]) ,

φr,m(P) = argmax
∥α∥=1,α∈Bm

σr (P[α]) for m ≥ 2,

whereBm = {α ∈ H : ⟨α, φr,j(P)⟩ = 0, j = 1, . . . ,m−1} = ⟨φr,1(P), . . . , φr,m−1(P)⟩⊥ with ⟨α1, . . . , αℓ⟩ the linear space
spanned by α1, . . . , αℓ and L⊥ the orthogonal of the closed linear space L. These authors also define the robust eigenvalue
functionals as λr,j(P) = σ 2

r {P[φr,j(P)]}. If σr is the standard deviation, the usual definition of principal components is
obtained. Asmentioned in Bali et al. (2011), if the scale functional σr is (weakly) continuous, themaximumabove is attained.

The functionalsφr,m(P) are Fisher-consistent for the functional elliptical family, that is, in this case the functionalsφr,m(P)
have a simple interpretation. Elliptical distributionswere defined in Bali and Boente (2009) and characterized in Boente et al.
(2014). For the sake of completeness, we recall their definition.

Let X be a random element in a separable Hilbert space H and µ ∈ H . Moreover, let 0 : H → H be a self-adjoint,
positive semi-definite and compact operator. We say that X has an elliptical distribution with parameters (µ, 0), denoted
as X ∼ E(µ, 0), if for any d ≥ 1 and for any linear and bounded operator A : H → Rd, AX has a multivariate elliptical
distribution with parameters Aµ and A0A∗, i.e., AX ∼ Ed(Aµ, A0A∗), where A∗

: Rp
→ H stands for the adjoint operator

of A. As in the finite-dimensional setting, if the covariance operator, 0X , of X exists then, 0X = a 0, for some a > 0.
The operator 0 is called the dispersion operator while µ is the location parameter. Elliptical distributions in H include the
Gaussian distributions, while other elliptical distributions can be obtained as mixtures of Gaussian processes.

Recall that if X ∼ P = E(µ, 0), then σ 2
r (P[α]) = c⟨α, 0α⟩ for any scale functional and for some c > 0 depending on the

scale, which allows to derive the Fisher-consistency of φr,m(P), i.e., that φr,m(P) correspond to the eigenfunctions of 0.

2.2. The several population setting

In the context of several independent populations with probability measures P1, . . . , Pk, that is, when Xi,1, . . . , Xi,ni
are independent and such that Xi,j ∼ Xi,1 ∼ Pi, we will denote by Pi,ni the empirical measure under Pi, i.e., Pi,ni(A) =

(1/ni)
ni

j=1 IA(Xi,j), whilePi,ni [α] stands for the empirical distribution of the real random variables {⟨Xi,1, α⟩, . . . , ⟨Xi,ni , α⟩}.
Moreover, P will denote the product measure P = P1 × · · · × Pk.
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On the other hand, given a scale functional σr, we denote σi : H → [0, +∞) the function σi(α) = σr (Pi[α]). The
empirical version of σ 2

i , denoted s2i,ni : H → R is defined as s2i,ni(α) = σ 2
r (Pi,ni [α]).

Note that if c ∈ R, then using that σr is a scale functional we get that σ 2
i (cα) = c2σ 2

i (α).
As in Boente et al. (2006), given an increasing function f : (0, +∞) → R (eventually defined on 0) and 0 < qi < 1

fixed numbers such that
k

i=1 qi = 1, define ςf (α) =
k

i=1 qif {σ
2
i (α)}. It is worth noting, that the numbers qi play the

role of the asymptotic proportions of the samples. To define its empirical version, let N =
k

i=1 ni andqi = ni/N . Then,
the estimator ς : H → R of ςf is defined as ς(α) =

k
i=1qif {s2i,ni(α)} withqi = ni/N . In particular, when the scale

is the standard deviation and H = Rp, the choice f = log leads to the maximum likelihood estimators for multivariate
normally distributed observations which, as it is well known, are more efficient than those related to the identity function
for multivariate normal samples.

3. The common direction functional and their estimators

The principal directions can be estimated applying a sample version of the functionalφr,j(·) to each population. However,
in most cases, even if a functional common principal component model holds, the estimators obtained in such a way will
not be equal over all the populations. Hence, as mentioned in the Introduction, a unified approach is preferred.

If we assume that E∥Xi,1∥
2 < ∞, and that the scale functional is the standard deviation, we have that σ 2

r (Pi[α]) =

⟨α, 0iα⟩with0i the covariance operator of the ith population. Then, under a functional commonprincipal componentmodel,
if 0i satisfy (2), φr,j(Pi) = φj for all j ≥ 1 and i = 1, . . . , k. On the other hand, when the weaker assumption (3) holds, we
have that φr,j(Pi) = φj for all j ≥ d+ 1 and i = 1, . . . , kwhile, for j ≤ d, φr,j(Pi) equals the eigenfunction among φ1, . . . , φd
related to the jth largest value among λi,1, . . . , λi,d.

Similarly, when Xi,1 ∼ E(µi, 0i) with dispersion operators 0i satisfying (1) and (2), we have that φr,j(Pi) = φj for all
j ≥ 1 and i = 1, . . . , k for any scale functional σr. Hence, for any i = 1, . . . , k, φr,1(Pi) will maximize

k
i=1 qiσ

2
r (Pi[α])

over S1 = {α ∈ H : ∥α∥ = 1}. More generally, it will maximize ςf (α) over S1 for any strictly increasing function f . This
motivates to define the common directions projection-pursuit functional as

φf ,1(P) = argmax
∥α∥=1

ςf (α) = argmax
∥α∥=1

k
i=1

qif {σ 2
r (Pi[α])},

φf ,m(P) = argmax
∥α∥=1,α∈Bf ,m

ςf (α) = argmax
∥α∥=1,α∈Bf ,m

k
i=1

qif {σ 2
r (Pi[α])} 2 ≤ m,

(4)

where Bf ,m = ⟨φf ,1(P), . . . , φf ,m−1(P)⟩⊥. We also define the robust principal values functionals as

λf ,i,m(P) = σ 2
r {Pi[φf ,m(P)]} = σ 2

i {φf ,m(P)}. (5)

Lemmas S.1 and S.2 in the online supplement show that the maximum in (4) is attained, so the functionals φf ,m(·) are well
defined.

When Xi,1 ∼ E(µi, 0i) with dispersion operators 0i satisfying (1) and the order among eigenvalues is not preserved
among populations, we can only ensure that φr,1(Pi) corresponds to the eigenfunction φℓi related to the largest value among
{λi,j}j≥1. In this sense, the functional φf ,1(P) defined in (4) provides a unified approach representing the main mode of
variation of the whole population with respect to the considered function f and the scale σr.

The practitioner can select as function f , the identity function, labelled id, or the logarithm function, among others. As
mentioned above, when f = id and σ 2

r is the variance, the functionals defined in (4) correspond to the eigenfunctions of
the pooled covariance operator whose sample version was studied in Boente et al. (2010). On the other hand, the function
f = log leads, in the multivariate setting, to the maximum likelihood estimators when considering the sample variance.
When considering robust scale estimators, the choice f = log was recommended in Boente et al. (2006) for multivariate
observations, based on their simulation results and on the fact that, under a proportional model, the related estimators
maximize the asymptotic variance of the commonprincipal directions over the class of strictly increasing twice continuously
differentiable functions f , for a given choice of σr.

Note also when f is defined at 0, we can assume without loss of generality that f (0) = 0.
Let Xi,1, . . . , Xi,ni in H be independent observations from k independent populations, that is, Xi,j are independent and

such that Xi,j ∼ Pi and denote N =
k

i=1 ni andqi = ni/N . Throughout this paper, we will assume thatqi → qi with
0 < qi < 1, for i = 1, . . . , k, and

k
i=1 qi = 1. As in Boente et al. (2006), the general projection-pursuit functional common

direction estimators are now naturally defined by considering the empirical version of (4), that is, as
φf ,1 = argmax

∥α∥=1

k
i=1

qif {s2i,ni(α)} = argmax
∥α∥=1

ς(α),

φf ,m = argmax
∥α∥=1,α∈Bf ,m

k
i=1

qif {s2i,ni(α)} = argmax
∥α∥=1,α∈Bf ,m

ς(α) 2 ≤ m,

(6)



J.L. Bali, G. Boente / Computational Statistics and Data Analysis 113 (2017) 424–440 429

where Bm = ⟨φf ,1, . . . ,φf ,m−1⟩
⊥ while the estimators of their size in the ith population are defined as λi,m =

s2i,ni(
φf ,m).

3.1. An algorithm to compute the estimators

As it is well known, in infinite-dimensional spaces, the unit ball is not compact making difficult to effectively compute
the estimators defined through (6). An approximation to the true estimators can be obtained generalizing the algorithm
given in Bali and Boente (2014) to the functional k-populations setting. The algorithm described in Bali and Boente (2014)
is an extension of that introduced by Croux and Ruiz-Gazen (1996) to deal with functional data. The algorithm is defined as
follows

(a) Compute robust location estimatorsµi for each population and centre the observationsXij = Xij − µi. A choice forµi is
the functional spatial median defined in Gervini (2008), that is,

µi = argmin
θ∈H

ni
j=1


∥Xij − θ∥ − ∥Xij∥


. (7)

The spatial median is sometimes referred to as themultivariate L1 median, but this is amisnomer since the norm in (7) is
the L2 norm. Note that when the norm is replaced by the square of the norm in (7), the resulting parameter is the mean.

(b) Normalize the observations αi,j = Xi,j/∥Xi,j∥ and consider the set of possible directions AN = {αi,j = Xi,j/∥Xi,j∥, 1 ≤

i ≤ k, 1 ≤ j ≤ ni} ⊂ S1, where N =
k

i=1 ni.
(c) Estimate φf ,1(P) by

φf ,cr,1 = argmax
1≤s≤k,1≤j≤ns

k
i=1

qif {σ 2
r (Pi,ni [αs,j])} = argmax

α∈AN

ς(α).

The subsequent directions are obtained as follows.
For 2 ≤ ℓ ≤ q, define recursively Y (ℓ)

ij = Xij − πVℓ−1
Xij, where πVℓ−1α stands for the orthogonal projection of α over the

linear spaceVℓ−1 spanned byφf ,cr,1, . . . ,φf ,cr,ℓ−1. Let the set of candidate directions for the ℓth common principal direction
be AN,ℓ = {Y (k)

ij /∥Y (k)
ij ∥, 1 ≤ i ≤ k, 1 ≤ j ≤ ni} and defineφf ,cr,ℓ = argmaxα∈AN,ℓ

ς(α).
It is worth noting that the above algorithm also corresponds to the extension to the functional setting of the procedure

considered in Boente and Orellana (2001) and Boente et al. (2006). Theorem2 establishes the strong consistency ofφf ,cr,1 for
elliptical families. Furthermore, it allows to derive consistency results for the first common principal component direction
estimator computed using the algorithm described in Boente and Orellana (2001) and Boente et al. (2006).

Usually, in practice even when Xi,1 ∈ L2([0, 1]), one rarely observes the entire trajectories. The functional datum for the
jth replication usually corresponds to a finite set of discrete values xi,j,1, . . . , xi,j,mi,j with xijs = Xi,j(tijs), 1 ≤ s ≤ mi,j. In what
follows, we will assume that the grid points are dense on [0, 1]. The sparse situation is an interesting topic which deserves
a careful treatment as in the one-population setting, but is beyond the scope of the paper. Depending on the characteristics
of the grid where observations are obtained, one can employ different strategies to analyse the observations. When the
data are observed at the same grid points tijs = ts, 1 ≤ s ≤ m, for all 1 ≤ j ≤ ni, 1 ≤ i ≤ k, i.e., if xijs = Xi,j(ts) one
may apply the algorithm to the discretized observations xij = (xij1, . . . , xijm)t. As mentioned in Coffey et al. (2011), even
if the observations are recorded at the same time points, it is better to treat them as functional data than to look at them
as multivariate observations since in functional data analysis time-ordering becomes important. We refer also to Gervini
(2008) for a discussion on the advantages of a fully functional approach to the problem of robust estimation in fpca. In a
one-sample setting, the basis expansion approach to obtain the principal component estimators is discussed in Ramsay and
Silverman (2005) where they argue that the number p of basis functions should depend on the sample size n, on the number
of sampling points and on the level of smoothing imposed by using pn < n and on how efficient the basis reproduces the
behaviour of the data, among others. Moreover, they recommend to use a basis expansion of order p only to calculate more
than a fairly small proportion of eigenfunctions.

