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A B S T R A C T

Multiple sclerosis (MS) is a progressive degenerative disorder of the central nervous system (CNS),

characterized by inflammation, demyelination and axonal loss. While the majority of MS patients

experience relapsing-remitting symptoms followed by a secondary progressive phase, about 10–15%

patients exhibit a primary progressive disease involving continuous progression from its onset. Here we

review the role of lectin–glycan recognition systems, including those concerning siglecs, C-type lectins

and galectins in the pathogenesis of MS and experimental autoimmune encephalomyelitis. Particularly,

we will focus on the role of galectins in the fate of T cells, dendritic cells and CNS cell populations.

Understanding the regulatory circuits governed by lectin–glycan interactions and their association with

disease-associated cytokine networks will contribute to develop novel therapeutic strategies in MS.
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1. Introduction

1.1. Chronic inflammation in the era of glycomics

Multiple sclerosis (MS) is an inflammatory demyelinating and
degenerative disease of the central nervous system (CNS), which
affects approximately 2,000,000 people worldwide. While the
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majority of MS patients (85%) experience relapsing-remitting (RR)
symptoms followed by a secondary progressive (SP) phase, about
10–15% patients exhibit a primary progressive disease (PP-MS)
which involves continuous progression from its onset [1]. Current
therapies partially alter disease course by decreasing relapses; yet
chronic disease remains resistant to such treatments [2].

Most effective therapies for chronic inflammatory disorders are
typically based on targeting molecular differences between
healthy and inflamed tissues. In general, these differences have
been appreciated as a result of exploratory strategies based on
genomics, proteomics and lipidomics approaches. Interestingly, in
the postgenomic era, the study of the glycome has facilitated the
association of specific glycan structures with the development and
course of various inflammatory conditions [3,4]. Carbohydrates
are, because of their distinctive chemical properties, ideal for
generating compact units of high coding capacity that contain
specific biological information. Their structural variability is
illustrated not only by their diverse sequences but also by their
spatial distribution: glycans are capable of branching and twisting,
with a flexibility that influences their three-dimensional structure,
enabling their performance as hierarchical biochemical signals.
The cellular glycome is anything but static: its exquisite
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dependency on different variables (i.e. the nutritional state,
differentiation and activation status of the cells) makes glycan
remodeling via the combined action of glycosyltransferases and
glycosidases, a common process that controls critical biological
processes [6,7]. This biochemical complexity, fascinating from
biological and evolutionary perspectives, makes functional and
molecular glycomics one of the most challenging research fields at
present. The development of new technologies capable of
expanding our knowledge of the glycome is growing apace: new
methodologies such as glyco-gene arrays, frontal affinity chroma-
tography and the generation of relevant transgenic and knockout
mice [8–10] are rapidly changing the scene and creating novel
opportunities for significant progress.

The information stored in glycan structures can be specifically
deciphered by an array of endogenous glycan-binding proteins or
lectins which expression and function are highly regulated at sites
of inflammation [11]. These proteins are classified into diverse
lectin families, most of them with essential roles in immunological
and neurological networks, including those operating during the
course of MS. Whereas all glycan-binding proteins exhibit an
affinity site that is complementary to different carbohydrate
structures (glyco-epitopes), they are capable of detecting and
decoding subtle differences in sequence motifs and to generate
high avidity interactions with glycans due to their multivalent
nature [12].

In this article we review the emerging roles of lectin–glycan
recognition systems, including those mediated by siglecs, C-type
lectins and galectins, in the development, severity and resolution
of MS and in experimental autoimmune encephalomyelitis (EAE), a
prototypic animal model established in different species and
strains that recapitulates some of the features of the disease.
Particularly, we will emphasize on recent findings identifying a
role for galectins in regulating the fate and signaling of T cells,
dendritic cells and CNS immune cell populations including
macrophages, astrocytes and oligodendrocytes. Understanding
the complexity of circuits triggered by lectin–glycan interactions
and their interplay with cytokine networks will contribute to
develop novel therapeutic strategies that could benefit a wider
population of MS patients.

