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a b s t r a c t

We study the variational principle on a Hilbert–Einstein action in an extended geometry with torsion
taking into account non-trivial boundary conditions. We obtain an effective energy–momentum tensor
that has its source in the torsion, which represents the matter geometrically induced. We explore about
the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude
that the boundary terms can be identified as possible sources for the cosmological constant and torsion
as the source ofmagneticmonopoles.We examine an example inwhich gravitational waves are produced
during a de Sitter inflationary expansion of the universe.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the standard treatment of the variational principle over the
Hilbert–Einstein action (HE), when amanifold has a boundary ∂M,
the action is supplemented by a boundary termwhich is in general
neglected [1]. However, this is not the only manner to study this
problem. As was recently demonstrated in [2], it is possible to
include the flux around an hypersurface that encloses a physical
sourcewithout the inclusion of extra terms in the HE action. In that
paperwas demonstrated that thenon-zero flux of the vectormetric
fluctuations through the closed 3D Gaussian-like hypersurface, is
responsible for the gauge-invariance of gravitational waves (GW).
However, the torsional contributions were neglected in that paper.
In the present paper we extend this analysis on the variational
principle, but for an extended geometrywith torsion.We obtain an
effective energy–momentum tensor with sources only in torsion,
which can be viewed as an effective matter tensor in a Riemannian
geometry. Such tensor represents matter geometrically induced,
but without extra dimensions. In addition, we develop a new
manner to obtain GW on a torsional manifold taking into account
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nontrivial boundary terms. The first contribution to GW with
purely torsional nature, was studied in Section 3 A, and the
second one based in the boundary term was studied in Section 3
B; in both cases for a general torsion. Also, we present an
example in Weitzenböck geometry obtaining the expression for
themagnetic densitymonopoles and a gravitationalwave equation
for a Friedman-Robertson-Walker (FRW) inWeitzeböck geometry.
Finally, in Section 6, we develop some final remarks.

2. Variational principle in torsional geometry

We consider the variational principle in presence of torsion for
a HE-like action.We have studied this fundamental problem in [3].
Therefore, we shall expose some results in present section without
making a full description. In [3], we have studied the contribution
of the new termswhich are not present in a Riemannian geometry.
The boundary term was studied in [2], but emphasizing the role of
non-metricity. Now, we shall consider some gravitational action in
an extended geometry (i.e. a non-Riemannian manifold), without
the presence of matter

I =
1
2κ


M
d4x

√
−gR, (1)

in which κ = 8π G, such that G is the gravitational constant, and

Rm
lij = Γ m

lj ,i − Γ m
li ,j + Γ n

lj Γ
m
ni − Γ n

liΓ
m
nj, (2)

Rlj = Ri
lij, (3)
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where R = Rnmgnm is the scalar curvature. We have employed
the Einstein’s convention over repeated indexes. The ‘‘,’’ represents
a partial derivative and all the indices run between 1 and 4.
Furthermore, gab are the components of the metric tensor and
√

−g is the volume of the non-Riemannian manifold. The Eq. (2)
defines the Riemann curvature tensor, the Eq. (3) give us the Ricci
tensor and Eq. (II) is the scalar curvature. We denote with Γ a

bc an
arbitrary affine connection, which is defined according to

∇−→e a
−→e b = Γ n

ba
−→e n, (4)

where ∇−→e a denotes the derivative in a-direction of the tangent
space

−→e b

. Here, the up arrow means that the tangent space

in the position representation is described by partial derivatives
with respect to contravariant coordinates:

−→e b


≡


∂

∂xb


, and the

down arrowmeans that the cotangent space is generated by e
−→

b
≡

dxb

, such that e

−→
b(

−→e a) = δb
a. We wont consider any particular

symmetry in the connections. Now we shall make the variation of
the action in (1): δI = 0. Here we must take into account that
the scalar R in (II) is related to the connection in (4), which is an
abstract connectionwhich is in general non-Riemannian, but fulfils
the expression

Γ n
mr =

n
mr


+ K n

mr , (5)

with {
n
mr} the second kind Christoffel symbols representing the

Riemannian or Levi-Civita connections, and K n
mr the contortion

tensor, which in absence of non-metricity is entirely torsional
according to

K a
bc = −

gna

2
{T s

cn gbs + T s
bn gsc − T s

cb gsn}, (6)

with the torsion tensor defined by

T n
mr = Γ n

rm − Γ n
mr , (7)

which is a valid expression in a coordinate basis of the four
dimensional tangent space to the space–time manifold (TM4). In
present work we impose the non-metricity free condition