When k = 1, robust estimators based on basis expansion were considered by Locantore et al. (1999) and Sawant et al.
(2012), among others. Let {ζs}s≥1 be any orthonormal basis of H , p = pN an increasing sequence of integers such that
pN < N =

k
i=1 ni and define yi,j,s = ⟨ζs, Xi,j⟩, for 1 ≤ s ≤ p. Note that if ζs = φs and if the covariance operators or

the dispersion operators of Xi,j satisfy (1), then the covariance/dispersion matrices, 6i, of yi,1 =

yi,1,1, . . . , yi,1,p


t satisfy

a cpc model since they are diagonal. However, since the eigenfunctions are our target, we have to consider a known given
orthonormal basis of H . In order to obtain a solutionφj of (6), we will considered the multivariate vectors yi,j, for 1 ≤ j ≤ ni

and 1 ≤ i ≤ k, and we compute the general projection-pursuit estimators βj = (βj1, . . . ,βjp)
t defined in Boente et al.

(2006). The common principal projection-pursuit estimator may then be obtained asφj =
p

s=1
βjsζs. Consistency results

for this sieve approach are given in Bali (2012), where also consistency results analogous to those given in Theorem 2 are
obtained for the finite-dimensional basis expansion approximate estimators.
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Table 1
Average computing time of the algorithm (in CPU seconds).

m ni Wiener process Smooth process
f = id f = log f = id f = log
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

50 mad 100 0.194 0.379 0.568 0.192 0.383 0.577 0.208 0.416 0.612 0.217 0.411 0.609
50 mad 200 0.718 1.433 2.123 0.713 1.422 2.161 0.771 1.536 2.279 0.763 1.518 2.280
50 mad 300 1.639 3.304 5.056 1.678 3.361 5.028 1.700 3.376 5.055 1.668 3.360 5.033

50 M-scale 100 0.439 0.871 1.310 0.432 0.863 1.313 0.440 0.875 1.300 0.444 0.856 1.304
50 M-scale 200 1.357 2.734 4.075 1.368 2.719 4.067 1.371 2.725 4.074 1.373 2.693 4.040
50 M-scale 300 2.819 5.574 8.332 2.765 5.523 8.265 2.816 5.638 8.369 2.737 5.545 8.172

75 mad 100 0.213 0.419 0.621 0.213 0.426 0.625 0.223 0.423 0.638 0.220 0.433 0.633
75 mad 200 0.791 1.594 2.400 0.810 1.624 2.401 0.802 1.615 2.417 0.804 1.614 2.409
75 mad 300 1.808 3.551 5.335 1.793 3.538 5.269 1.802 3.532 5.268 1.786 3.519 5.260

75 M-scale 100 0.455 0.898 1.343 0.451 0.895 1.341 0.450 0.893 1.326 0.446 0.891 1.313
75 M-scale 200 1.405 2.793 4.180 1.394 2.782 4.184 1.393 2.766 4.159 1.401 2.779 4.138
75 M-scale 300 2.900 5.698 8.628 2.885 5.710 8.598 2.869 5.717 8.510 2.904 5.748 8.505

100 mad 100 0.218 0.422 0.621 0.216 0.417 0.620 0.215 0.419 0.622 0.216 0.418 0.621
100 mad 200 0.796 1.562 2.336 0.795 1.561 2.326 0.798 1.560 2.333 0.798 1.565 2.325
100 mad 300 1.761 3.478 5.160 1.757 3.460 5.167 1.768 3.471 5.180 1.757 3.470 5.234

100 M-scale 100 0.429 0.847 1.260 0.429 0.848 1.263 0.432 0.848 1.262 0.430 0.847 1.259
100 M-scale 200 1.344 2.658 3.965 1.347 2.660 3.963 1.339 2.651 3.962 1.339 2.659 3.963
100 M-scale 300 2.759 5.476 8.194 2.760 5.480 8.189 2.761 5.470 8.200 2.764 5.477 8.225

3.1.1. Computing time
Although a formal computational complexity analysis of the algorithm described in Steps (a)–(c) is beyond the scope

of this paper, the numerical experiments reported in Section 5 show that the algorithm works very well. We tested the
speed of our R code, using the same settings considered in Section 5.1 of our simulation study, on an Intel i7-2600K
CPU (3.4 GHz) machine. More precisely, we consider two different situations for a proportional model generating either
a Wiener or a smooth Gaussian process labelled Wiener process and Smooth process in Table 1, respectively. We generated
N = n1 + n2 observations in L2([0, 1]) from k = 2 populations, with n1 = n2 and we use a discretization of the domain
of the observed function X ∈ L2([0, 1]), over m equally spaced points in [0, 1]. Under the first model, the observations Xi,j
correspond to Brownian motion processes with covariance kernels γ1(s, t) = 10min(s, t) and γ2(s, t) = 10γ1(s, t), while
for the smooth process considered, the observations are Gaussian with covariance kernels γ1(s, t) = (1/2)(1/2)0.9(s−t)2 and
γ2(s, t) = 10γ1(s, t). To obtain the set of centred candidates µi is taken as the spatial median of each population defined
in (7) and computed using the algorithm of Hössjer and Croux (1995). Table 1 reports the average time in CPU minutes
over 20 random samples for different combinations of the grid size (m), the number of components to be estimated (d) and
the function f . We first generated all the samples and then we computed the estimators for each of the given samples to
evaluate the speed of our code. The results in Table 1 show that the algorithm is very fast. As expected, the computing time
increases with the number of components to be estimated and with the sample size. The results in Table 1 suggest that the
computing time of the algorithm increases linearly on the number of principal direction to be estimated and quadratically
on the sample size. Besides, the grid size m does not seem to have a significant effect on the computing time. On the other
hand, the procedure based on theM-scale is much slower since it involves a re-weighting algorithm to compute the scale.

4. Main results

4.1. Fisher-consistency

Assume now that we are dealing with several populations with finite second moment, i.e., E∥Xi,1∥
2 < ∞, and that the

scale functional is the standard deviation. Then, σ 2
r (Pi[α]) = ⟨α, 0iα⟩with 0i the covariance operator of the ith population.

Then, under a functional common principal component model (1) such that (2) holds, we have that φr,j(Pi) = φj for all j ≥ 1
and i = 1, . . . , k. This ensures that φf ,j(P) = φj for any strictly increasing function, when σr is the standard deviation.

However, aswementioned in the Introduction, our goal is to consider situations inwhich secondmomentsmay not exist.
In those situations, an important point to highlight is what the functions φf ,j(P) defined in Section 3 represent, at least in
some particular situations. The aim of this Section is to extend the definition of a functional common principal component
model to the situation in which the covariance operator does not exist or when the underlying distribution is not elliptical,
in order to ensure Fisher-consistency of the functionals φf ,j(P) defined in Section 3.

As mentioned above, when the different samples Xi,1 are elliptically distributed, i.e., Xi,1 ∼ E(µi, 0i) with dispersion
operators0i satisfying (1) and (2), for any scale functional σr we have that φr,j(Pi) = φj for all j ≥ 1 and i = 1, . . . , k, so that
φf ,j(P) = φj for any strictly increasing function and for any scale functional. This suggests that a possible way to characterize
the functional φf ,j(P) in a more general context is through the behaviour of the functionals φr,j(Pi). In this way, we avoid
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requiring second moment conditions or an elliptical distribution to the random elements. We will also give a notion of a
partially functional common principal component model in which the populations share only the first s principal directions.

Definition 1. We say that P1, . . . , Pk are partially weakly-fcpc of order s ≥ 1 for the scale functional σr if φr,j(Pi) = φr,j(P1)
(except for a sign change) for all j = 1, . . . , s and i = 1, . . . , k. Furthermore, we say that P1, . . . , Pk are weakly-fcpc for the
scale functional σr if P1, . . . , Pk are partially weakly-fcpc of any order, that is if φr,j(Pi) = φr,j(P1) (except for a sign change)
for all j ≥ 1 and i = 1, . . . , k.

Definition 2. We say that P1, . . . , Pk are partially strongly-fcpc of order s ≥ 1 if there exist constants ci > 0 and
self-adjoint, positive semi-definite and compact operators 0i such that for any α ∈ H , σ 2

r (Pi[α]) = ci⟨α, 0iα⟩, where
0i =

s
j=1 λi,jφj ⊗ φj +


∞

j=s+1 λi,jφi,j ⊗ φi,j with λi,1 ≥ · · · ≥ λi,j ≥ · · ·, for i = 1, . . . , k. When P1, . . . , Pk are
partially strongly-fcpc for any order s ≥ 1, we say that P1, . . . , Pk are strongly-fcpc, in which case, the operators 0i satisfy
(1) and (2).

Clearly, partially strong-fcpc implies partially weak-fcpc. It is worth noting that partially strong-fcpc still assumes
that all the populations have the largest eigenvalues in the same order and that the shared directions correspond to
these eigenvalues. This is a difference with the finite-dimensional setting. If second moment exists and σ 2

r is the variance,
P1, . . . , Pk are strongly-fcpcwhen the covariance operators satisfy (1) and (2). Besides, if P1, . . . , Pk are strongly-fcpc, then
the operators 0i have the same eigenfunctions and the order among the eigenvalues is preserved along populations. The
constant ci can be absorbed by the operator0i. However,we prefer to distinguish them, since in some situations, the operator
0i has a simple interpretation and the constant ci corresponds to a normalizing constant related to the scale functional.

Note that, when Xi,1 ∼ E(µi, 0i)with dispersion operators0i satisfying (1) and (2), we have that P1, . . . , Pk are strongly-
fcpc.

The following lemma shows that, if P1, . . . , Pk are weakly-fcpc, the weights qi and the score function f do not play a
major role when defining the functional φf ,j(P).

Lemma 1. Assume that qi ≥ 0,
k

i=1 qi = 1, f : R → R is a strictly increasing function and that P1, . . . , Pk are partially
weakly-fcpc of order s ≥ 1 under σr. Then, φf ,j(P) = φr,j(P1) for all j = 1, . . . , s. In particular, if P1, . . . , Pk are weakly-fcpc
under σr, we have that φf ,j(P) = φr,j(P1) for all j ≥ 1.

It is worth noting that the above result does not ensure uniqueness of the solution of (4) whichwill be a condition needed
to ensure consistency of the estimators. As in the one-population setting, one important issue is what the functions φf ,m(P)
represent, at least in some particular situations. Lemma 2 shows that, as mentioned above, for functional elliptical families,
the functionals φf ,m(P) and λf ,i,m(P) are well defined, that is, the solution of (4) is unique, and have a simple interpretation.
In particular, our result holds if all the populations have an elliptical distribution, but is not restricted to them.

Lemma 2. Let φf ,m and λf ,i,m be the functionals defined in (4) and (5), respectively. Let Xi,1 ∼ Pi be random elements such that
P1, . . . , Pk are partially strongly-fcpc of order s. Assume that for some i0 ∈ {1, . . . , k} there exists d ≥ 2, λi0,1 > λi0,2 > · · · >
λi0,d > λi0,d+1. Then, if f is a strictly increasing function and qi0 > 0, we have that, for all j = 1, . . . ,min(d, s), φf ,j(P) = φj
and λf ,j(P) = ciλi,j.

It is also easy to see, that if P1, . . . , Pk are strongly-fcpc and for each m ≥ 1 there exists im = 1, . . . , k such that
λim,m > λim,m+1, then φf ,j(P) = φj, for all j.

If the operator 0i given in the definition of strongly-fcpc is the covariance operator of Pi, then the eigenfunctions
functionals φf ,m are the common principal components. Besides, we also have that λf ,j = σ 2

i (φf ,j) = ciλi,j where λi,j is
the j-eigenvalue of the covariance operator of ith population, that is, the traditional principal value in the classical approach.
Therefore, the robust eigenvalue functional will be Fisher-consistent except bymultiplying factor ci that can be chosen to be
equal to 1 for all populations under a common central Gaussianmodel to ensure Fisher-consistency of the robust eigenvalue
functionals.

When Xi,1 ∼ E(µi, 0i) with dispersion operators 0i satisfying (1) and (2), Lemma 2 entails that φf ,j(P) = φj for any
strictly increasing function and for any scale functional. However, in some applications the order among eigenvalues may
vary across populations and in this case, it is important to identify if φf ,j(P) corresponds to the common eigenfunctions φℓ.
Lemma 3 gives an answer to this problem when the function f is convex.

