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Abstract: The 60’s gave birth to the practical implementation of classical mechanics to unravel the dynamics and energet-
ics of biomolecules. In the 70’s the use of generalized force fields and more advanced integrative solutions to the micro-
scopic understanding of nature (like hybrid QM/MM) were introduced. During the 80’s, algorithms to obtain free energy 
values were further developed and in the 90’s practical integration schemes of molecular mechanics force fields with other 
levels of detail (QM on one extreme and advances in implicit solvation on the other) were implemented in widely spread 
software. In the first decade of the XXIst century a considerable effort has been put in two seemingly discordant models 
for the simulation of biomolecules. On the one hand, extraordinary advances in computing technologies (both in terms of 
processor power and of new efficient parallel and distributed computing schemas) have allowed researchers to deal with 
bigger systems and longer simulations, reaching molecular processes including millions of particles or lying in the mili-
second scale. On the other hand, the realization that the relevant answers to many biomolecular problems are not homoge-
neously distributed through the molecular structure, something already envisioned by the QM/MM pioneers more than 
three decades ago, has led researchers to find smart ways of putting different emphases on different ranges of the spatial 
or system time scale. In this context, e.g., molecular aggregation represents a paradigm for multiscalability, as molecular 
recognition can be understood with simple (semi-)macroscopic electrostatic terms when the two fragments are far apart, 
while the atomic interactions need to be considered in full detail upon close distances. In this manuscript the current status 
of the techniques that use multiple scale representations of biomolecules are reviewed, and the findings are synthesized in 
a modular schema that can be extensively used when studying aggregation processes. It is shown that a smart alternative 
to brute force and massive computation of uninteresting regions in the all atom potential energy surface is the considera-
tion of a simplified reference potential, explored thoroughly in the relevant regions, combined with a free energy perturba-
tion approach that transforms this simple representation to a full atom representation.  
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1. INTRODUCTION 

 The last decade has framed yet another step on Moore’s 
law to produce more powerful computer processors. The 
arrival of the Cell processor was quickly surpassed by the 
advent of the new GPU programming paradigm [1-2]. In 
addition, new schemas for distributing data and calculations 
are also available with low-cost implementation [3-5]. Mo-
lecular simulations, one of the leading disciplines in terms of 
requested computer power, could not be alien to such a revo-
lution. Faced with big supercomputer centers with restrictive 
(and often capricious) mechanisms to evaluate requests for 
computing time, researchers have discovered they are able to 
run previously unimaginable computations on a desktop PC 
equipped with several graphical cards. 

 As usual, the availability of new resources has boosted 
scientific initiatives, and the community has moved into a 
gold rush of increasingly larger examples to apply their mo-  
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lecular simulation algorithms. Such rush, however, leads 
sometimes to confusing scientific questions with technologi-
cal challenges, although the solution of the former are often 
intimately linked to the uncovering of the latter. 

 Parallel to the technological explosion, another, only ap-
parently orthogonal, line of research has focused on under-
standing the interplay between different layers of a given 
scientific problem. This approach is challenging both in 
terms of a) its mathematical formulation [6] and of b) disci-
plines intercommunication. Initiatives like the Virtual 
Physiological Human (VPH) in Europe [7] the Biomedical 
Information Science and Technology Initiative (BISTI) in 
the USA [8] or the Systems Biology Institute (SBI) in Japan 
[9], among others, have emerged from the need to solve the 
two questions above. Following this, the term "multiscalabil-
ity" has become an item of intense research, recognizing the 
need to tackle problems in an integral way, considering the 
detail that is critical at each level while avoiding expensive 
exploration of uninteresting regions of the multiple level 
phase space. The multiscale view even holds true within the 
realm of biomolecular simulations [10], in which interests 
range from the quantum mechanical description of enzymatic 
reactivity [11-14] to, say, the mesoscopic description of pro-
tein membrane insertion [15-16] and function [17-18]. Thus, 
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one can distinguish between several time scales of interest 
when studying proteins. For example, side chain movement 
can occur at the scale of ps, while loop closure or helix for-
mation (�1ns-1μs), �-hairpins folding (�1μs-1ms), domain 
folding (�1min-1h) or protein aggregation (�1h-years) repre-
sent totally different scales and, accordingly, biological prob-
lems [19]. 