Nnmr = gnm ;r = 0, (8)

for an analysis of such contribution to the GW the reader can see
[3]. The variation of the Ricci must be related to the variation of the
connections obtaining a generalised Palatini identity for torsional
geometry

gmr δRmr = W n
;n −

1
2
gmr(δΓ n

pr T
p
mn + δΓ n

pm T p
rn), (9)

with

W n
mr = δΓ n

mr − δΓ k
kr δn

m (10)

where W n
= gmrW n

mr . With the use of Eq. (9) in the variation of
the action we obtain

δI =


M
d4x

√
−g


Rab −

1
2
R gab


δgab

+


∂M

W n dΣn

−
1
2


M
d4x

√
−g(δΓ n

pr T
p
mn + δΓ n

pm T p
rn)g

mr . (11)

In the first integral we recognize the Einstein tensor for the
torsional connection. The second one is due to the boundary term.
The third integral is completely originated by the torsion. This is a
non-Riemannian contribution.

To finalize this section we must present the explicit form of
the W n

mr = W n
(mr) + W n

[mr] tensor, where the symmetric and
antisymmetric contributions are, respectively given by

W n
(mr) =


gkn

2


δgmk ,r + δgkr ,m − δgrm ,k − T t

rk δgmt

− T t
mk δgtr


−

δgkn

2


gmk ,r + gkr ,m

− grm ,k − T t
rk gmt − T t

mk gtr


−
gkl

4


δgkl ,r δn

m

+ δgkl ,m δn
r


+

δgkl

4


gkl ,r δn

m + gkl ,m δn
r


, (12)

W n
[mr] =


gkn

2
T t

rm δgtk −
gkn

2
T t

rm gtk −
gkl

4


δgkl ,r δn

m

− δgkl ,m δn
r


+

δgkl

4
(gkl ,r δn

m − gkl ,m δn
r)


, (13)

such that W n
= W n

(mr) g
mr .

3. Physics of the torsional geometry and 4D induced matter

In presence of torsion, but zero non-metricity, the variation of
the action takes the form

δI =


M
d4x

√
−g


Rab −

1
2
R gab −

1
2
L(ab)


δgab

+


M
d4x

√
−g W n

; n (14)

with

L(sd) =

∆

p
mrsd K

n
pn − ∆

p
nrsd K

n
pm − ∆

p
nmsd K

n
pr

+ ∆n
npsd (K p

rm + K p
mr)


gmr . (15)

Furthermore

∆
p
mrsd =

gpk

2
{−(gms gkd),r − (gks grd),m + (gms grd),k

+ T l
rk gms gld + T l

mk gls grd − T l
rm gls grd}

−
1
2
(−T l

rd gml − T l
md glr + T l

rm gld) δp
s. (16)

The first integral in (14) includes the extended Einstein tensor
with the torsional (Weitzenböck) contribution, and the second
one includes the boundary contribution. We have obtained the
expression (14) in absence of matter. We can distinguish two
possible cases.

1. The first case describes infinity manifolds and there are no
boundary contributions: W n

;n = 0, so that the first integrand
in (14) is null:

Rab −
1
2
R gab =

1
2
L(ab). (17)

After some algebraic manipulation of L(ab), the last assumption
leads to a wave equation originated in the presence of torsion:

� (∆n
prsd δg sd T p

mn) = 0, (18)

where ∆n
prsd is given by (16).

2. The second case describes finitemanifolds so that the boundary
contributions are significative: W n

;n ≠ 0. In that case the first
integrand must be nonzero in order to δI = 0:

δgab

Rab −

1
2
R gab −

1
2
L(ab)


+ W n

; n = 0. (19)

In the relativistic formalism without boundary conditions
(i.e., when W n

; n = 0), the cosmological constant can be added
to the Einstein equations as an integration constant. Therefore,
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in order to recover the dynamics in absence of boundary
conditions, it is reasonable to make the interpretation that the
second integral can be related to the cosmological constant as

W n
; n = Λ(x) gabδgab. (20)

Here, Λ(x) is a function of the proper time on the torsional
manifold, and play the role of a dynamical cosmological
constant with source in the boundary term. The identification
in (17) defines geometrically the physical sources originated in
the torsion, without cosmological constant.
With the help of (5) and the contortion tensor (6) in the Eq. (19),
we recover the effective equation for the Riemannian part of the
Einstein tensor