1.2. The experimental autoimmune encephalomyelitis (EAE) model

Dissecting the pathogenesis of a disease as complex as MS in
humans faces several problems, particularly those associated with
clinical and genetic heterogeneity. Because brain and spinal cord
tissue cannot easily be sampled in MS patients, a number of animal
models have been generated to provide insights into the
underlying pathology, as well as to identify surrogate biomarkers
and therapeutic targets. The basic protocol for inducing EAE
involves immunizing animal strains and species using either
foreign or self-proteins from the white matter of the CNS, usually
myelin basic protein (MBP), proteolipid protein (PLP) or myelin
oligodendrocyte glycoprotein (MOG) [13]. Immunization leads to
the development of a disease state in the animals which partially
recapitulates some neuropathologic similarities of human MS.
Clinical course of the disease varies from acute monophasic
episodes of paralysis in some models to chronic-relapsing
neurological episodes and progressive disability in others [14].
These episodes correlate with perivascular mononuclear cell
infiltrates in the CNS and, in some species and strains, with
extensive myelin destruction and axonal loss [15]. After an initial
period of experimentation, active sensitization in murine models
of chronic demyelination progressed to adoptive transfer technol-
ogies, whereby CNS antigen-specific or bulk-isolated lymphocytes
such as T cell lines or T cell clones are administered intravenously
into naı̈ve recipients [16]. Interestingly, recent studies revealed
that MS is not only T-cell dependent disease as previously
demonstrated, but it is also mediated by innate immune cells
and B cells [17].

In contrast to MS, which occurs in a spontaneous and
unpredictable manner, the classic EAE model needs to be induced
in genetically-predisposed animals. Commonly used rodent
models often involve immunization with peptides that are too
short to induce a pathogenic B-cell response. In contrast,
immunization with MOG in Dark Agouti rats, marmosets, or
C57BL/6 mice is critically dependent on B cells and elicits both
autoreactive T-cell and B-cell responses [18]. To study disease
aspects without confounding factors present in conventional EAE,
such as adjuvants, EAE models in which disease occurs spontane-
ously have also been developed. In these transgenic models mice
are introduced with transgenes encoding myelin-specific human T
cell receptors and human major histocompatibility complex
antigens [19,20].

Although the information learned from EAE models has led to a
huge advance in understanding the mechanisms and pathogenesis
of MS, extrapolation of results obtained in rodents to humans has
sparked-off significant debate. Potential therapeutic molecules
showing promising effects in rodent EAE showed no beneficial
properties in patients, or sometimes presented unexpected
adverse effects in clinical trials. These drawbacks can be avoided
using animal models more closely related to humans, such as non-
human primates. In marmosets, EAE can be induced by immuni-
zation with recombinant human MOG1–125 in complete Freund’s
adjuvant [21]. Marmosets are of outbreed nature, which mirrors
the genetic diversity of the patient population. Another beneficial
aspect of marmoset EAE is that it can be induced at an adult age,
where the immune system and the CNS are fully developed. Thus,
possible medical side effects may be detected prior to clinical trials.
Nevertheless, high costs and ethical issues limit studies on non-
human primates to a minimum.

Thus, although EAE recapitulates many features of the
pathogenesis of MS, discrepancies between MS and EAE models
still remain an important issue. When using EAE rodent models,
extrapolations should be made with caution if the goals are to
study the pathogenesis of the disease, the search for useful
biomarkers and/or the validation of novel therapeutic approaches
[22]. One critical limitation is that most EAE studies are based on
injection with antigenic material to induce disease onset. This
clearly contrasts with the spontaneously arising nature of MS.
Transgenic murine models offer a possibility to overcome this
limitation. However, these mice are highly manipulated and the
precise antigen(s) involved in triggering inflammation and
demyelination are still uncertain. Adding complexity to this
picture, another potential limitation is that investigation in EAE
models is mostly conducted on highly inbred animals. Finally, the
degree of clinical disease in the EAE model is typically reflected by
the lesion load within the spinal cord [23]. Although some animal
strain/species may particularly develop cerebellar lesions, in many
EAE models the brain is relatively unaffected [24]. Problematic
aspects of animal models are in no way confined to MS alone, and
limitations in models should be acknowledged when placing
research findings into perspective. Clearly, studies in the EAE
model need to be carefully tailored to the pathogenesis or therapy
question. Furthermore, results showing a high degree of consis-
tency between various models, experimental conditions and
clinical outcomes are more likely to lead to translation into
therapeutic success.