Lemma 3. Let Xi,1 ∼ Pi be random elements such that for any α ∈ H , σ 2
r (Pi[α]) = ci⟨α, 0iα⟩, where 0i =


j≥1 λi,jφj ⊗ φj

and ci > 0. Let f be a strictly increasing and convex function, continuous in [0, +∞). Define νj =
k

i=1 qif (ciλi,j) and assume
(without loss of generality in the selection of the indexes) that ν1 ≥ ν2 ≥ · · · ≥ νs and νj ≤ νs, for all j ≥ s + 1. Let φf ,m and
λf ,i,m be the functionals defined in (4) and (5), respectively. If for some 2 ≤ d ≤ s, ν1 > ν2 > · · · > νd, we have that, for all
1 ≤ j ≤ d, φf ,j(P) = φj and λf ,j(P) = ciλi,j for i = 1, . . . , k.
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Note that if0i satisfy (1) and (3) and f is strictly increasing, then νd+1 ≥ νd+2 ≥ . . ., while νj ≤ νd+1, for 1 ≤ j ≤ d. Hence,
Lemma 3 provides a way of characterizing φf ,j(P) as the jth main mode of variation of the whole population (according to
the robust scale σr and the score function f ), since it corresponds to the common eigenfunction related to the jth largest
value among ν1, ν2, . . . , νd.

As mentioned above, the assumption σ 2
r (Pi[α]) = ci⟨α, 0iα⟩ is satisfied when Pi = E(µi, 0i) and the constant ci may

be absorbed by 0i. Assume for simplicity that ci = 1 for i = 1, . . . , k and note that when f = id, νj =
k

i=1 qiλi,j is an
eigenvalue of

k
i=1 qi0i. Then, when f = id, Lemma 3 entails that φf ,1 is the eigenfunction related to the largest eigenvalue

of the pooled dispersion operator
k

i=1 qi0i, as when considering the standard deviation.

4.2. Consistency of the estimatorsφf ,m defined through (6)

As mentioned above, in the finite-dimensional case, if dispersion operators are proportional, that is, under the second
level of hierarchy defined by Flury (1984), the function f = logminimizes the asymptotic variance over a family of functions,
we refer to Boente et al. (2006) for details. The main disadvantage of log is that ςf (α) andς(α) are not defined when α = 0.
Moreover, if H is infinite dimensional, ςf (α) andς(α) will not be weakly continuous due to the singularity at α = 0. For
that reason, the statements of our results consider on one side, the case of a continuous function f : [0, ∞) → R and on
the other one, the case of a continuous function f : (0, ∞) → R with limt→0+ f (t) = −∞. In the second case some extra
hypothesis over the distribution will be necessary. From now on and for the sake of simplicity, if f is not defined at 0, which
is the case of f = log, f (0) stands for limt→0+ f (t).

To derive consistency results for the estimators defined in Section 3, we will consider the following set of assumptions.

C0. For some d ≥ 2 and j = 1, . . . , d, φf ,j(P) are unique up to a sign change where P = P1 × · · · × Pk.
C1. σi : H → R is a weakly continuous function, i.e., continuous with respect to the weak topology in H .
C2. f : (0, +∞) → R is a strictly increasing and continuous function. Moreover, if f is defined at 0 and |f (0)| < ∞, f is

continuous at 0.
C3. sup∥α∥=1

s2i,ni(α) − σ 2
i (α)

 a.s.
−→ 0 almost surely, for any i = 1, . . . , k.

C4. qi −→ qi, 0 < qi < 1.

It is clear that C0 holds if for some 1 ≤ i ≤ k, λf ,i,1 > · · · > λf ,i,d > λf ,i,d+1. On the other hand, if C0 holds then, for any
ℓ = 1, . . . , d, there exists i = iℓ ∈ {1, . . . , k} such that λf ,i,ℓ > λf ,i,ℓ+1.

Remark 1. It is worth noticing that C1 and C2 imply that ςf : H → R is a weakly continuous function. Note also that C1
holds if the univariate scale functional σr is qualitatively robust, that is, continuous with respect to the weak topology on
the space of probability measures, which is induced by the Prohorov distance. Nevertheless, this is not strictly necessary.
For instance, if the scale functional is such that σ 2

i (α) = ci⟨α, 0iα⟩, for some positive constants ci and self-adjoint, positive
semi-definite, compact operators 0i, as is the case when σr is the standard deviation or when the observations have an
elliptical distribution, we also obtain weak continuity of σi. Assumption C1 also implies that the functional σ 2

i is weakly
uniformly continuous in the unit sphere S1. Besides, assumption C3 follows from the consistency of the sample covariance
operators (see Dauxois et al. (1982)), if σr equals the standard deviation, while for any scale functional σr continuous with
respect to the weak topology, C3 follows from Corollary 6.1 in Bali et al. (2011), which only requires the weak continuity
of the scale functional σr. Finally, C2 to C4 imply that sup∥α∥=1

ς(α) − ςf (α)
 a.s.
−→ 0 almost surely (see Lemma S.3 in the

online supplement).

The following lemma will be useful for deriving consistency of the general eigenfunction estimators. An extra condition
on the principal values λf ,i,j is needed when f (0) = −∞ to avoid singularities.

Lemma 4. Let P = P1 × · · · × Pk, φf ,m = φf ,m(P) and λf ,i,m = λf ,i,m(P) be defined as in (4) and (5) and let φm ∈ V1 be such
that φm ≠ 0, ∥φm∥

a.s.
−→ 1 almost surely and ⟨φm,φj⟩

a.s.
−→ 0 almost surely. Assume that C0 to C2 hold. Besides, if f (0) = −∞

we also assume that for any i = 1, . . . , k, λf ,i,1 > · · · > λf ,i,d > λf ,i,d+1.
Then,

(a) If ςf (φ1)
a.s.

−→ ςf (φf ,1), then, ⟨φ1, φf ,1⟩
2 a.s.

−→ 1. Hence, with an appropriate sign choosing, i.e., taking φ1 such that
⟨φ1, φf ,1⟩ > 0, we get that ∥φ1 − φf ,1∥

a.s.
−→ 0 and thusφ1

a.s.
−→ φf ,1.

(b) Given m = 2, . . . , d, if ςf (φm)
a.s.

−→ ςf (φf ,m) and φs
a.s.

−→ φf ,s, for s = 1, . . . ,m − 1, we have that ⟨φm, φf ,m⟩
2 a.s.

−→ 1.
Hence, if φm is chosen such that ⟨φm, φf ,m⟩ > 0, we obtain that ∥φm − φf ,m∥

a.s.
−→ 0, which means that we can choose the

sign of φm so that φm
a.s.

−→ φf ,m.
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Theorem 1 establishes the continuity of the functionals defined in (4) and (5), for general continuous score functions
defined at 0 and for f (0) = −∞ and hence the asymptotic robustness of the estimators derived from them, as defined
in Hampel (1971). This can be seen just by replacing almost sure convergence by convergence in its statement and by
taking Pi,ni , i = 1, . . . , k, fixed sequences of probability measures instead of random ones. Moreover, the consistency of
the estimatorsφf ,m andλi,m defined in Section 3 is obtained from C0 to C4, taking Pi,ni = Pi,ni for i = 1, . . . , k.

Theorem 1. Let P = P1 × · · · × Pk be a probability measure satisfying C0 and φf ,m = φf ,m(P) and λf ,i,m = λf ,i,m(P) be
defined as in (4) and (5), respectively. Furthermore, let Pi,ni , i = 1, . . . , k, be random sequences of probability measures,qi,ni
be random variables such that qi,ni a.s.

−→ qi almost surely as N → ∞ with 0 < qi < 1,
k

i=1 qi = 1 and N =
k

i=1 ni.
Let f : (0, +∞) → R be an increasing function and denote σ 2

i,ni
(α) = σ 2

r (Pi,ni [α]) and ςN(α) =
k

i=1qif {σ 2
i,ni

(α)}. Defineλi,m = σ 2
i,ni

(φm) with φ1 = argmax∥α∥=1ςN(α) and φm = argmaxα∈BmςN(α), for m ≥ 2, where Bm = ⟨φ1, . . . ,φm−1⟩
⊥.

Assume that

(i) C1 and C2 hold,
(ii) sup∥α∥=1 |σ 2

i,ni
(α) − σ 2

i (α)|
a.s.

−→ 0 almost surely.

Moreover, if f (0) = −∞, assume that for any i = 1, . . . , k, λf ,i,1 > · · · > λf ,i,d > λf ,i,d+1, Then, we have that
⟨φm, φf ,m⟩

2 a.s.
−→ 1 and λi,m

a.s.
−→ λf ,i,m, for m = 1, . . . , d. Hence, with an appropriate sign choosing, i.e., if φm is chosen

such that ⟨φm, φf ,m⟩ > 0, we obtain that we have that ∥φm − φf ,m∥
a.s.

−→ 0.

Remark 2. Note that assumption (ii) in Theorem 1 corresponds to C3when Pi,ni = Pi,ni , the empirical probabilitymeasure of
the ith population. On the other hand, when σr(·) is a continuous scale functional, Theorem 6.2 in Bali et al. (2011) implies
that (ii) holds whenever Pi,ni converges weakly to Pi. Moreover, if σr(·) is a continuous scale functional and Pi satisfy C0,
Theorem 1 entails the continuity of the functionals φf ,j(·) and λf ,i,j(·) at P , for j = 1, . . . , d. Hence, the proposed estimators
are qualitatively robust and consistent. In particular, the estimators are robust if the populations are independent each with
an elliptical distribution E(µ1, 01) × · · · × E(µk, 0k) such that, for some i = 1, . . . , k, the d largest eigenvalues of the
operators 0i are all distinct.

4.3. Consistency of the approximate estimatorφf ,cr ,1

For the sake of simplicity, we shall assume that the location of each population µi is known and equal to 0, so that, Step
(a) is not performed andXi = Xi. Theorem 2 states the consistency of the first common direction estimator computed using
the algorithm described in Section 3.1 for elliptical families. Recall that Lemmas 2 and 3 in Section 4.1 provide conditions
ensuring that in this situation φf ,1(P) = φ1.

Theorem 2. Let H is a separable Hilbert space H and Xi,j ∼ Pi, 1 ≤ j ≤ ni, 1 ≤ i ≤ k, independent. Let qi,N = ni/N where
N =

k
i=1 ni. Assume that

(i) Pi ∼ E(0, 0i) where 0i is a compact operator such that 0i =


ℓ≥1 λi,ℓφℓ ⊗ φℓ, where λi,ℓ are the eigenvalues, ordered so
that λi,1 > λi,2 ≥ . . ., and φℓ are the common eigenfunctions of the 0i,

(ii) there exists 1 ≤ i ≤ k such that P(Xi,1 = 0) = 0,
(iii) qi,N → qi with 0 < qi < 1,
(iv) C0, C2 and C3 hold.

Then, ⟨φf ,cr,1, φ1⟩
2 a.s.

−→ 1, that is, except perhaps for a sign changeφf ,cr,1
a.s.

−→ φ1. More precisely, if φf ,cr,1 is chosen such that
⟨φf ,cr,1, φ1⟩ > 0 we have that ∥φf ,cr,1 − φ1∥

a.s.
−→ 0.

5. Monte Carlo study

In this simulation study, to compute the estimators, we apply the algorithmproposed in Section 3.1, using a discretization
of the domain of the observed function X ∈ L2(I), over m = 50 equally spaced points in I. To obtain the set of centred
candidatesµi is taken as the point-to-point mean of each population when the scale is the standard deviation, while for the
robust procedures, we chooseµi as the spatial median of each population defined in (7) and computed using the algorithm
of Hössjer and Croux (1995). In all cases, we performed 1000 replications.

Corresponding to non-resistant and robust estimators of the principal common directions, three scale functions are
considered, the classical standard deviation (sd), the median absolute deviation (mad) and an M-estimator of scale (M-
scale) with breakdown point 1/2. For theM-estimator, we used the score function introduced by Beaton and Tukey (1974),
ρc(y) = ρ(y/c) with ρ(y) = min


3y2 − 3y4 + y6, 1


, with tuning constant c = 1.56 and δ = 1/2 that ensure that the

scale estimator is Fisher-consistent at the normal distribution and has breakdown point 50%. To compute the M-scale, we
use a re-weighted algorithm with initial estimator the mad. In all tables, the estimators corresponding to each scale choice
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are labelled as sd, mad, M-scale. Even if any scale estimator can be used to compute the projection-pursuit estimators in
Step (c) of Section 3.1, we recommend to use a simple and fast robust scale as those considered here.

Two settings were considered in our simulation study. The first one is a two population proportional model and the
second one is a three population one. The first one is considered to see if some advantage is observed when using f = log,
while the second one is considered as a case where the proportionality does not hold.

For each situation, we compute the estimators of the first three principal directions and the square distance between
the true and the estimated direction, that is, ∥φf ,j − φj∥

2. Mean values over replications, denoted Mj(f ), which hereafter is
referred to as mean square error, are reported in the tables summarizing the results.