(R)Rab −
1
2

(R)R gab + Λgab = kTab, (21)

where the supra-index ‘‘(R)’’ in (R)Rab and (R)R, indicates that
these objects are Riemannian and constructed entirely with the
Levi-Civita connection. The tensor Tab in (21) is an effective
and geometrically induced energy–momentum tensor over the
Riemannian space–time, which is associated with the variation
over the Weitzenböck manifold

k Tab = −K n
nb |a + K n

ab |n − K l
nbK

n
la + K l

abK
n
lm

+
g sd

2


K n

nd |s − K n
sd |n + K l

ndK
n
ls − K l

sdK
n
lm


gab, (22)

which is of torsional nature in a clear way. We see, from
last expression, that the generalized Einstein tensor and the
Riemannian one, must be related according to

Gab =
(R)Gab + K n

nb |a − K n
ab |n + K l

nbK
n
la − K l

abK
n
lm

−
g sd

2


K n

nd |s − K n
sd |n + K l

ndK
n
ls − K l

sdK
n
lm


gab. (23)

We must remark that K n
nb |a denotes the covariant derivative

of the torsional contorsion tensor according to the derivative
operator of the Riemannian geometry in which the connection
is the Christoffel symbol. From (21) we obtain the expression
from its symmetric part and a consistence equation for the anti-
symmetric contribution. In presence of matter, which is related
to the lagrangian density L with an energy–momentum tensor
(m)Tab, we obtain

G(ab) +
1
2
Λ gab = k (m)T(ab) →

(R)G(ab) +
1
2
Λ gab

= k

(m)T(ab) + T(ab)


, (24)

G[ab] = R[ab] = k (m)T[ab] →
(R)G[ab] = 0

= k

(m)T[ab] + T[ab]


. (25)

Equations in the l.h.s. of (24) and (25) before the arrows are
Einstein-Cartan-like eqs [4]. We assume a symmetric metric
tensor gab = g(ab). The tensor Tab is induced from torsional
geometry in the Weitzenböck representation and is adequate
to describe matter with spin or magnetic monopoles. However,
(m)Tab must be proposed from an additional term in the action.
In this work we propose an empty torsional geometry with
(m)Tab = 0, then the r.h.s. of the Eq. (24) can be reduced to

(R)G(ab) +
1
2
Λ gab = k T(ab), (26)

and the r.h.s. of (25) is reduced to

0 = T[ab]. (27)

Notice that the Eq. (26) corresponds to the usual Riemannian
Einstein equations, and (27) are the conditions obtained from
the anti-symmetric part of the Einstein torsional tensor.
4. Weitzenböck geometry

The Weitzenböck geometry [5] could be formulated from the
vierbein, which are coefficients that express the relation between
two different basis of TM4, {

−→
E A} and {

−→e a}

−→
E A = eaA

−→e a,
−→e a = ēAa

−→
E A, (28)

with the properties [6]

eaA ē
A
b = δa

b, ebB ē
A
b = δA

B , (29)

such that the covariant derivative of basis elements ēAb to be zero:
ēAb;C = 0. If we take into account the Eqs. (28) and (29), one can
show that the components of some arbitrary tensor T in T p

m(M),
transforms according to

T a1 ... ap
b1 ... bm = ea1A1 . . . eapAp ē

B1
b1

. . . ēBmbmT
A1 ... Ap

B1 ... Bm . (30)

In this framework it is possible to define the Weitzenböck
connection
(We)Γ a

bc = eaN
−→e c(ēNb ), (31)

so that
(We)Γ A

BC = 0, (32)

and therefore (We)RA
BCD = 0. In the usual Weitzenböck basis is

proposed that the basis {
−→e a} to be a coordinate basis of TM4, with

certain metric characterized by gab, which is of interest. The basis
{
−→
E A} can be non-coordinate but must be chosen in the form that

the metric tensor expressed in such basis to be characterized by
ηAB. In this context the Weitzenböck torsion is

(We)T a
bc = eaA ē

B
b ē

C
c

(We)T A
BC = eaA ē

B
b ē

C
c CA

BC , (33)

where CA
BC are the structure coefficients of the basis {

−→
E A}. The

structure must be taken into account in the Eqs. (2), (3), (II) and
(7). The structure coefficients {

−→
E A} are defined by [7]

[
−→
E B,

−→
E A] = CC

AB
−→
E C . (34)

The non-metricity related to the Weitzenböck connection is

(We)Nabc = ēAa ē
B
b ē

C
c

(We)NABC = ēAa ē
B
b ē

C
c ηAB ,C . (35)

In order to obtain (33) and (35), we have used (32). Usually, we
choose {

−→
E A} in order to it be an orthonormal basis, such that

ηAB = −1, 0, +1. Therefore one obtains ηAB ,C = 0, and the
Eq. (35) becomes null:

(We)NABC = 0. (36)

The usual Weitzenböck geometry is a torsional geometry with
zero non-metricity. Such elements characterize the Weitzenböck
connection (5) with a contortion tensor, which is due as a
function of theWeitzenböck torsion in (33). The zero non-metricty
condition must be removed only if the elements of the basis {

−→
E A}

are chosen such that its inner product is different that a constant.