1.3. From EAE to MS: immunopathogenic mechanisms

Plaques of inflammatory demyelination within the central
nervous system (CNS) constitute the pathologic hallmarks of MS.
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Typical features of the acute plaque include ill-defined margins of
myelin loss, infiltration by immune cells, and parenchymal edema
[25]. The constituents of immune cell influx around vessels include
T cells, B cells, dendritic cells (DCs), monocytes and macrophages.
The presence of lymphocytes within plaques and bordering areas
suggests that inflammatory destruction observed in MS is driven
by antigen-specific cells targeting myelin and other CNS compo-
nents. Access of immune cells to the CNS is restricted, at least in
part, by the blood brain barrier (BBB), and only through activation
of a hierarchical sequence of cellular events, autoreactive
lymphocytes can actually enter the CNS compartment. Initially,
leukocyte engages in rolling, activation, and arrest along the BBB
endothelium. This initial step is greatly facilitated by up-regulation
of endothelial cell adhesion molecules, including ICAM-1 and
VCAM-1 [26]. Changes in the vascular endothelium could result
from pro-inflammatory mediators circulating within the vascula-
ture, including TNF, and IFN-g. The repertoire of molecules that
leukocytes rely on to entry into the CNS, involves a number of
integrins. Among them, very late antigen-4 (VLA-4 or a4b1) has
been identified as the most critical molecule involved in
transmigration of encephalitogenic T cells toward the CNS [27].
Indeed, natalizumab, a humanized monoclonal antibody that is
directed against the a4b1 integrin, has been shown to substan-
tially reduce disease activity in clinical trials involving MS patients
[28,29]. In addition, leukocyte migration to the CNS is facilitated
through the concerted action of chemokines and their specific
receptors [30]. In this regard, a proof-of-concept of the relevance of
immune cell traffic in the pathogenesis of MS is provided by the
emergence of a new drug, FTY720 (fingolimod), a sphingosine 1-
phosphate (S1P) receptor modulator that inhibits egress of
lymphocytes from the lymph nodes, preventing entry into the
blood and infiltration into the CNS. Importantly, this is the first oral
disease-modifying therapy to be approved for the treatment of RR-
MS [31].

It has been demonstrated that EAE is induced by abnormally
activated CD4+ T cells recognizing CNS antigens; yet the
mechanisms underlying activation of these cells remain unclear
[32]. Moreover, dysregulation of the balance between Th1 and Th2
cytokines has long been implicated in MS immunopathogenesis:
Th1 cells produce pro-inflammatory cytokines such as IFN-g which
activates macrophages and CD8+ cytotoxic T cells, while Th2 cells
secrete IL-4, IL-5 and IL-13 and suppress Th1 responses. Induction
of Th17 cells, a distinct lineage of effector T cells capable of
synthesizing pro-inflammatory cytokines such as IL-17A and IL-
17F, is promoted by TGF-b and IL-6 and amplified by IL-23
produced by DCs and macrophages [33]. Interestingly, Th17 to Th1
ratio appears to be a critical determinant of CNS inflammation
where high Th17 to Th1 ratios have been linked to T cell infiltration
and CNS inflammation [34]. Natural occurring or inducible CD4+

CD25+ FoxP3+ regulatory T cells (Treg) contribute significantly to
dictate the evolution and severity of MS. Although Treg cell
numbers in peripheral blood and cerebrospinal fluid (CSF) appear
to be similar in MS patients as compared to healthy controls,
several studies highlighted defects in the capacity of Treg cells
from MS patients to suppress myelin-specific T cell activation in
the periphery [35]. Interestingly, in addition to CD4+CD25+FoxP3+

Treg cells, in vitro antigen activation leads to Foxp3 expression in
CD8+ T cells. Studies indicated that CD8+ T cells present in MS
lesions may contribute to tissue damage by attacking oligoden-
drocytes and transecting axons [36,37], and Foxp3 expression in
CD8+ T cells enables them to acquire additional suppressive
activity [38].

Although autoreactive T cell-mediated responses have been
considered critical for MS pathogenesis, increasing evidence
indicates that B cells also play an important role in the
development and resolution of the disease. B cells, plasma cells,
immunoglobulins and complement deposition, along with immu-
noglobulin-myelin complex within macrophages have been found
in autopsy tissues from MS patients [39]. Synthesis of intrathecal
IgG and the occurrence of B-cell lymphoid follicles in the meninges
of MS patients with progressive disease further support this
concept [40,41]. In addition, B cells can promote neuroinflamma-
tion in MS via secretion of pro-inflammatory cytokines such as TNF,
and lymphotoxin in the presence of the T cell-derived cytokine
IFN-g [42]. Conversely, B cells are also likely to have immunosup-
pressive activity. For example, IL-10 secretion by B cells can serve
to limit pro-inflammatory T-cell responses [43]. Noteworthy, the
effectiveness and safety of the anti-CD20 monoclonal antibody
rituximab in relapsing and progressive forms of MS emphasize the
essential role of B cells in the pathogenesis of the disease [44].