5.1. Proportional model

To analyse the effect of having smooth or rough trajectories on the algorithm leading to the estimation procedure, we
consider two different situations for a proportional model. For that purpose, the uncontaminated observations correspond
to Gaussian processes being either aWiener or a smooth process. We generated N = n1 +n2 observations in L2([0, 1]) from
k = 2 populations, with n1 = n2 = 100.

For the uncontaminated observations, labelled C0, the proportionality constant was equal to 10. To be more precise, we
considered the models

• Model 1: The observations Xi,j, j = 1, . . . , ni, correspond to Brownian motion processes with covariance kernels
γ1(s, t) = 10min(s, t) and γ2(s, t) = 10γ1(s, t). This model will be labelled Wiener process in the tables.

• Model 2: Corresponds to a smooth process. In this case, the observations Xi,j, j = 1, . . . , ni, are Gaussian with covariance
kernels γ1(s, t) = (1/2)(1/2)0.9(s−t)2 and γ2(s, t) = 10γ1(s, t). This model will be labelled Smooth process in the tables.

Let φj stand for the eigenfunctions of the covariance operator 01 related to the covariance kernel γ1(s, t) and let Bi(1, ϵ)
be the Bernoulli distribution with probability of success ϵ. For each model, a contamination in the fourth eigenfunction was
considered and denoted C4,ϵ , where ϵ corresponds to the contamination level. The contaminated observations denoted X (c)

i,j

are generated as X (c)
i,j = (1−Vi,j)Xi,j+Vi,jWi,j, where Vi,j ∼ Bi(1, ϵ) andWi,j ∼ N(µi, σc)φ4 independent of Xi,j with σc = 0.1,

µ1 = 10, µ2 = 30. Two values for the proportion of atypical data are considered ϵ = 0.05 and ϵ = 0.1.
The results for the first three common principal directions estimates are reported in Table 2. For the uncontaminated

samples, the advantage of using f = log can be appreciated. In the multivariate setting, the better performance of the
estimators computedwith the logarithm function can be explained since, when σr is the standard deviation, they lead to the
maximum likelihood estimators. Besides, for any fixed scale σr, estimators obtained using f = logmaximize the asymptotic
variance of the common principal directions over the class of strictly increasing twice continuously differentiable score
functions f (see Boente et al. (2006)). Our simulation results show that the same improvement is obtained in the functional
setting. The advantage of using f = log is more evident for the smooth process, where the ratio Rj(log, id) = Mj(log)/Mj(id)
between themean square errorswhen considering f = log and f = id takes values between 65% and75% for all j = 1, 2, 3. In
particular, there is also an advantage when combining the logarithmwith anM-scale, since in this case the ratios Rj(log, id)
are around 65% for all the components. For the Brownianmotion, the benefit of considering the logarithm function is smaller,
in particular, for the standard deviation. For this process, the lower values of the ratios Rj(log, id) are achieved by the mad
(around 79%), followed by the M-scale with values around 88%. On the other hand, as expected, when using robust scales
a loss of efficiency is expected with respect to the classical procedure, when no outliers are present. The M-scale leads
to efficiencies around 80% with respect to the standard deviation for the Brownian motion, while much lower efficiencies
are obtained for the smooth process. On the other hand, the procedure based on themad leads to much larger mean square
errors. In the finite-dimensional setting, this fact has also been observed by Boente et al. (2006) andwas explained by a jump
in themad influence function that leads to a slower rate of convergence of the projection-pursuit estimators (see Croux and
Ruiz-Gazen (2005) and Cui et al. (2003) for a discussion). It is also worth mentioning that the variability of the estimators
of the common directions may be dictated by the accuracy of the algorithm in locating the maximum. In the classical case
and when considering f = id, the true estimators can be computed as the eigenfunctions of the pooled sample covariance
operator. However, for the robust ones, the exact solution cannot be expressed as the solution of an eigen-problem. As
mentioned in Cui et al. (2003), the lack of a good optimization algorithm increases the variability of the direction estimates
and leads to low efficiencies under Gaussian models. In this sense, the results given in Theorems and 2 only show that the
procedure described in Section 3.1 leads to consistent estimators, further research is needed to have a better insight on their
efficiency.

For contaminated samples, classical principal component analysis comes out poorly in the comparison. Effectively, the
procedures based on the standard deviation breakdown since it often homed the second and third direction estimators on
the linear space orthogonal to the true ones. Note that since both the true direction and the estimated one have norm1,mean
square errors close to 2 mean that the estimated direction is almost orthogonal to the true one. This behaviour is even more
strikingwhen considering a smooth process, where all the common direction estimators are affected. The robust procedures
are more stable, in particular, they lead to reliable results when estimating the first two common principal directions. This
performance is much better for Model 2 which has smooth trajectories. On the other hand, when ϵ = 0.1, the amount
of outliers affects the robust estimators of the third common principal direction, although much less than when using the
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Table 2
Mean values of ∥φf ,j − φj∥

2 under a proportional model and different contaminations, with uncontaminated trajectories generated from aWiener process
or from a smooth process.

Scale φf ,1 φf ,2 φf ,3

f = id f = log f = id f = log f = id f = log

Wiener process

C0

SD 0.0143 0.0138 0.0956 0.0914 0.2483 0.2329
mad 0.0514 0.0407 0.2496 0.1929 0.5786 0.4619
M-scale 0.0188 0.0167 0.1254 0.1095 0.3207 0.2834

C4,0.05

SD 0.9135 0.9303 1.9097 1.9045 1.7811 1.8049
mad 0.0676 0.0588 0.3564 0.3011 0.8252 0.7757
M-scale 0.0441 0.0372 0.2486 0.2170 0.7857 0.7130

C4,0.1

SD 1.7338 1.8015 1.9111 1.9172 1.7865 1.8020
mad 0.1037 0.0941 0.5680 0.5092 1.1108 1.1202
M-scale 0.0919 0.0895 0.5684 0.5499 1.1866 1.2269

Smooth process

C0

SD 0.0013 0.0009 0.0017 0.0011 0.0012 0.0009
mad 0.0281 0.0221 0.0511 0.0380 0.0528 0.0402
M-scale 0.0045 0.0029 0.0060 0.0039 0.0040 0.0026

C4,0.05

SD 1.9263 1.9249 1.9439 1.9541 1.9655 1.9723
mad 0.0421 0.0373 0.0974 0.0835 0.5355 0.5694
M-scale 0.0321 0.0296 0.0584 0.0500 0.7801 0.8243

C4,0.1

SD 1.9587 1.9666 1.9448 1.9545 1.9646 1.9719
mad 0.0615 0.0568 0.1624 0.1372 1.0835 1.1511
M-scale 0.0540 0.0528 0.1212 0.1094 1.3264 1.3317

classical methods. Even if both themad and theM-scale estimator have a 50% breakdown point, the estimators based on the
mad are more resistant than those based on an M-scale. It is worth noting that, when considering the robust scales, even if
the contaminated samples do not follow a proportional model, choosing f = log leads to smaller mean square errors than
those obtained with f = id in most cases. In this sense, using a robustM-scale combined with the logarithm function seems
to be the better choice giving a good compromise between robustness and efficiency under the central Gaussian model.

5.2. Three population model

We considered N =
k

i=1 ni observations in L2([0, 1]) from k = 3 populations, with ni = 100, i = 1, . . . , 3. Under the
central model, labelled C0, all the populations are Gaussian with distribution as follows

• For the first population, X1,ℓ ∼ P1 where P1 corresponds to a Brownian motion in the interval [0, 1] with covariance
kernel γ1(s, t) = 10min(s, t). This choice of the covariance operator leads to principal directions φn(t) =
√
2 sin {(2n − 1)π t/2} with related principal values λ1,n = 10 [2/{(2n − 1)π}]2.

• The second population is also a Brownian process but with covariance kernel γ2(s, t) = 2γ1(s, t), that is, proportional to
the previous one.

• The third population is a finite-range one, generated as X3,ℓ = Z1,ℓφ1 + Z2,ℓφ2 + Z3,ℓφ3, where φn(t) =
√
2 sin {(2n − 1)π t/2}, Zk,ℓ ∼ N(0, σ 2

k ), with σ1 = 3, σ2 = 1 and σ3 = 1/2. Thus, λ3,1 = σ 2
1 = 9, λ3,2 = σ 2

2 = 1
and λ3,3 = σ 2

3 = 1/4 and λ3,j = 0 for j ≥ 4.

Note that the first two populations have continuous but rough trajectories while the third one has smooth trajectories.
Hence, among the candidates to be considered in our maximization procedure, we have smooth candidates to approximate
the true common principal direction estimators.

Each of the three populations is contaminated with a contaminating distribution highly concentrated on the fourth
principal direction denoted C4,ϵ as in Section 5.1. In this framework, the contaminated observations denoted X (c)

i,j are
generated as X (c)

i,j = (1 − Vi,j)Xi,j + Vi,jWi,j, where Vi,j ∼ Bi(1, ϵ) and Wi,j ∼ N(µi, σc)φ4 independent of Xi,j with σc = 0.1,
µ1 = 10, µ2 = 15 and µ3 = 20. Denote P (c)

ϵ the joint distribution of (X (c)
1,1, X

(c)
2,1, X

(c)
3,1). Two values for the proportion of

atypical data are considered ϵ = 0.1 and ϵ = 0.2.
Table 3 summarizes the results of the simulation. The fact that the robust estimators, based on themad andM-scale, are

more resistant under the presence of the contamination model than the classical estimator based on the standard deviation
is confirmed. It is worth noticing that the robustmethods are sensitive to 20% of contamination, especiallywhen considering
the third direction. Evidently, for this contamination level, we are getting close to the breakdown point of the estimator due
to the closeness of the eigenvalues. An approach to the computation of the breakdown point, in the finite-dimensional case,
was given by Boente and Orellana (2001). Nevertheless, in the case of functional data the problem is more complex and is
beyond the scope of the paper. However, in the one-population setting, it is well known that the sensitivity of the robust
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Table 3
Mean values of ∥φf ,j − φj∥

2 for the three population model under different contaminations.

Scale φf ,1 φf ,2 φf ,3

f = id f = log f = id f = log f = id f = log

C0

SD 0.0037 0.0036 0.0043 0.0043 0.0036 0.0036
mad 0.0279 0.0279 0.0585 0.0576 0.0752 0.0672
M-scale 0.0061 0.0065 0.0130 0.0130 0.0109 0.0101

C4,0.1

SD 1.9274 1.9050 1.9298 1.9291 1.9209 1.9251
mad 0.0870 0.0845 0.2588 0.2360 0.8667 0.8521
M-scale 0.0934 0.0897 0.2635 0.2292 1.1009 1.0773

C4,0.2

SD 1.9475 1.9418 1.9308 1.9295 1.9174 1.9222
mad 0.1946 0.1864 0.7966 0.7280 1.5080 1.4755
M-scale 0.2108 0.2003 0.9394 0.8511 1.6430 1.6300

estimators is related to the relative size of the eigenvalues. On the other hand, when dealing with several populations and
f = id, we argue that the sensitivity of the robust estimators to a given contamination is related to the relative size of the
eigenvalues of the pooled covariance operator

3
i=1 qi0i. When considering f = log, in the finite-dimensional case, Boente

et al. (2006) showed that the performance of the robust estimators is related to the closeness of the eigenvalues of thematrix
log

k
i=1 6

qi
i


, where6i stands for the covariancematrix of the ith population. These eigenvalues are related to the relative

size of ςf (φj) and for that reason, using f = log leads to slightly better results. The closeness between the values of ςf (φj)
was also discussed in the finite-range study available in Bali (2012).

The results in Table 3 show that the function f plays a relevant role. As in the proportional two population setting
considered in Section 5.1, inmost cases, the performance of the estimator is better or equal, whenwe use f = log thanwhen
f = id is considered. With respect to the behaviour of the estimators based on the two robust scales, based on the obtained
results we recommend using a robust M-scale since it provides estimators of the common directions more efficient under
the central Gaussian model with a similar behaviour than those based on the mad under the considered contaminations.

6. Example: Notch shape data

To illustrate the proposed procedures, we apply our estimators to the notch shape data set analysed in Ramsay and
Silverman (2002)where a principal component analysis over the complete data and a discrimination analysis are considered.
Our goal is to use the robust procedure to detect atypical or influential observations in the sample through their scores and
to perform a robust discriminant analysis.