4.1. Magnetic monopoles with Weitzenböck geometry

With a standard gravito-electromagnetic action for the ex-
tended geometry we must obtain an extension of the Maxwell
equations:

∗d(F) =
(m)J, (37)

∗d(∗F) =
(e)J. (38)
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where F is the extended Faraday 2-form, d is an exterior covariant
derivative and ∗ is the adjunction operation. The source term
(m)J is a cotangent vector of the magnetic current and (e)J is the
electric current. In both terms the zero component (∗)J0 = ρ∗

is the corresponding Hodge-dual of the charge density [8,9]. The
expression (37) is different of the usual one d(F) = 0, because the
torsion of the geometry is the responsible for a non zero current
of magnetic monopoles. The adjunction is taken into account in
order to match correctly the vectorial order of both sides of the
magnetic side in the Eq. (37). The expression in (38) has the usual
appearance of the Maxwell ones, but for gravito-electromagnetic
currents produced by a torsional geometry.

A p-form is an anti-symmetric tensorial objectW of order p

W =
1
p!

wi1 ... ip e
−→

i1 ∧ ... ∧ e
−→

ip ,

in which the wedge product is the anti-symmetrization of the
tensor product. The exterior covariant derivative associated with
certain covariant derivative denoted by (;), is defined by

d(W ) =
1
p!

wi1 ... ip ;k e
−→

k
∧ e

−→

i1 ∧ ... ∧ e
−→

ip .

The adjunction operation in a manifold of dimensionm, is

∗ W =

√
|g|

(m − p)!p!
εj1 ... jpip+1 ... inw

j1 ... jp e
−→

ip+1 ∧ ... ∧ e
−→

im  
m−p

, (39)

which takes into account a p-form and gives us a (m − p)-form.
The Einstein-Faraday 2-form is defined from the exterior covariant
derivative of the 1-form, which is the cotangent version of the
tetra-vector A = (ϕ,

−→
A ). Here,

−→
A is the usual 3-vector potential

F = d(A).

If the connection is symmetric, then d(F) = d(d(A)) = 0, which
implies the absence of magnetic monopoles.

In the present work we are dealing with a torsional Weitzen-
böck geometry, so that we must apply the Eq. (37) for the cor-
responding connections. Then, the 0-component of the magnetic
current will be

[∗d(F)]0 = ρm = −3(We)TD
21

−→
E D(A3) +

(We)TD
13

−→
E D(A2)

+
(We)TD

32
−→
E D(A1), (40)

which implies that ρm = ēAa=0
(m)JA, in the e⃗a basis.

5. Example: Magnetic monopoles and GW from torsion in a
FRW expansion

In this section we shall address the usualWeitzenböck scenario
as described in Section 4. In particular, we shall study the case
(1), where is absent the cosmological constant and the boundary
conditions are trivial. We shall start with an ortho-normalized
Lorentzian metric related to a non-coordinate basis: {

−→
E A} =

{∂t , a(t) ∂a}, with the structure coefficients CA
BC

C1
10 = C2

20 = C3
30 =

ȧ(t)
a(t)

, (41)

and its counterpart with lower changed indices. The Eq. (41) must
be used with (33) in order to obtain the Weitzenböck torsion. The
non-zero vierbein are

ea=0
A=0 = 1, eiI = a(t), ēA=0

a=0 = 1, ēIi = a(t)−1, (42)

which are only valid in the case in which i = I . Here, I runs over
the three space indices of the basis E⃗A, and i runs over the three
space indices of the basis e⃗a. This one is a coordinate basis given by
{
−→e a} = {∂t , ∂a}. The metric tensor gab, for the basis e⃗a, takes the
form

[g]ab =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 , (43)

which describes an isotropic an homogenous spatially flat, FRW
expanding universe with scale factor a(t). If we use the (41)
and (42) in (33), we obtain that the non-zero components of
the Weitzenböck torsion are (We)T (i)

(i) 0 = e(i)
A eB(i)e

C
c=0

(We)T A
BC =

e(i)
A eB(i)e

C
c=0

(We)CA
BC =

(We)CA=(i)
B=(i) C=0 =

ȧ(t)
a(t) . Therefore the non-zero

torsion components will be

(We)T (i)
(i) 0 =

ȧ(t)
a(t)

, (44)

where the indices between parenthesis indicate that such indices
are equal and the Einstein notation for repeated indexes is not
used. Using the Eq. (44) in (40), we obtain that the density of
magnetic monopoles is

ρm = 0. (45)

This implies a non-trivial absence of magnetic monopoles due to
the absence of torsion of spatial nature. On the other hand,wemust
notice that the wave equation (18) is used in the present case. The
expression (18) is simplified because some elements of the torsion
are null. From the Eq. (44),we obtain that (18) is reduced to

�


ȧ(t)
a(t)


δg IJ

− δg I0
= 0, (46)

� δg00
= 0. (47)

Notice that the expression (47) is equivalent to a gauge choice.