 Protein-protein interactions themselves represent a para-
digm for the integration of different levels of granularity. 
When proteins and/or metabolites are considered far apart 
and immersed in a continuous medium, macroscopic simula-
tions of concentration as a function of time can be handled 
by continuum modelling of biochemical kinetics. Thus, de-
terministic differential equations can be used to understand 
processes taking place at this high granularity level [9]. At a 
closer look, stochastic simulations are needed to understand 
discrete transformations of molecular populations [20-22]. 
The propensities to interact used in the previous approach 
can be related through kinetics theory to higher granularity 
approaches that solely consider the Brownian motion of par-
ticles representing the interacting molecules [23], guided by 
random friction of the surrounding water environment and 
by electrostatic interactions. An even closer analysis leads to 
a visualization of proteins as a collection of secondary struc-
ture moieties and individual residue interactions, which fur-
ther reduces to an atomic level description when the two 
proteins reach contact distance [24-25]. 

 The different levels described above are part of disci-
plines as far apart as systems biology and quantum chemis-
try, and integrating them is a formidable challenge. In this 
review the study of the formation of peptide aggregates by 
means of multiscale simulation approaches is put into focus, 
expanding the view that has been built in the last decades 
within the protein folding community. Thus, the scope is 
narrowed to the level in which two approximating molecules 
switch the "perception" they have of each other from a blurry 
and fuzzy electrostatic potential to a detailed collection of 
precise hydrophobic patches and directed interactions of the 
hydrophilic groups (see Fig. (1)). Despite the fact that on-
lattice methods have made extraordinary contributions to the 
understanding of the basic principles underlying protein fold-
ing and aggregation, this review will focus solely on off-
lattice methods and their use in molecular simulations as an 
ultimate tool directly applicable to problems of biomedical 
interest. 

 In particular, because of its biomedical relevance, protein 
or peptide aggregation has been one of the initial systems 
researchers have explored using multiscale schemas to shed 
a light onto disease related peptide oligomerization. This 
includes transtyretine, amyloid peptides, �-Synuclein, prions 
or tau protein aggregations, among others [26-27]. Although 
the location and hydrophobic character of specific protein 
segments is key for aggregation, experimental studies have 
determined that the propensity to acquire pathogenic con-
formations is also critical [28]. Thus, both exploration of the 
folding landscape and understanding of the energetics of 
molecular interaction have to be taken into account when 
exploring the aggregation propensities of peptides. In this 
paper we are not concerned about the detailed description of 
the different cases but rather on the multiscale simulation 

methods used to understand the oligomerization process, and 
thus, different examples will appear when needed to illus-
trate particular methodological developments. 

 The paper is organized as follows. The current literature 
on the use of multiscale simulations in peptide aggregation is 
first reviewed, building on top of solutions found in related 
fields like protein folding simulation or protein docking. 
After that a short paragraph on the analysis of the methods is 
provided, and these are dissected into small pieces of a 
common machinery, trying to make sense of the way re-
searchers tackle the multiscale problem. Such analysis leads 
to a synthetic effort in the section A general protocol for MS 
of protein aggregation, in which an integrative method pro-
posed by Warshel and collaborators is explained in detail and 
combined with new developments on simplified solvent 
modelling. A discussion of the possibilities of the proposed 
approach is also presented. Finally, a discussion on the chal-
lenges multiscale methods are facing is included, with a re-
flection on the way science should take profit of both com-
puter power and improved algorithms in the upcoming years, 
especially in the dawn of the VPH and related initiatives. 

2. STATE OF THE ART 

 While protein aggregation plays a key role in many natu-
rally occurring processes, like the assembly of the cytoskele-
ton, in other cases it leads to a form that does not perform 
any function or even appears to disrupt natural processes. 
For example, amyloid fibrils have been implicated in several 
diseases, as Alzheimer’s and Huntington’s diseases. Al-
though fibril formation can be described as a nucleation-
growth process, the molecular details of the steps leading to 
the formation of amyloid fibrils are still unknown and are the 
subject of intense research. Simultaneously, it is obvious that 
protein aggregation is intimately related to protein folding, 
except for the non-negligible extra complexity due to the 
unconstrained combination of peptide fragments in the for-
mer process. Thus, one may take profit of the work done on 
protein folding in the last decades in order to extract hints on 
how peptide fragments will aggregate and, indeed, many 
researchers have been bridging the two research subfields. 
Thus, it is a good strategy to start this review of the state of 
the art by summarizing our current understanding of the 
process of protein folding. 