The data represent the shape of the knees of different individuals which are classified as healthy or suffering an arthritic
condition. For each individual, we have information regarding the shape of the joint. It has been suggested that osteoarthritis
can alter this shape. In particular, the intercondylar notch is considered important bymedical specialists.We refer to Ramsay
and Silverman (2002) for details. The data set consists ofN = 96 notch outlines, on each ofwhichwe have some concomitant
information which provides evidence of arthritic bone damage. For simplicity, the labels 1 and 2 refer to the arthritic and
healthy group, respectively. Among the data, n1 = 21 femur belong to arthritic individuals and n2 = 75 to individuals
showing no signs of arthritic bone change. We first perform a robust common functional principal components analysis
over these two groups to detect possible influential observations in the sample. As in Ramsay and Silverman (2002), the
data is parametrized by arc-length, so the functional datum corresponds to the two dimensional function (X(t), Y (t))t,
where t ∈ (0, 1). Fig. 1 depicts, in the X–Y plane, the trajectories (in grey) together with the spatial median µi, i = 1, 2, in
a solid black line.

The first four common principal directions are computed, using an M-scale estimator. Since choosing f = id or f = log,
leads to similar resultswe only report the conclusions obtainedwhen f = id. The robust estimators are obtainedmaximizing
(6) over a set of candidatesA as described in Section 5. However, to enlarge the set of candidates,we also include the classical
directions and the uncentred data in A.

Fig. 2 presents the parallel boxplots of the centred scoreszi,j,ℓ = ⟨Xi,j −µi,φℓ⟩whenφℓ are the robust common principal
direction estimators. The inner product is taken as the standard dot product in the space of functions from [0, 1] to R×R. As
is well known, the boxplots of the scores over the classical estimators should not be used due to a possible masking effect.
On the other hand, when using the robust projection-pursuit estimators the largest values of |zi,j,ℓ| indicate the presence
of atypical observations which may influence the estimation of the common principal directions or enlarge their size, as is
the case in this example. Indeed, when computing the classical common principal directions, the first eigenvalue estimator
related to the Arthritic group is almost the double of its robust relative (see Table 4). This fact may be explained by the
presence of an individual with a very flat trajectory as shown in Fig. 1.

Fig. 2 shows that, in the Arthritic group, one observation (labelled as 18) appears with an extremely small score in the
first direction, while two other ones (labelled 11 and 14) have large scores. Besides, observation 19 has a large score in the
fourth one. These observations are highlighted in Fig. 3, where solid and dashed lines correspond to individualswith positive
and negative scores, respectively. Furthermore, curves given in shades of black, blue (with circles) and red (with triangles)
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Fig. 1. Notch shape of the 96 individuals. The black solid line is the estimated spatial median.

Fig. 2. Boxplot of the scores.

Table 4
Values of 1000 ×λi,j withλi,j = s2i,ni (

φf ,m) and si,ni the standard deviation or theM-scale estimator.

Scale λi,1 λi,2 λi,3 λi,4 λi,5 λi,6

M-scale Arthritic 3.3820 0.7108 0.3413 0.2480 0.2724 0.0245
Healthy 3.5858 0.8456 0.3296 0.2055 0.1242 0.0631

SD Arthritic 6.0289 0.9754 0.4690 0.1974 0.0788 0.0525
Healthy 4.3071 0.9674 0.3819 0.2956 0.0792 0.0602

correspond to outliers detected by the boxplots in the first, third and fourth scores, respectively. Note that observation 11
corresponds to the observation with a plateau. On the other hand, in the group with no signs of arthritic bone change, six
scores are flagged as outliers. The observation with the largest score in the first direction, labelled as 22, corresponds to the
smallest curve in Fig. 3 among those identified as possible influential. On the other hand, the individual labelled 1 has the
smallest value ofz4,j,2 and is the one with the roundest and most flat behaviour among the four data detected as atypical
usingz4,j,2. The observations with the larger values ofz4,j,2 are labelled as 23, 49 and 64 and correspond to two observations
showing some torsion to the left and one small round curve. Finally, individual 34 that has the largest value among the third
scores of the healthy data set, shows a narrow trajectory with a peak.

As in Ramsay and Silverman (2002), we project the data over the linear space spanned by the first six robust common
principal directions. Denote vi,j,ℓ = ⟨Xi,j,φℓ⟩ and vi,ℓ = (vi,1,ℓ, . . . , vi,6,ℓ)

t. As most classical estimators, which are optimal
under normality assumptions, linear and quadratic discriminant rules are not robust due to the lack of robustness of the
sample covariance matrix. To solve this problem robust alternatives have been considered among others by Campbell
(1978), Critchley and Vitiello (1991), Croux and Dehon (2001), Hubert and Van Driessen (2004), Croux and Joossens
(2005), Croux et al. (2008) and Pires and Branco (2010). As in the classical situation, if the covariance matrices are quite



438 J.L. Bali, G. Boente / Computational Statistics and Data Analysis 113 (2017) 424–440

Fig. 3. Notch shape of the 96 individuals, with atypical observations plotted in colour. The solid and dashed lines correspond to individuals with positive
and negative scores, respectively. Curves plotted in shades of black, blue (with circles) and red (with triangles) correspond to outliers detected by the
boxplots in the first, third and fourth scores, respectively. Different triangles allow to identify the trajectories. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

different robust quadratic discrimination is always preferred to robust linear discrimination, see Joossens and Croux (2004).
Due to the presence of the influential trajectories described above, we performed both a robust linear and a quadratic
discriminant analysis. For the first one we considered a projection-pursuit and also plug-in approach using as robust
covariance estimators theminimum covariance determinant estimator and anM-estimator. The robust linear and quadratic
discriminant rules lead to similar conclusions which may be explained by the robust eigenvalue estimators reported in
Table 4. The obtained values suggest that no differences in size exist between the arthritic and the healthy group. Note that
when performing a classical common principal component analysis the size of the first common component seems to differ
between both groups due to the presence of the atypical trajectories mentioned above. For that reason, we only report here,
the results obtained with the robust projection-pursuit approach proposed by Pires and Branco (2010) using M-estimators
of location and scale. The computations were done using the function LdaPP from the R library rrcov, see Todorov (2006).
Fig. 4 shows the boxplots of the obtained discriminant scores for each population, i.e., the values ofatvi,ℓ wherea is the
robust discriminant direction. Note that the boxes in the givenplots donot overlap showing the capability to discriminate the
given projection. Even if this conclusion is quite similar to that reported in Ramsay and Silverman (2002), using a common
principal component model provides a parsimonious framework less restrictive than projecting the data over the linear
space spanned by the first principal directions of all the data. In this particular example, when performing a separate robust
principal component analysis, the fourth and fifth principal directions seem to be reversed between individuals showing
arthritic bone damage and the healthy ones. This is also illustrated by the robust common principal component analysis
since (λ1,4,λ1,5)

t
= (0.000248, 0.000272)t while (λ2,4,λ2,5)

t
= (0.000206, 0.000124)t. Note also that the close values

obtained for the Arthritic group suggest that when considering only this population, the fourth and fifth principal directions
may not be uniquely identified,while the linear space spanned by themwill be identified since the next eigenvalue estimator
is much smaller (see Table 4). In this sense, a common functional principal component model provides a better way to
reduce the dimensionality of the data. Furthermore, as discussed in the Introduction, the procedure that combines all the
observations assumes that the directions preserve the size over groups and may not be appropriate if there are location
differences. Besides, as is well known, the use of robust procedures allows to detect atypical trajectories and to provide
more reliable results.

7. Concluding remarks

In this paper, we present a simple definition of the functional common principal component model, which provides an
extension of themodel considered by Flury (1984) in the finite-dimensional setting. The defined functionalsφf ,j(P) represent
the main modes of variation of the whole population with respect to the considered function f and the scale σr. Besides,
under mild assumptions they are related to the common eigenfunctions of the dispersion operators of elliptical processes.

We introduce a new family of robust estimators of the commonprincipal directions for functional data using a projection-
pursuit approach. The proposed procedure adapts the ideas introduced in Boente et al. (2006) for multivariate samples and
in Bali et al. (2011) for the functional one-population setting to provide resistant estimators of the common directions based
on robust scales. As in the multivariate setting, the robust procedures introduced may be helpful, through their scores, to
detect atypical observations aswell as to discriminate between groups. The estimators turn out to be qualitatively robust and
consistent under mild conditions on the related robust scale estimators. When considering as scale the standard deviation,
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Fig. 4. Boxplot of the discriminant scores based on the first six robust common principal directions.

the proposed estimators generalize those considered in Boente et al. (2010) since the proposed estimators combine a choice
for the scale with a score function.

Due to the sparseness of the unit ball in infinite-dimensional spaces, it is important to provide a method to effectively
compute the first common directions. In this paper, we introduce estimators which approximate the true ones using
an extension of the algorithm given in Croux and Ruiz-Gazen (1996) and Bali and Boente (2014) to the functional k-
populations setting. For elliptical families, the first common direction estimator obtained through this algorithm is shown
to be consistent.

Finally, a simulation study confirms the expected inadequate behaviour of the classical estimators in the presence of
outliers, with the robust procedures performing significantly better. In particular, the procedure based on an M-scale
combined with the logarithm function is recommended. Through a real data set the usefulness of the robust common
functional principal direction estimators to detect observations with a different pattern and to discriminate between groups
is illustrated.
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Abstract

This supplementary file contains some additional results to ensure the proper definition of the projection–

pursuit functionals, the proofs of Lemmas 1 to 4 and that of Theorems 1 and 2.

S. Preliminary results

We first state two lemmas that show that the functionals considered in Section 2.1 are properly defined.

Lemma S.1. If f : [0,∞) → R is a continuous function and σi is weakly continuous, then sup‖α‖=1 ςf (α) is

reached for some α ∈ S1 and so the functional φf,1(P ) is well defined.

Proof. Using that f is a continuous function and σi is weakly continuous, we get easily that f ◦σi : H → R

and ςf : H → R are continuous functions with respect to the weak topology in H. The result follows now

from the fact that the unit ball {‖α‖ = 1} is weakly-compact, since any continuous function reaches its

maximum over a compact set.

Similar arguments to those considered in the proof of Lemma S.1 allow to show that the conclusion of

Lemma S.1 still holds when considering sup‖α‖=1,α∈Bf,m
ςf (α).

The following Lemma ensures the existence of φf,1(P ) when f = log.

Lemma S.2. Let f : (0,∞) → R be a continuous function strictly increasing and such that f(0) =

limt→0+ f(t) = −∞. If σi is a weakly-continuous function and there exists α0 such that σi(α0) > 0 for all i,

then sup‖α‖=1 ςf (α) will be reached for some α ∈ S1 and so the functional φf,1(P ) is well defined.

As above, the same ideas used in the proof can be considered to obtain that sup‖α‖=1,α∈Bf,m
ςf (α) is

attained if there exists α ∈ Bf,m such that σi(α) > 0 for all i.
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Proof. Let αn ∈ S1 be a sequence such that ςf (αn) → sup‖α‖=1 ςf (α). Let us begin by showing that

lim infn→∞ σi(αn) = di > 0 for all i = 1, . . . , k. Assume that this assertion does not hold, i.e., that there

exists an i and a subsequence αnj
such that σi(αnj

) → 0 as nj → ∞. Then, ςf (αnj
) →∑k

i=1 qif{σ2
i (0)} =

−∞ which implies that sup‖α‖=1 ςf (α) = −∞. On the other hand, using that there exists α0 such that

σi(α0) > 0 for all i, we get −∞ < ςf (α0/‖α0‖) ≤ sup‖α‖=1 ςf (α) leading to a contradiction.

Hence, lim infn→∞ σi(αn) = di > 0 for all i. Without loss of generality, assume that σi(αn) → di.

Therefore, there exists n0 such that for n ≥ n0, we have that σi(αn) > di/2 > 0. After relabelling the

sequence, we can assume that σi(αn) > A > 0 for all i and n.

Using that S1 is weakly compact, we have that the exists a subsequence αnm
converging to β ∈ H and

‖β‖ ≤ 1. Let us show that ‖β‖ 6= 0. If β = 0, we have that σi(β) = 0. However, the weak continuity of σi

entails that σi(β) = limm σi(αnm
) > A > 0 leading to a contradiction. Hence ‖β‖ 6= 0. Then, αnm

→ β and

σi(αnm
) > A for all i and n. Since f : [A,∞) → R is a continuous function, we get that ςf (αnm

) → ςf (β). On

the other hand, ςf (αnm
) → sup‖α‖=1 ςf (α), thus sup‖α‖=1 ςf (α) = ςf (β). It remains to show that ‖β‖ = 1.

Assume that ‖β‖ < 1 and define γ = β/‖β‖. Using that f is strictly increasing, σi is a scale functional and

‖β‖ < 1 we obtain

ςf (γ) =
k∑

i=1

qif

{
σ2
i (β)

‖β‖2
}

>
k∑

i=1

qif
{
σ2
i (β)

}
= ςf (β) = sup

‖α‖=1

ςf (α) ,

leading to a contradiction. Therefore, ‖β‖ = 1 and the supremum is reached at β.