5.1. GR in a de Sitter inflation

For the particular case in which a(t) = eH0 t , we see that
ȧ(t)
a(t) = H0. Thus the expression (46) have particular solutions in
the equation

� δgAB
= 0. (48)

This case is important because describes a de Sitter inflationary
expansion with an equation of state: P/ρ = −1. Here, P is the
isotropic pressure and ρ is the energy density of the universe
during the expansion. During a de Sitter expansion ρ remains
constant.

On the other hand the Eq. (48) has the solution in the form
of a free plane wave for Weitzenböck derivative operators. This
is a simple wave equation expressed in terms of the basis E⃗A
which is related to null connections. The solution of (48) admits
an expansion of the form

δgAB(t, x⃗) =
1

(2π)3/2


M=+,×


d3k eMAB(ẑ)

×


Ak eik⃗.ẑ χk(t) + AĎk e

−ik⃗.ẑ χ∗

k (t)

, (49)

where index M = +, × denote the Transverse-Traceless (TT)
polarizations +, ×, on the plane orthogonal to k⃗, and eMAB are the
components of the polarization tensor, such that

eMAB ē
AB
M ′ = δM

M ′ . (50)
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For the case inwhich the scale factor is a(t) = eH0 t , and the Hubble
parameter is a constant H0, the equation of motion for the modes
χk(t) is

χ̈k(t) + 3H0χ̇k(t) +


k2

e2H0t


χk(t) = 0. (51)

The general solution for the modes in (51) can be written in terms
of the first and second kind Hankel functions H (1,2)

ν


ke−H0t

H0


χk(t) = e−

3
2H0t


AH

(1)
3/2


ke−H0t

H0


+ BH

(2)
3/2


ke−H0t

H0


. (52)

Since gABgAB = 4, it is easy to prove that δ

gABgAB


= 0, so that we

obtain

gAB δgAB
+ δgAB gAB

= 0. (53)

Since the dynamics of δgAB is described by the linear differential
equation (48), which describes a wave dynamics on a background
curved spacetime, δgAB can be written as a Fourier expansion of a
tensor field

δgAB(t, x⃗) =
1

(2π)3/2


M=+,×


d3k ēABM (ẑ)

×

Ak eik⃗.ẑ χk(t) +AĎk e−ik⃗.ẑ χ∗

k (t)

. (54)

In order to be fulfilled the condition (53), we need require that the
annihilation and creation operators comply with

Ak χk + Ak χk = 0, (55)

AĎk χ∗

k + AĎk χ∗

k = 0. (56)

This implies that the field δgAB(t, x⃗) must be expanded in terms of
the coefficients Ak and AĎk , as

δgAB(t, x⃗) =
−1

(2π)3/2


M=+,×


d3k ēABM (ẑ)

×


Ak eik⃗.ẑ χk(t) + AĎk e

−ik⃗.ẑ χ∗

k (t)

, (57)

where ēABM agrees with (50).

6. Final comments

We have studied the variational principle in presence of a
torsional geometry in presence of non-trivial boundary conditions.
In the extended Einstein equations here obtained, we have define
an effective geometrically induced energy momentum tensor
for a Riemannian representation af a torsional (Weitzenböck)
one. The energy–momentum tensor here obtained must be
viewed as representing geometrically induced matter from
Weitzenböck torsion. This is the main difference with other
approaches (for instance, the Space-Time-Matter theory [10]),
where the energy–momentum tensor is induced from an extra
dimensional vacuum. However, in our approach the gravitational
wave dynamics on a Weitzenböck manifold the torsion and
boundary terms must be taken into account in order to explain
the origin of the cosmological constant and GW. Our theory has
many similitude to whole of Ferraro-Fiorini [11]. As it was shown
in (2) the boundary terms could be responsible for the cosmological
constant which is produced by a source inside a 3D Gaussian
(closed) hypersurface that encloses that source. In the inflationary
example studied in Section 5 magnetic monopoles are absent, due
to the globally isotropy and homogeneity of the universe at large
(cosmological) scales. This agrees with the absence of magnetic
monopoles predicted by inflationary models.
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