Antigen-presenting cells (APCs), including DCs and macro-
phages, play an important role in the initiation, progression and
resolution of MS. DCs are present in perivascular spaces, the
choroid plexus and the meninges of healthy brains [45]. In MS, DCs
among other cell types are recruited to the CNS, representing the
major APCs during cognate interactions with CD4+ T cells within
the CNS [46]. In addition to DCs, microglia are resident APCs
localized in active plaques that play an important role in antigen
presentation, immunoregulation and neuromodulation. Microglia
are resident myeloid cells of the CNS that play essential roles both
in normal and inflamed CNS. They are distinguished from
peripheral macrophages by the lower expression of CD45.
Recently, Butovsky and colleagues identified 239 genes and 8
microRNAs that are uniquely or highly expressed in microglia
versus macrophages, myeloid cells and other immune cells. Of
these genes, the authors identified a TGF-b-dependent signature
that is required for the generation of adult microglial cells [47].
Importantly, under resting conditions, microglia constantly
surveys the CNS microenvironment, suggesting that these cells
are critical for maintaining CNS homeostasis [48]. Quiescent
microglia express undetectable levels of MHC I and MHC II, CD80,
CD86, and CD40. However, in response to inflammatory stimuli,
microglia become activated and upregulate the expression of
CD45, MHC II and costimulatory molecules, promoting pro-
inflammatory responses and secreting high amounts of nitric
oxide (NO) and reactive oxygen species (ROS) [49,50]. Functionally,
this pro-inflammatory microglia, termed ‘M1-type’ or ‘classically-
activated microglia’ can be generated in vitro using IFN-g or Toll-
like receptor (TLR) agonists including lipopolysaccharides (LPS).
Conversely, ‘M2-type’ or ‘alternatively-activated microglia’ can be
generated with IL-4, secrete low amounts of NO and high amounts
of arginase 1 and prevents inflammation-induced neurodegenera-
tion [51]. Probably due to their lower MHC II expression compared
to DCs or macrophages, microglia cells serve as poor activators of
naı̈ve T cells. Rather, these cells, depending on whether they are
differentiated into M1 or M2 phenotypes, may play a role in the
reactivation or de-activation of T cells infiltrating the CNS during
MS. In addition, due their ubiquitous localization within the CNS,
microglia cells are a potent source of inflammatory cytokines and
chemokines that are essential for the initiation and propagation of
a CNS-localized immune response [50,51].

Astrocytes are the most abundant cell type in the brain and
serve a variety of functions both related and unrelated to
immunomodulation. Briefly, they are involved in maintaining
the BBB, glutamate metabolism, stabilizing the extracellular
concentrations of potassium and producing trophic survival factors
for neurons and other glial cells [52]. Although the function of
astrocytes as APCs is controversial, they can provide an optimal
environment for T-cell activation or de-activation during inflam-
mation. In fact, these cells are producers of a variety of cytokines
including IL-1, IL-6, TNF, IL-10 and TGF-b [53], which can
positively or negatively regulate innate and adaptive immune



Fig. 1. Contribution of distinct cell populations to the pathogenesis of EAE and MS. Different immune cells contribute to the pathogenesis and severity of EAE and MS

promoting inflammation and neurodegeneration. These include Th1 and Th17 pathogenic cells, DCs and microglia, which are reciprocally regulated by CNS resident cells

including neurons, astrocytes and oligodendrocytes. Glycan-binding proteins including siglecs, C-type lectins and galectins modulate the function, survival and signaling of

these cell types and modulate the course of the disease.
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responses. Additionally, they can secrete a variety of chemokines
including RANTES, MCP-1, IL-8, and IP-10 [53].

Although MS was originally described as a disease character-
ized by gradual loss of myelin, axonal loss has also been observed
early during the pathology, suggesting that neural defects may in
some cases precede immunopathology. Mechanisms for axonal
damage are manifold and include but are not restricted to specific
immunological attack to axons [37,54]; the presence of soluble
mediators such as proteases and free radicals released as part of
the inflammatory microenvironment present in the CNS of MS
patients [55]. In addition, axonal loss may be due to lack of
neurotrophic factors provided by oligodendrocytes as a result of
demyelination [56]. As a consequence of immune-mediated injury
to myelin, higher energy demands on demyelinated axons and
glutamate-mediated excitotoxicity may impart further unsustain-
able damage [57,58]. A summary of the mechanisms involved in MS
pathogenesis, including Th1 and Th17 cells, dendritic cells and CNS
microglia, astrocytes and oligodendrocytes is illustrated in Fig. 1.

In spite of considerable evidence highlighting the contribution
of genomics, proteomics and lipidomics to demyelinating disease
[59,60], the relevance of glycomics to the pathogenesis of MS is just
unfolding. In the next section we illustrate selected examples of
lectin–glycan recognition systems that play essential roles in the
pathogenesis, severity and resolution of MS and its animal model
EAE.