We now state some results that will be used in the sequel. From now on, we denote dpr(P,Q) the

Prohorov metric between the probability measures P and Q. Thus, Pn converges weakly to P if and only if

dpr(Pn, P ) → 0.

The following lemma, which generalizes the requirement in assumption C3 to deal with general score

functions and sequences of weights q̂i converging to qi, shows that sup‖α‖=1 |ς̂(α)− ςf (α)| a.s.−→ 0, for general

continuous score functions defined at 0. It excludes, however, the logarithm which will be treated separately.

Lemma S.3. Let σr be a continuous scale functional and let f : [0,+∞) → R be a strictly increasing

function such that f : [0,+∞) → R is a continuous function.

a) Let {Pn}n∈N and P be probability measures defined on a separable Hilbert space H, such that

dpr(Pn, P ) → 0. Then, sup‖α‖=1 |f{σ2
r(Pn[α])} − f{σ2

r(P [α])}| −→ 0.

b) Let {Pi,ni
}ni∈N and Pi, i = 1, . . . , k, be probability measures defined on a separable Hilbert space

H, such that dpr(Pi,ni
, Pi) → 0 and let qi,ni

be such that 0 ≤ qi,ni
and qi,ni

→ qi with 0 ≤ qi ≤ 1,
∑k

i=1 qi = 1. Then, sup‖α‖=1 |
∑k

i=1 qi,ni
f{σ2

r(Pi,ni
[α])} −∑k

i=1 qif{σ2
r(Pi[α])}| −→ 0.

Proof. a) Note that there exists a metric d generating the weak topology in H, the closed ball Vr = {α :

‖α‖ ≤ r} is weakly compact and so, compact with respect to d. On the other hand, σ(α) = σr(P [α]) is a

2



weakly continuous function of α in H, hence continuous with respect to d. These facts entail that the set

A = {σ2(α) : ‖α‖ ≤ 1} is compact in [0,+∞), so bounded. Let us assume that A ⊂ [0, A] ⊂ R. The fact

that f is continuous in [0,∞) implies that it is uniformly continuous in [0, A+1]. Hence, for any ε > 0 there

exists δ > 0 such that u, v ∈ [0, A+ 1], |u− v| ≤ δ entail |f(u)− f(v)| < ε.

Theorem 6.2 in Bali et al. [2] implies that sup‖α‖=1 |σr(Pn[α])−σr(P [α])| → 0. Hence, there exist no ∈ N

such that sup‖α‖=1 |σr(Pn[α])−σr(P [α])| ≤ min(δ/(2(A+1)), η), for any n ≥ no, where η ≤ min(1/
√
A, 1)/4.

Thus, using that σr(P [α]) ∈ [0,
√
A], for any α ∈ S1, we get that, for any α ∈ S1, un = σ2

r(Pn[α]) ∈ [0, A+1],

v = σ2
r(P [α]) ∈ [0, A+ 1] and |un − v| ≤ δ, which entails that |f

{
σ2
r(Pn[α])

}
− f

{
σ2
r(P [α])

}
| < ε, for any

α ∈ S1, concluding the proof of a).

b) Using a) and the fact that qi,ni
≤ 2, for ni large enough, we easily get that

sup
‖α‖=1

|
k∑

i=1

qi,ni

[
f{σ2

r(Pi,ni
[α])} − f{σ2

r(Pi[α])}
]
| → 0 .

It remains to show that sup‖α‖=1 |
∑k

i=1 (qi,ni
− qi) f{σ2

r(Pi[α])}| −→ 0. Noting again that the closed ball

V1 = {α : ‖α‖ ≤ 1} is weakly compact and gi(α) = f{σ2
i (α)} = f{σ2

r(Pi[α])} are weakly continuous functions
of α in H, we get that the sets Bi = {f{σ2

i (α)} : ‖α‖ ≤ 1} are compact sets and therefore bounded, which

together with the fact that qi,ni
→ qi concludes the proof of b).

Using Lemma S.3, we get the following result

Corollary S.1. Let σr be a continuous scale functional and let f : [0,+∞) → R be a strictly increasing

function such that f : [0,+∞) → R is a continuous function.

a) Given P be a probability measure in a separable Hilbert space H and Pn be the empirical measure of a

random sample X1, . . . , Xn with Xi ∼ P , we have that sup‖α‖=1 |f{σ2
r(Pn[α])} − f{σ2

r(P [α])}| a.s.−→ 0.

b) Given probability measures Pi, for i = 1, . . . , k, defined on a separable Hilbert space H and {Pi,ni
}ni∈N

the empirical measures of independent random samples Xi,1, . . . , Xi,ni
with Xi,1 ∼ Pi, we have that

sup‖α‖=1 |
∑k

i=1 qi,ni
f{σ2

r(Pi,ni
[α])} −∑k

i=1 qif{σ2
r(Pi[α])}| a.s.−→ 0, for any sequence qi,ni

such that

0 ≤ qi,ni
and qi,ni

a.s.−→ qi, with 0 ≤ qi ≤ 1,
∑k

i=1 qi = 1.

The following lemma will be used to derive the results stated in Section 4 when considering general

continuous score functions defined at 0. Its proof is omitted since it follows using analogous arguments to

those considered in the proof of Lemma S.3.

Lemma S.4. Let σr be a continuous scale functional and let f : [0,+∞) → R be a strictly increasing

function such that f : [0,+∞) → R is a continuous function. Let {Pi,ni
}ni∈N and Pi be probability measures

for i = 1, . . . , k, defined on a separable Hilbert space H, such that supα∈AN

∣∣σ2
r(Pi,ni

[α])− σ2
r(Pi[α])

∣∣ −→ 0,

where AN ⊂ V1 = {α : ‖α‖ ≤ 1}, and let qi,ni
be such that 0 ≤ qi,ni

and qi,ni
→ qi with 0 ≤ qi ≤ 1,

∑k

i=1 qi = 1. Then, supα∈AN
|∑k

i=1 qi,ni
f{σ2

r(Pi,ni
[α])} −∑k

i=1 qif{σ2
r(Pi[α])}| −→ 0.

3



In order to prove Theorem 2, we will need the following Lemma, which is a particular case of Lemma

A.1 in Bali and Boente [1].

Lemma S.5. Let X ∈ H, where H is a separable Hilbert space, be such that P(X = 0) = 0. Assume that

X ∼ E(0,Γ) with Γ a compact operator such that Γ =
∑

i≥1 λiφi ⊗ φi, with λ1 ≥ λ2 ≥ . . . its ordered

eigenvalues and φi the related eigenfunctions. Given 0 < ε < 1, let pn = P
(
〈X1/‖X1‖, φ1〉2 < 1− ε

)
. Then,

there exist n0 ∈ N and 0 < q < 1 such that pn ≤ q < 1 for all n ≥ n0.

T. Proofs of Lemmas 1 to 4

Proof of Lemma 1. The fact that P1, . . . , Pk are partially weakly–fcpc of order s ≥ 1 under σr en-

tails that φr,j(Pi) = φr,j(Pm) = φr,j for all j = 1, . . . , s and i,m = 1, . . . , k. So, for any α ∈ S1, we

have that σ2
r(Pi[φr,1]) ≥ σ2

r(Pi[α]) which together with the fact that f is strictly increasing entails that

f{σ2
r(Pi[φr,1])} ≥ f{σ2

r(Pi[α])}. Hence, ςf (α) ≤ ςf (φr,1), which implies that φf,1 = φr,1.

The proof follows now by an induction argument. Assume that φf,j(P ) = φr,j(P1) for j = 1, . . . , ` < s,

we want to show that φf,`+1(P ) = φr,`+1(P1). First note that B`+1 = Bf,`+1, so for any α ∈ S1 ∩Bf,`+1, we

have that σi(α) ≤ σi(φr,`+1), so ςf (α) ≤ ςf (φr,`+1), concluding the proof.

Proof of Lemma 2. Let us begin by showing the result for j = 1. Note that since P1, . . . , Pk are partially

strongly–fcpc of order s they are partially weakly–fcpc of the same order under σr. Thus, for any α ∈ S1,

we have that σ2
r(Pi[φ1]) = σ2

i (φ1) = ciλi,1 ≥ ci〈α,Γiα〉 = σ2
i (α) = σ2

r(Pi[α]) and the inequality is strict

when i = i0 and α 6= φ1. Hence, f{σ2
i (φ1)} ≥ f{σ2

i (α)} for any i = 1, . . . , k and f{σ2
i0
(φ1)} > f{σ2

i0
(α)}

since f is strictly increasing which together with the fact that qi ≥ 0 and qi0 > 0 imply that ςf (φ1)) > ςf (α)

for any α ∈ S1. Thus, φf,1(P ) = φ1.

The proof follows easily using an induction argument. Assume that φf,j(P ) = φj , for j = 1, . . . ,m− 1,

m ≤ min(s, d), we want to show that φf,m(P ) = φm. Now the set Bf,m equals {α : 〈α, φj〉 = 0, j =

1, . . . ,m − 1}, hence, for any α ∈ S1 ∩ Bf,m, we have that 〈α,Γiα〉 ≤ 〈φm,Γiφm〉 = λi,m with strict

inequality when i = i0 and α 6= φm. This implies that for any α ∈ S1 ∩ Bf,m, we have f{σ2
i (φm)} =

f (ci〈φm,Γiφm〉) ≥ f (ci〈α,Γiα〉) = f{σ2
i (α)} for any i = 1, . . . , k and f{σ2

i0
(φm)} > f{σ2

i0
(α)} which

entails that ςf (φm)) > ςf (α), so φf,m(P ) = φm, concluding the proof.

The result regarding the eigenvalues follow easily since λf,i,j = σ2
r (Pi[φf,j ]) = σ2

i (φj) = ci〈φj ,Γiφj〉 =
ciλi,j .

Proof of Lemma 3. The proof follows the same lines as those used in the proof of Proposition 1 in Boente

et al. [3]. Given α ∈ H such that ‖α‖ = 1, we have that α =
∑

j≥1 ajφj + biφ
?
i where

∑
j≥1 a

2
j + b2i = 1 and

φ?
i is a norm one element of the kernel of Γi when ker(Γi) 6= {0}. If ker(Γi) = {0}, we have α =

∑
j≥1 ajφj

and
∑

j≥1 a
2
j = 1. Then, σ2

r (Pi[α]) = ci
∑

j≥1 λi,ja
2
j . Note that since f is continuous, convex and f(0) = 0,

4



we have that f(
∑m

j=1 ciλi,ja
2
j) = f(

∑m

j=1 a
2
jciλi,j +(1−∑m

j=1 a
2
j) · 0) ≤

∑m

j=1 a
2
jf(ci λi,j) which entails that

ςf (α) =
k∑

i=1

qif{σ2
r (Pi[α])} =

k∑

i=1

qif(ci
∑

j≥1

λi,ja
2
j) ≤

∑

j≥1

a2j

k∑

i=1

qif(ci λi,j) =
∑

j≥1

a2jνj .

Therefore, ςf (α) ≤ ςf (φ1) = ν1 and the inequality is strict unless α = φ1. Similarly, for 2 ≤ r ≤ d and α

such that 〈α, φj〉 = 0 for 1 ≤ j ≤ r− 1, we have that ςf (α) ≤
∑

j≥r a
2
jνj < νr, which concludes the proof.

From now on, oa.s.(1) stands for a term which converges to 0 almost surely.

Proof of Lemma 4. a) Let N = {ω : ςf (φ̂1(ω)) 6→ ςf (φf,1)} and fix ω /∈ N , then ςf (φ̂1(ω)) → ςf (φf,1).

Using V1 = {‖α‖ ≤ 1} is weakly compact, we have that for any subsequence γ` of the sequence φ̂1(ω)

there exists a subsequence γ`s such that γ`s → γ ∈ H such that that ‖γ‖ ≤ 1. Besides, using that

ςf{φ̂1(ω)} → ςf (φf,1), we get that ςf (γ`s) → ςf (φf,1).

Let us show that ςf (γ) = ςf (φf,1) and γ 6= 0. We will consider the situation in which f is continuous at

0 and when f(0) = −∞.

i) We will begin by considering |f(0)| < +∞ and f is continuous at 0. Hence, using C1 we have that

ςf : H → R is a weakly uniformly continuous function on V1 which entails that ςf (γ`s) → ςf (γ), as s → ∞.

Hence, ςf (γ) = ςf (φf,1) which entails that γ 6= 0. Effectively, assume that γ = 0. Then, we have that

σr(Pi[γ]) = σr(Pi[0]) = 0 which implies that ςf (γ) = f(0), since
∑k

i=1 qi = 1. Therefore, ςf (φf,1) = f(0)

and ςf (φf,1) =
∑k

i=1 qif(λf,i,1). Using that f is strictly increasing and the fact that C0 implies that there

exist i such that λf,i,1 > 0, we get that
∑k

i=1 qif(λf,i,1) > f(0) leading to a contradiction. Hence, γ 6= 0.

ii) Consider now the case f(0) = −∞. The proof is quite similar to the previous one, avoiding the problems

caused by the singularity at 0. Again, C1 imply that σi : H → R is a weakly uniformly continuous function

on V1 which entails that σi(γ`s) → σi(γ), as s → ∞, for i = 1, . . . , k. If there exist i = 1, . . . , k such that

σi(γ) = 0, (which includes the situation γ = 0), the fact that qi > 0 implies that ςf (γ`s) → −∞ and so,

ςf (φf,1) = −∞ which contradicts the fact that ςf (φf,1) =
∑k

i=1 qif(λf,i,1) and λf,i,1 > 0 for all i = 1, . . . , k.

Thus σi(γ) 6= 0, for all i = 1, . . . , k, (which entails that γ 6= 0), the continuity of f in (0,+∞) implies that

ςf (γ`s) → ςf (γ) and so, ςf (γ) = ςf (φf,1).

So, in both cases we have that ςf (γ) = ςf (φf,1) and γ 6= 0. Assume that ‖γ‖ < 1 and let γ̃ = γ/‖γ‖, then
γ̃ ∈ S1 which implies that ςf (γ̃) ≤ ςf (φf,1). On the other hand, using that σr is a scale functional, ‖γ‖ < 1

and f is strictly increasing, we get

ςf (γ̃) =

k∑

i=1

qif
{
σ2
r (Pi [γ̃])

}
=

k∑

i=1

qif

{
σ2
r(Pi[γ])

‖γ‖2
}

>

k∑

i=1

qif
{
σ2
r(Pi[γ])

}
= ςf (γ) = ςf (φf,1) ,

which contradicts the fact that ςf (φf,1) = max‖α‖=1 ςf (α). Hence, ‖γ‖ = 1 and C0 implies that γ = φf,1

except maybe for a sign change, that is, 〈γ, φf,1〉2 = 1. Thus, any subsequence of φ̂1(ω) will have a limit

converging either to φr,1 or −φr,1, concluding the proof of a).
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b) Write φ̂m as φ̂m =
∑m−1

j=1 âjφf,j + γ̂m, with 〈γ̂m, φf,j〉 = 0 for j = 1, . . . ,m− 1. To obtain b) we only

have to show that 〈γ̂m, φf,m〉2 a.s.−→ 1. Note that 〈φ̂m, φ̂j〉 a.s.−→ 0, for j 6= m, implies that âj = 〈φ̂m, φf,j〉 =
〈φ̂m, φf,j − φ̂j〉 + 〈φ̂m, φ̂j〉 = 〈φ̂m, φf,j − φ̂j〉 + oa.s.(1). Thus, using that φ̂j

a.s.−→ φf,j , for j = 1, . . . ,m − 1,

and ‖φ̂m‖ a.s.−→ 1, we get that âj
a.s.−→ 0, for j = 1, . . . ,m− 1. Therefore, ‖φ̂m − γ̂m‖2 a.s.−→ 0. Moreover, using

that ‖φ̂m‖2 =
∑m−1

j=1 â2j + ‖γ̂m‖2 and ‖φ̂m‖2 a.s.−→ 1, we get that ‖γ̂m‖2 ≤ 1 and ‖γ̂m‖2 a.s.−→ 1, which implies

that ‖φ̂m − γ̃m‖ a.s.−→ 0, where γ̃m = γ̂m/‖γ̂m‖.
Let us show that ςf (γ̃m)

a.s.−→ ςf (φf,m). We will again consider the situation in which f is continuous at

0 and when f(0) = −∞.

i) We will begin by considering |f(0)| < +∞ and f is continuous at 0 Using now that ςf (α) is a weakly

uniformly continuous function of α in V1, we obtain that ςf (γ̃m) − ςf (φ̂m)
a.s.−→ 0 which together with the

fact that ςf (φ̂m)
a.s.−→ ςf (φf,m) implies that ςf (γ̃m)

a.s.−→ ςf (φf,m).

ii) Consider now the case f(0) = −∞. Using now that, for all i = 1, . . . , k, σ2
i (α) is a weakly uniformly

continuous function of α in V1, we obtain that σ2
i (γ̃m) − σ2

i (φ̂m) = oa.s.(1). It is enough to show that, for

any subsequence γ̃m,` of γ̃m, we have that ςf (γ̃m,`)
a.s.−→ ςf (φf,m) as ` → ∞. For simplicity, we will show that

the result holds for the original sequence.

Let Nm = ∪k
i=1{ω : σ2

i {γ̃m(ω)}− σ2
i {φ̂m(ω)} 6→ 0}∪ {ω : ςf{φ̂m(ω)} 6→ ςf (φf,m)} and fix ω /∈ Nm. Then

ςf{φ̂m(ω)} → ςf (φf,m) and σ2
i {γ̃m(ω)} − σ2

i {φ̂m(ω)} → 0, for all 1 ≤ i ≤ k. As in a) it is easy to see that

there exists a subsequence ν`s of {φ̂m(ω)} such that ν`s → ν ∈ H such that that ν 6= 0 and ςf (φf,m) = ςf (ν).

Using that σi : H → R is a weakly uniformly continuous function on V1, we get that σi(ν`s) → σi(ν), as

s → ∞, for i = 1, . . . , k, so that σ2
i {γ̃m,`s(ω)} converges to σ2

i (ν), where γ̃m,`s(ω) is the subsequence of

{γ̃m(ω)} related to ν`s . Therefore, ςf{γ̃m,`s(ω)} converges to ςf (ν) = ςf (φf,m).

Hence, in both situations we have that ςf (γ̃m)
a.s.−→ ςf (φf,m). The proof follows now as in a) using the

fact that γ̃m ∈ Cm, with Cm = {α ∈ S1 : 〈α, φf,j〉 = 0, j = 1, . . . ,m− 1} and φf,m is the unique maximizer

of ςf (α) over Cm.

U. Proof of Theorem 1

We will need first some auxiliary definitions. Denote by Lk and L̂k the linear spaces spanned by

{φf,1, . . . , φf,k} and by φ̂1, . . . φ̂k, respectively. Let πk and π̂k the orthogonal projection onto L⊥
k and L̂⊥

k ,

respectively, that is, that is, πk(α) = α−∑k

j=1〈α, φf,j〉φf,j and π̂k(α) = α−∑k

j=1〈α, φ̂j〉φ̂j .

The proof will be done by deriving the following assertions

a) ςN (φ̂1)
a.s.−→ ςf (φf,1) and ςf (φ̂1)

a.s.−→ ςf (φf,1).

b) 〈φ̂1, φf,1〉2 a.s.−→ 1 and λ̂i,1
a.s.−→ λf,i,1.
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c) For any m = 2, . . . , d, if φ̂`
a.s.−→ φf,` for ` = 1, . . . ,m− 1, then, ςN (φ̂m)

a.s.−→ ςf (φf,m) and ςf (φ̂m)
a.s.−→

ςf (φf,m).

d) For m = 1, . . . , d, 〈φ̂m, φf,m〉2 a.s.−→ 1 and λ̂i,m
a.s.−→ σ2

i (φf,m).

a) The proof of ςN (φ̂1)
a.s.−→ ςf (φf,1) will follow if we show that

ςf (φf,1) ≥ ςN (φ̂1) + oa.s.(1) , (S.1)

ςf (φf,1) ≤ ςN (φ̂1) + oa.s.(1) . (S.2)

Denote âN = ςN (φ̂1)− ςf (φ̂1) and b̂N = ςN (φf,1)− ςf (φf,1) and assume that

âN = ςN (φ̂1)− ςf (φ̂1) = oa.s.(1) , (S.3)

b̂N = ςN (φf,1)− ςf (φf,1) = oa.s.(1) (S.4)

hold. Let us show that (S.4) implies (S.2) while (S.3) entails (S.1).

Effectively, if (S.4) hold, using that φ̂1 = argmax‖α‖=1 ςN (α) we get that ςN (φ̂1) ≥ ςN (φf,1) = ςf (φf,1) +

b̂N concluding the proof of (S.2).

On the other hand, if (S.3) hold using that ςf (φf,1) = sup‖α‖=1 ςf (α) and ‖φ̂1‖ = 1, we obtain easily that

ςf (φf,1) ≥ ςf (φ̂1) = ςN (φ̂1)− âN , concluding the proof of (S.1).

Hence, ςN (φ̂1)
a.s.−→ ςf (φf,1) . On the other hand, using again (S.3) and since ςf (φ̂1)− ςf (φ1) = ςN (φ̂1)−

ςf (φf,1)− âN , we get that ςf (φ̂1)
a.s.−→ ςf (φf,1), concluding the proof of a).

Therefore, we only have to show that (S.3) and (S.4) hold. We will distinguish the case in which f is

defined at 0 and when f(0) = −∞.

a.i) Consider first the case f : [0,∞) → R a strictly increasing and continuous function. Using that σr is a

functional of scale and the convergence given in assumption ii), we get easily from Lemma S.4 in the online

supplement that

sup
‖α‖≤1

|ςN (α) − ςf (α)| = oa.s.(1) , (S.5)

which entails (S.4) and (S.3).

a.ii) Suppose now that f(0) = −∞.

We begin by showing that (S.4) holds. The convergence given in assumption ii) implies that b̂N,i =

σ2
i,ni

(φf,1) − σ2
i (φf,1) = oa.s.(1). Then, using that σ2

i (φf,1) > 0 and the continuity of f , we get that

f(σ2
i,ni

(φf,1))
a.s.−→ f

(
σ2
i (φf,1)

)
, which concludes the proof of (S.4). As mentioned above, (S.4) entails (S.2).

To derive (S.3), note that âN,i = σ2
i,ni

(φ̂1) − σ2
i (φ̂1) = oa.s.(1) since ‖φ̂1‖ = 1. Let N = ∪k

i=1{ω :

âN,i(ω) 6→ 0}, that is, the set of probability 0 where the almost sure convergence of âN,i to 0 does not hold

for 1 ≤ i ≤ k. For any ω /∈ N , let us show that

lim inf σ2
i {φ̂1(ω)} > 0 for i = 1, . . . , k . (S.6)
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Effectively, assume there exists i0 such that lim inf σ2
i0
{φ̂1(ω)} = 0. Then, there exists a subsequence of

γN = φ̂1(ω) such that σ2
i0
(γN`

) → 0. Using that âN,i0(ω) = σ2
i0,ni0

{φ̂1(ω)} − σ2
i0
{φ̂1(ω)} → 0, we get that

σ2
i0,ni0,`

(γN`
) → 0, so ςN`

(γN`
) → −∞. Thus, since (S.2) holds, we get that ςf (φf,1) = −∞ which contradicts

the fact that λf,i,1 > 0, concluding the proof of (S.6).

Hence, there exists ε > 0 such that σ2
i {φ̂1(ω)} ∈ [ε,+∞), for all i = 1, . . . , k and n ∈ N. Using that σi is

weakly continuous and the unit ball is weakly compact, we have that the set {σi(α) : α ∈ V1} is bounded,

which entails that there exists A > 0 such that σ2
i {φ̂1(ω)} ∈ [ε, A], for any i = 1, . . . , k and n ∈ N. Since

âN,i(ω) = σ2
i,ni

{φ̂1(ω)}−σ2
i {φ̂1(ω)} → 0, we obtain that, for N large enough, σ2

i,ni
{φ̂1(ω)} ∈ [ε/2, 2A] which

together with the uniform continuity of the function f on [ε/2, 2A] entails that (S.3) holds concluding the

proof of a).

b) Lemma 4 entails immediately that 〈φ̂1, φf,1〉2 a.s.−→ 1 . Without loss of generality, we can assume that

φ̂1
a.s.−→ φf,1 , since both σ2

i,ni
and σ2

i are invariant under sign changes.