2. Glycobiology of MS

Data on the role of glycans in autoimmune CNS inflammation
has blossomed with the generation of mice deficient in glycosyl-
transferases and lectins and the availability of analytical tools for
the study of the cellular glycome [61]. Dennis and Demetriou [62]
were pioneers in demonstrating a role of N-glycans in T-cell
activation, autoimmunity and MS. They demonstrated that mice
deficient in b1,6 N-acetylglucosaminyltransferase 5 (MGAT5 or
GnTV), a limiting enzyme in the N-glycosylation pathway, had
increased susceptibility to EAE [62]. Remarkably, lack of b1,6 N-
glycan branching in Mgat5-deficient mice lowers the threshold for
T-cell activation by enabling T cell receptor (TCR) clustering and
signaling characterized by sustained TCR-dependent tyrosine
phosphorylation and robust proliferation. This effect results in
enhanced delayed-type hypersensitivity reactions and increased
susceptibility to autoimmune neuroinflammation [62]. Further
dissection of the underlying mechanisms revealed that, in the
absence of cognate ligand, cross-linking of N-glycans prevented
filamentous actin-dependent targeting of the TCR, CD4, and Lck
tyrosine kinase to GM1-enriched membrane microdomains. This
effect prevented spontaneous TCR activation by favoring Lck
inactivation and specifically retaining the CD45 phosphatase at
these membrane domains [63]. In this regard, b1,6-GlcNAc
branching appears to be sensitive to the availability of metabolites
of the hexosamine pathway because higher concentrations of the
cellular donor UDP-GlcNAc increases the capacity of MGAT5 to
catalyze N-glycan branch formation. Supporting this notion, oral
administration of GlcNAc enhanced N-glycan branching in vivo,
dampened TCR signaling, blunted Th1 and Th17 cell responses, and
attenuated autoimmune neuroinflammation [64]. Thus, MGAT5-
modified complex N-glycans presented on cell surface glycopro-
tein receptors can control T-cell activation threshold and tailor
adaptive immunity and autoimmune diseases. Supporting these
findings, studies in MS patients revealed that dysregulated Golgi N-
glycosylation is a final common pathway in which disease
associated environmental factors and multiple genetic variants
(IL-7RA, IL-2RA, and CTLA-4) converge [65].

On the other hand, recent work from Kanekiyo and colleagues
[66] revealed that selective loss of N-acetylglucosaminyltransfer-
ase-IX (GnT-IX or GnT-Vb), a brain-specific glycosyltransferase
that catalyzes the branched formation of O-mannosyl glycan
structures in astrocytes, leads to accelerated remyelination in the
cuprizone inducible model [66]. Whether N- and O-glycans play a
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role in the transition from normal to inflamed tissue during the
course of the disease remains to be determined. In the next
sections we will dissect the contribution of glycan-binding
proteins including siglecs, C-type lectins (CLRs) and galectins to
autoimmune neuroinflammation and neurodegeneration in vivo.

2.1. Siglecs

Siglecs are a family of type I membrane proteins, which can be
divided into CD33-related siglecs, sialoadhesin, MAG and CD22.
These lectins are well known for their ability to selectively
recognize sialic acid-containing glycans as well as for their
capacity to discriminate among specific linkages (a2,3; a2,6 or
a2,8). For CD33-related siglecs and CD22, specific cellular
functions are determined by the presence of immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails
[67]. The carbohydrate-binding capacity of these lectins resides in
one N-terminal variable (V)-set immunoglobulin-like domain
followed by a variable number of C2-set immunoglobulin domains
in the extracellular region.

Siglec-1 (sialoadhesin; Sn or CD169) and Siglec-7 are expressed
on monocytes from MS patients and have been proposed to play an
important role in the pathogenesis of the disease. While Siglec-1 is
up-regulated in inflammatory monocytes of patients with PP-MS,
and to a lesser extent in patients with SP-MS, Siglec-7 is up-
regulated only during clinical relapses in RR-MS patients [68].
Siglec-1 is specifically induced by type-1 IFN and TLR agonists.
Siglec-1-positive antigen-presenting cells have been demonstrated
the ability to present antigens to naı̈ve T cells and to polarize T cells
toward a Th2 response [69]. Interestingly, Siglec-1 expressed on
resident and activated tissue-infiltrating macrophages directly
binds to T regulatory (Treg) cells and regulates their expansion in
EAE, providing direct evidence of the pro-inflammatory role of this
lectin [70].

Siglec-7, on the other hand, is known to be a target of the
suppressor of cytokine signaling 3 (SOCS3), a negative regulator of
the Janus kinase/signal transducers and activators of transcription
(JAK/STAT) signaling pathway that is up-regulated during inflam-
mation. The predominant expression of Siglec-7 in monocytes of
relapsing MS patients, suggests its possible role in the regulation of
the inflammatory response. Malhotra et al. [68], investigated
whether differences in the expression of Siglec-1 and Siglec-7
among healthy volunteers, PP-MS, RR-MS and SP-MS patients were
secondary to differences in the activation status of blood monocytes.
The conclusions indicated important roles for Siglec-1 in the chronic
progressive phases of MS and for Siglec-7 in acute disease activity
[68].

Recently, Claude et al. [71], showed that Siglec-E, a mouse
orthologue of human Siglec-7, is expressed on microglia cells,
inhibits phagocytosis of neural debris and prevents the production
of superoxide radicals induced by challenge with neural debris. Co-
culture of mouse microglia and neurons demonstrated a neuro-
protective effect of microglial Siglec-E that was dependent on
neuronal sialic acid residues [71]. On the other hand, murine
Siglec-H functions as an endocytic receptor that internalizes
antigens for T-cell presentation. Siglec-H-mediated delivery of a T
cell epitope derived from MOG to plasmacytoid DCs effectively
delayed the onset of EAE and suppressed disease severity.
Mechanistically, this effect involved interference with the priming
phase of the response, but did not imply differentiation or
expansion of MOG-specific Foxp3+ Treg cells [72,73].

Finally, Siglec-4 (myelin-associated glycoprotein, MAG) is
preferentially expressed on the myelin sheath, where it delivers
signals that affect the cytoarchitecture, structure and long-term
stability of the axon. Its main ligand is represented by glycans
bearing the structure NeuAca1,3Galb1,3GalNAc, which can be
found on the terminals of the main gangliosides of the brain: GD1a
and GT1b. As this lectin serves as an inhibitor of nerve
regeneration, it has been proposed to be involved in the
pathogenesis of MS [74]. Thus, siglecs can deliver inhibitory or
stimulatory signals that modulate different stages and types of MS
and CNS inflammatory processes.

2.2. C-type lectins

C-type lectin receptors (CLRs) are a heterogeneous family of
calcium-dependent carbohydrate-binding proteins that can be
classified based on glycan recognition specificity. Most CLRs
contain one or more carbohydrate-recognition domains (CRDs)
that are present on the surface of numerous cell types including
macrophages, microglia and DCs.

Previous studies suggested the involvement of CLRs in
neurological diseases such as MS. Tetranectin, a homotrimeric
CLR has been suggested to play a role in tissue remodeling due to
its ability to stimulate plasminogen activation. Tetranectin binds
to complex sulphated polysaccharides such as apolipoprotein A,
plasminogen and fibrin in a calcium-dependent fashion. The
affinity of tetranectin for plasminogen suggests its involvement in
central events leading to the proteolysis of matrix proteins [75].
Tetranectin is present in most nerve cells and in myelinated fibers
of the white matter, brain and cerebellum, and has been proposed
to modulate scarring of MS lesions [76]. However, it is still not clear
whether tetranectin is present only in the CSF from MS patients or
also in healthy individuals and patients with other neurological
disorders. Although discrepancies exist among different reports, a
decreased tetranectin index has been proposed to serve as a pre-
diagnostic tool in neurological disorders aiming to differentiate
early stages of MS and other CNS diseases [77,78].

Interestingly, a CLR called C-type lectin-like domain family 16A
(CLEC16A) has been shown to exhibit single nucleotide polymor-
phisms (SNPs) associated with MS along with other autoimmune
diseases [79]. In rat brain, CLEC16A is found in astrocytes and
neurons, but not in microglia, and its expression is considerably
up-regulated in rat astrocytes upon intraspinal LPS injection [80].
Finally, targeting a mannosylated encephalitogenic peptide
inhibits the onset of EAE probably by targeting the mannose
receptor, a CLR on immature DCs [81].

2.3. Galectins

Galectins are a family of soluble lectins with a common structural
fold and a conserved CRD, which interacts with high avidity with N-
acetyl-lactosamine-(Galb1,4-GlcNAc; LacNAc) residues present
both in N- and O-glycans [7,82,83]. They are present in the
intracellular space (cytoplasm, nucleus) and are secreted to the
extracellular milieu where they cross-link poly-LacNAc-containing
glycoconjugates on the cell surface or extracellular matrix [7].
Galectins play multiple roles in a variety of biological processes
including inflammation, angiogenesis, embryogenesis and neuro-
modulation. Stancic and colleagues evaluated the expression of
different members of the galectin family in MS lesions and found
that galectin-1, -3, -8 and -9 are present at detectable levels in the
control white matter and increase substantially in MS lesions [84].