The convergence given in assumption ii) implies that λ̂i,1 − σ2
i (φ̂1) = σ2

i,ni
(φ̂1) − σ2

i (φ̂1) = oa.s.(1). On

the other hand, the fact that φ̂1
a.s.−→ φf,1 , together with the weak continuity of σi imply that σ2

i (φ̂1)
a.s.−→

σ2
i (φf,1) = λf,i,1 , concluding the proof of b).

c) The almost sure convergence of φ̂j to φf,j , for j = 1, . . . ,m− 1, implies

sup
‖α‖=1

‖π̂m−1α− πm−1α‖ a.s.−→ 0 , (S.7)

which will be used in the sequel. As in a), to show that ςN (φ̂m)
a.s.−→ ςf (φf,m) it will be enough to prove that

ςf (φf,m) ≥ ςN (φ̂m) + oa.s.(1), (S.8)

ςf (φf,m) ≤ ςN (φ̂m) + oa.s.(1). (S.9)

Recall that ςf (φf,m) = supα∈S1∩Tm−1
ςf (α). Therefore, since σr is a scale functional and f is increasing, we

have supα∈{‖α‖=1}∩Tm−1
ςf (α) ≥ sup‖α‖=1 ςf (πm−1α), which implies

ςf (φf,m) ≥ ςf (πm−1φ̂m) = ςN (φ̂m)− b̂m ,

where b̂m = ςN (π̂m−1φ̂m) − ςf (πm−1φ̂m) = ςN (φ̂m) − ςf (πm−1φ̂m). Hence, to derive (S.8) it is enough to

show

b̂m = ςN (π̂m−1φ̂m)− ςf (πm−1φ̂m) = oa.s.(1) . (S.10)

Similarly, using that σr is a scale functional and f is increasing, we have

ςN (φ̂m) = sup
‖α‖=1,α∈T̂m−1

ςN (α) ≥ ςN (π̂m−1φf,m) = ςf (φf,m) + ĉm ,

where ĉm = ςN (π̂m−1φf,m)− ςf (πm−1φf,m) = ςN (π̂m−1φf,m)− ςf (φf,m). Hence, to obtain (S.9) it is enough

to show that

ĉm = ςN (π̂m−1φf,m)− ςf (πm−1φf,m) = oa.s.(1) . (S.11)
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Finally, defining âN = ςN (φ̂m)− ςf (φ̂m), we have that

ςf (φ̂m)− ςf (φf,m) = ςN (φ̂m)− ςf (φf,m)− âN ,

so that the proof of c) will be concluded if we show (S.10), (S.11) and

âN = ςN (φ̂m)− ςf (φ̂m) = oa.s.(1) . (S.12)

As in a), we will distinguish the situation f defined at 0 and f(0) = −∞.

c.i) Assume that f : [0,∞) → R is continuous and let us show that

sup
‖α‖=1

|ςN (π̂m−1α)− ςf (πm−1α)| = oa.s.(1) . (S.13)

Note that

sup
‖α‖=1

|ςN (π̂m−1α)− ςf (πm−1α)| ≤ sup
‖α‖=1

|ςN (π̂m−1α)− ςf (π̂m−1α)|

+ sup
‖α‖=1

|ςf (πm−1α) − ςf (π̂m−1α)| .

Using (S.5) and the fact that ‖α‖ = 1 implies ‖π̂m−1α‖ ≤ 1, we get that the first term on the right

hand side of the above inequality converges to zero almost surely. Hence, we only have to prove that

sup‖α‖=1 |ςf (πm−1α)− ςf (π̂m−1α)| a.s.−→ 0. The fact that ςf is weakly uniformly continuous over V1 and (S.7)

implies that sup‖α‖=1 |ςf (πm−1α)− ςf (π̂m−1α)| = oa.s.(1), concluding the proof of (S.13).

Using (S.13) and the fact that ‖φ̂m‖ = 1, we obtain that (S.10) and (S.11) hold. On the other hand, the

fact that ‖φ̂m‖ = 1 and (S.5) entail that (S.12), which concludes the proof of c) when f is continuous at 0.

c.ii) Suppose now that f(0) = −∞. Denote âN,i = σ2
i,ni

(φ̂m)−σ2
i (φ̂m), b̂N,i = σ2

i,ni
(π̂m−1φ̂m)−σ2

i (πm−1φ̂m) =

σ2
i,ni

(φ̂m) − σ2
i (πm−1φ̂m), ĉN,i = σ2

i,ni
(π̂m−1φf,m) − σ2

i (φf,m). Note that (S.7) and the fact that ‖φ̂m‖ =

‖φf,m‖ = 1 entail that πm−1φ̂m − φ̂m and π̂m−1φf,m − φf,m converge to 0 almost surely. Therefore, using

that πm−1φ̂m ∈ V1 and φ̂m ∈ V1 and the fact that σi is uniformly weakly continuous in V1, we obtain

that σ2
i (πm−1φ̂m) − σ2

i (φ̂m)
a.s.−→ 0. Similarly, we have that σ2

i (π̂m−1φf,m) − σ2
i (φf,m)

a.s.−→ 0. Hence, the

convergences given in assumption ii) allow to conclude that âN,i, b̂N,i and ĉN,i converge to 0 almost surely.

Arguing as in a), and using that σ2
i (φf,m) > 0, for all i = 1, . . . , k, we get that (S.12), (S.10) and (S.11)

hold.

d) We have already proved that when m = 1 the result holds. We proceed by induction and assume that

〈φ̂`, φf,`〉2 a.s.−→ 1, for ` = 1, . . . ,m − 1, to show that 〈φ̂m, φf,m〉2 a.s.−→ 1. Without loss of generality, we can

assume that φ̂`
a.s.−→ φf,`, for ` = 1, . . . ,m− 1. Using c) we have that ςf (φ̂m) and ‖φ̂m‖ converge to ςf (φf,m)

and 1 almost surely, respectively. Hence, from Lemma 4 we get that 〈φ̂m, φf,m〉2 a.s.−→ 1. Without loss of

generality we can assume that φ̂m
a.s.−→ φf,m, since σ2

i,ni
and σ2

i are invariant under sign changes. Hence, as in
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b) using that ‖φ̂m‖ = 1 and assumption ii), we get that λ̂i,m − σ2
i (φ̂m) = σ2

i,ni
(φ̂m)− σ2

i (φ̂m) = oa.s.(1). On

the other hand, the fact that φ̂m
a.s.−→ φf,m together with the weak continuity of σi implies that σ2

i (φ̂m)
a.s.−→

σ2
i (φf,m) = λf,i,m, concluding the proof of d).

V. Proof of Theorem 2

Using that Xi,j is elliptically distributed, we have that σ2
i (α) = ci〈α,Γiα〉 where φf,1(P ) = φ1. On the

other hand, since σ2
i (α) = ci〈α,Γiα〉 and Γi is a compact operator, C1 holds. Finally, since P(Xi,1 = 0) = 0

then λi,1 > 0, and so we have that λf,i,1(P ) = σ2
i (φ1) = ciλi,1 > 0 since C0 holds.

Define AN = {Xi,j/‖Xi,j‖, 1 ≤ i ≤ k, 1 ≤ j ≤ ni} and let

φ̃1 = φ̃1,N = argmin
α∈AN

1− 〈α, φ1〉2 ,

that is, 〈φ̃1, φ1〉2 = max1≤i≤k,1≤j≤ni
〈Xi,j/‖Xi,j‖, φ1〉2.

We will begin proving that 〈φ̃1, φ1〉2 a.s.−→ 1. Since 〈φ̃1, φ1〉2 ≤ 1, it is enough to show that, for all

ε > 0, limM→∞ P

[
∪N≥M{(1− 〈φ̃1,N , φ1〉2) > ε}

]
= 0, which will follow from the fact that

∑
N≥1 P(1 −

〈φ̃1,N , φ1〉2 > ε) < ∞. We have that

P(1− 〈φ̃1, φ1〉2) > ε) = P

(
max

1≤i≤k,1≤j≤ni

〈 Xi,j

‖Xi,j‖
, φ1〉2 < 1− ε

)

=

k∏

i=1

ni∏

j=1

P

(
〈 Xi,j

‖Xi,j‖
, φ1〉2 < 1− ε

)
=

k∏

i=1

P

(
〈 Xi,1

‖Xi,1‖
, φ1〉2 < 1− ε

)ni

=

{
k∏

i=1

P

(
〈 Xi,1

‖Xi,1‖
, φ1〉2 < 1− ε

)qi,N
}N

.

Let i1 be such that P(Xi1,1 = 0) = 0 and denote pi1 = P
(
〈Xi1,1/‖Xi1,1‖, φ1〉2 < 1− ε

)
. Then, Lemma S.5

implies that pi1 < 1. Hence, using that

P(1− 〈φ̃1, φ1〉2 > ε) =

(
k∏

i=1

p
qi,N
i

)N

=




k∏

i6=i1

p
qi,N
i




N

(
p
qi1,N

i1

)N ≤
(
p
qi1
i1

)N qi1,N

qi1 ,

the fact that 0 < qi1 < 1 implies that 〈φ̃1, φ1〉2 a.s.−→ 1. Without loss of generality, we will assume that

φ̃1
a.s.−→ φ1.

The continuity of σi entails that σ
2
i (φ̃1)−σ2

i (φ1)
a.s.−→ 0. Besides, C3 implies that s2i,ni

(φ̃1)−σ2
i (φ̃1)

a.s.−→ 0,

hence using that Lemma 2 entails that λf,1(P ) = ciλi,1, for some ci > 0, we get

s2i,ni
(φ̃1)

a.s.−→ σ2
i (φ1) = λf,i,1(P ) > 0 . (S.14)

Using that f is a continuous function on (0,∞) and λf,i,1(P ) > 0, we get that (S.14) implies that ς̂(φ̃1)
a.s.−→

ςf (φ1), so that

b̂N = ς̂(φ̃1)− ςf (φ1)
a.s.−→ 0 . (S.15)
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On the other hand, since φ̃1 ∈ AN , φ̂f,cr,1 = argmaxα∈AN
ς̂(α), φ1 = argmax‖α‖=1 ςf (α) and ‖φ̂f,cr,1‖ = 1,

we have the following inequalities

ς̂(φ̃1) ≤ ς̂(φ̂f,cr,1) , (S.16)

ςf (φ̃1) ≤ ςf (φ1) , (S.17)

ςf (φ̂f,cr,1) ≤ ςf (φ1) . (S.18)

Denote âN = ς̂(φ̂f,cr,1)− ςf (φ̂f,cr,1). From (S.16) and (S.18), we obtain

ςf (φ1) = ς̂(φ̃1)− b̂N ≤ ς̂(φ̂f,cr,1)− b̂N = ςf (φ̂f,cr,1) + âN − b̂N ≤ ςf (φ1) + âN − b̂N . (S.19)

Assume that we have shown that

âN = oa.s.(1) . (S.20)

Then using (S.19) and (S.15), we get that ςf (φ̂f,cr,1)
a.s.−→ ςf (φ1) and the result follows from Lemma 4.

In order to prove (S.20), and as in the proof of Theorem 1, we will distinguish the case in which f is

defined at 0 and when f(0) = −∞.

i) If |f(0)| < ∞ and f is continuous at 0, Corollary S.1 implies that sup‖α‖=1 |ς̂(α) − ςf (α)| a.s.−→ 0, so that

(S.20) holds.

ii) Consider now the case f(0) = −∞. Let N1 the 0-measure set where C3 does not hold, N2 = {ω ∈ Ω :

b̂N 6→ 0} and N3 = {ω ∈ Ω : φ̃1 6→ φ1}. Define N = ∪3
i=1Ni. Therefore, if ω /∈ N , we have that

sup
‖α‖=1

∣∣s2i,ni
(α) − σ2

i (α)
∣∣→ 0 , b̂N → 0 , φ̃1 → φ1 . (S.21)

Noting that ςf (φ1) + b̂N ≤ ς̂(φ̂f,cr,1), we obtain that

lim inf
N→∞

ς̂{φ̂f,cr,1(ω)} ≥ ςf (φ1) . (S.22)

The fact that λf,i,1 = σ2
i (φ1) > 0, for all 1 ≤ i ≤ k implies that |ςf (φ1)| < ∞ which allows us to conclude that,

for all 1 ≤ i ≤ k, lim infN→∞ σ2
i {φ̂f,cr,1(ω)} > 0. Indeed, suppose that this does not hold, then, there exist

i0 such that lim infN→∞ σ2
i0
{φ̂f,cr,1(ω)} = 0, that is, it exists a subsequence γN`

of γN = φ̂f,cr,1(ω) such that

σ2
i0
(γN`

) → 0. Since (S.21) holds, we have that s2i0,qi0N`
(γN`

) → 0 which implies that ς̂N`
(γN`

) → −∞, which

contradicts (S.22). Thus, for all 1 ≤ i ≤ k, lim infN→∞ σ2
i {φ̂f,cr,1(ω)} > 0. Using analogous arguments to

those considered in the proof of Theorem 1, it follows that (S.20) holds concluding the proof.
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