Galectin-1 is a ‘proto-type’ member of the galectin family that
occurs in a monomer–dimer equilibrium. Expression of this lectin
is prominent at sites of inflammation and immune privilege
(including the CNS) and is up-regulated during the peak of EAE
[85]. Recombinant galectin-1 or its genetic delivery to inflamma-
tory sites has demonstrated immunoregulatory activity in several
experimental models of autoimmune disease including collagen-
induced arthritis, experimental autoimmune uveitis, 2,4,6-trini-
trobenzenesulfonic acid (TNBS)-induced colitis and EAE [4,86,87].



Fig. 2. Role of Gal-1 in autoimmune CNS inflammation. Galectin-1 (Gal-1) contributes to prevent inflammation-induced neurodegeneration through different mechanisms:

(a) within the peripheral compartment, Gal-1 selectively eliminates Th1 and Th17 pathogenic lymphocytes; these cells express the complete repertoire of cell surface glycans

critical for Gal-1 binding; (b) Gal-1 contributes to create a tolerogenic circuit mediated by IL-27, triggering the differentiation of IL-10-producing T-regulatory type 1 (Tr1)

cells; (c) within the CNS, Gal-1 produced by TGF-b-stimulated astrocytes functions by deactivating classically-activated (M1-type) microglia and preventing inflammation-

induced neurodegeneration.
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Offner and colleagues [86] were pioneers in demonstrating a
disease-modifying role for galectin-1 in EAE in Lewis rats [86].
Further studies showed that galectin-1 acts mechanistically by
selectively eliminating Th1 and Th17 cells [87] (Fig. 2). Investi-
gation of the mechanism underlying this effect revealed that Th1
and Th17 cell subsets share the repertoire of glycans required for
galectin-1 binding and cell death, including the up-regulated
expression of core-2-O-glycan branched structures and lower
exposure of a2,6-linked sialic acid as compared to Th2-polarized
cells [87]. Consistent with these findings, mice lacking the
galectin-1 gene (Lgals1) showed increased Th1 and Th17
responses and more severe EAE following immunization with
MOG35–55 [87]. This effect was recapitulated in mice lacking N-
glycan branching (important galectin ligands) which developed a
spontaneous disease that resembles progressive MS [88]. The
immunoregulatory activity of galectin-1 is controlled, at least in
part, by the regulated expression of glycosyltransferases at sites
of inflammation which act in concert to create poly-LacNAc
ligands on complex N-glycans or core 2-O-glycan structures.
However, it is also regulated by intrinsic biochemical factors,
including its monomer–dimer equilibrium, its avidity for
multivalent glycans and the redox status of the inflammatory
microenvironment [7,12]. Interestingly, Wang et al. showed that
galectin-1 expressed by Treg cells binds the ganglioside GM1 on
effector T cells and controls TRPC5 channel activation and
immunoregulation during the course of EAE [89]. Interestingly,
galectin-9, a ‘tandem-repeat’ member of the galectin family, also
blunts Th1 responses during the induction of EAE [90].
Supporting these findings, Steelman et al. recently showed that
galectin-9 is induced in astrocytes via the JNK/c-Jun pathway and
functions as a T-cell regulatory protein in response to ongoing
CNS inflammation [91].
In addition to its pro-apoptotic activity, galectin-1 also
contributes to the resolution of EAE by inducing the differentiation
of IL-27-producing tolerogenic DCs which in turn promote the
expansion of IL-10-producing Tr1 cells during the course of EAE
[85]. Phenotypically galectin-1-differentiated DCs express low
amounts of CD11c and CD86 and high amounts of CD45RB and
phospho-STAT3 (Fig. 2). When adoptively transferred into EAE
recipient mice at the day of the disease onset, galectin-1-
conditioned tolerogenic DCs blunted Th1 and Th17 responses
and halted autoimmune neuroinflammation. These effects were
abrogated when galectin-1-differentiated DCs were transferred
into mice lacking IL-27Ra (Il27ra�/�) or IL-10 (Il10�/�) [85]. On the
other hand, galectin-3, a ‘chimera-type’ galectin composed of a
non-lectin N-terminal domain and a C-terminal CRD, often
displays pro-inflammatory activities. Accordingly, Jiang and
colleagues demonstrated that this lectin has a disease-exacerbat-
ing and pro-inflammatory role in EAE through prevention of
immune cell apoptosis, increased IL-17 and IFN-g synthesis and
decreased IL-10 production [92].

Despite considerable evidence indicating a role for galectin-1
within peripheral immune compartments, the function of this
lectin in CNS immunity has just emerged. Recent studies in the EAE
model revealed that astrocytes can de-activate ‘classically-
activated’ (M1-type) microglia via secretion of galectin-1 which
prevents inflammation-induced neurodegeneration [93] (Fig. 2).
Galectin-1 is dramatically up-regulated in TGF-b-stimulated
astrocytes and a subset of microglia and CNS-resident Foxp3+

Treg cells. Mice devoid of galectin-1 showed increased microglia
activation, astrogliosis, demyelination and axonal regeneration
[93]. In contrast, galectin-9 promotes microglia and macrophage
activation through binding to the T-cell immunoglobulin and
mucin domain-3 (Tim-3) [94], suggesting that galectin-9-Tim-3
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interactions can deliver either pro-inflammatory or anti-inflam-
matory signals depending on whether they function within the T-
cell or the microglia/macrophage compartments. Interestingly,
galectin-3, but not galectin-1, promoted oligodendrocyte differ-
entiation and contributed to maintain myelin integrity and
function [95]. Moreover, this chimera-type lectin limited cupri-
zone-induced demyelination by influencing microglia activity [96].
Furthermore, galectin-4, a ‘tandem-repeat’ galectin plays a key role
in oligodendrocyte differentiation through interaction with sulfa-
tide-enriched membranes [97], suggesting complementary and
synergistic roles of galectins in the modulation of the myelination
process.

A possible mechanism governing the regulatory functions of
galectins at the cellular level involves the retention of glycoprotein
receptors at the cell surface, an effect which prevents their
endocytosis, prolongs intracellular signaling and increases their
responsiveness to extracellular inputs [4]. In this regard, galectin-1
fine-tunes the threshold of microglia activation through binding to
core 2-O-glycans on CD45, promoting its cell surface retention and
augmenting its phosphatase activity [93]. Moreover, interaction
between galectin-3 and Mgat5-modified N-glycans on transform-
ing growth factor-b receptor (TGF-bR) prolongs Smad-dependent
signaling and increase macrophage responsiveness to TGF-b1 [98].
Likewise, complexes formed between galectins and complex N-
glycans on cytotoxic T lymphocyte antigen-4 (CTLA-4) prevent
endocytosis of this immunoinhibitory receptor and enhances its
immunoregulatory signal. In contrast to growth-promoting
receptors, which display a high number of N-glycosylation sites
per peptide (multiplicity), arrest-promoting receptors like TGF-bR
and CTLA-4 have few N-glycosylation sites and display ultrasensi-
tive responses to metabolic flux of UDP-GlcNAc to attain the
branching required for lectin binding, surface retention, and
growth arrest [99]. Prolonged TCR signaling facilitates GlcNAc
branching and formation of galectin-N-glycan complexes, which
enables CTLA-4 surface retention and delivery of TCR suppressive
signals [5]. More recently, intronic variants of the Mgat5
glycosyltransferase have been identified that are associated with
reduced N-glycan branching, CTLA-4 surface expression and MS
[100]. Collectively, these mechanisms contribute to amplify
tolerogenic circuits that restore homeostasis and prevent inflam-
mation-induced neurodegeneration.

3. Conclusions

In the past decades we have witnessed a revolution in our
understanding of genomics and proteomics and their contribu-
tion to chronic inflammation, autoimmunity and neurodegen-
eration. However, the role of glycans and glycan-binding
proteins in modulating the onset, severity and resolution of
these processes is just emerging. Glycans have long been
undervalued in the context of immunity and considered as
mere decorative structures that are present on the cell surface or
extracellular space. However, there is currently no doubt that
glycans can store important biological information which can be
decoded by endogenous glycan-binding proteins or lectins. The
complexity of glycan structures is challenging and stimulating,
and their heterogeneity is inherent to their biosynthesis and
critical for their multifunctional activities. Glycan remodeling
through the concerted action of glycosyltransferases and
glycosidases governs a diversity of biological functions includ-
ing those operating in immune, neural and glial cells. In this
review we summarized the contribution of glycans and glycan-
binding proteins including siglecs, C-type lectins and galectins
to the development, severity and resolution of MS and its animal
model EAE. These glycan-binding proteins can act either alone or
in concert with canonical ligands to modulate immune cell fate,
activation, cytokine production, differentiation, apoptosis and
signaling. In this regard, these divergent families of lectins have
evolved to serve as exquisite translators, capable of interpreting
the different profiles of glycan structures into diverse cellular
responses. Experiments using knockdown strategies or knock-
out mice revealed the hierarchical roles of lectins and glycans in
the control of T-cell fate, DC function and glial cell responses.
Understanding the complexity of lectin–glycan recognition
systems during the course of autoimmune CNS inflammation
will contribute to delineate novel therapeutic strategies for
chronic inflammatory diseases including MS.
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