 Protein function is intimately related to its structure, 
which is determined by the interactions among amino acid 
residues. The interplay between hydrophobic and hydrophilic 
interactions (including charge-charge and hydrogen bond 
interactions) determines the overall shape of a protein. De-
spite the huge number of degrees of freedom of a peptide 
chain, it is generally accepted that proteins have been se-
lected through evolution to quickly fold into one equilibrium 
structure, the so-called native state. This overall process has 
been explained by the folding funnel hypothesis, that sum-
marizes the exploration of the complex potential energy sur-
face into the elegant proposal that the native state corre-
sponds to a global minimum in the free energy landscape 
(FEL) of a single protein in solution [29-30]. Proteins tend to 
be relatively stable to mutations and changes in the environ-
ment near physiological conditions [29]. Nevertheless, an 
appropriate change in temperature, pH, osmotic conditions, 
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redox state, mutations, etc., modifies the FEL with the con-
comitant appearance of new misfolded structures that can 
lead to, e.g., protein aggregation. This means that studying 
the conformational space of proteins and peptides can yield 
hints on their propensity to achieve a given secondary, super-
secondary or tertiary structure, and that understanding the 
effect of the above mentioned conditions on the free energy 
of the explored conformations can help rationalize the way 
protein fragments interact. The determination of the FEL 
requires an accurate description of the energy function, the 
potential energy surface (PES), along with a statistically ro-
bust sampling of the phase space, which is difficult to 
achieve due to the size and the complexity of the biomolecu-
lar system.  

 In what follows, our discussion of the literature focuses 
on three main problems for multiscale molecular simulations 
in general and on protein aggregation models in particular: 
the definition of both proper coarse grain and explicit poten-
tials, the connection between the potential energy surfaces at 
the different levels of detail, and the use of a sampling tech-
nique that ensures correct exploration of the relevant regions 
of both the coarse grain and all atom PES.  

2.1. Looking for a Proper but Reasonably Cheap De-

scription of the Energy 

 The central issue to solve when dealing with protein ag-
gregation is finding a potential function that properly de-
scribes the physico-chemistry of molecular interactions. A 
number of complications arise when one attempts to build 

such a function. Among others, the proper treatment of inter-
action energies, the need for simplification in the description 
of the constitutive elements in the peptide chain, and the 
introduction of a bias to emphasize native from non-native 
contacts.  

 At the highest level of resolution, quantum mechanical 
(QM) methods have to be chosen in order to describe the 
potential energy surface of a given atomic system, from the 
Born-Oppenheimer approximation to the time independent 
Schrödinger equation (see, e.g., [31]). Unfortunately, this 
approach is absolutely unpractical when evaluating the en-
ergy of systems bigger than around a few hundred atoms and 
is out of the question if one aims at understanding their dy-
namics. In order to study larger systems, some empirical 
description of the PES must be adopted, namely molecular 
mechanics (MM), the classical counterpart of choice to QM 
methods. MM allows the simulation of fully hydrated pro-
teins at all-atom (AA) detail. The proper treatment of elec-
trostatic effects is one of the main problems to overcome, as 
occurs in receptor-ligand binding or enzyme reactivity simu-
lations. Despite efforts to produce proper methods [32], these 
also need to be cheap to allow a thorough exploration of the 
conformational space of the two interacting peptides. In par-
ticular, when dealing with water properties and degrees of 
freedom in a simulation, one can include water explicitly, 
implicitly, or, taking the best of both extreme models, 
somewhere in the middle [33]. Although this review is not 
concerned with solvation methods, the extensive recent lit-
erature on microscopic, semi-macroscopic and macroscopic 
treatment of water as a solvent in molecular simulations 

 

 

 

 

 

 

 

 
 

Fig. (1). A multiscale approach for molecular simulations consists of a minimum of two phases. The first (coarse grain) provides a fast ex-
ploration of the potential energy surface (PES) and the objective is to sample its relevant regions in an approximate way. In a second phase, 
one transforms the coarse grain representation to a more detailed one. Now the PES has a more complex structure which forces the run to be 
done with smaller step sizes and more expensive potentials. Thus, the critical aspects of a multiscale run can be summarized in the need for a 
reasonable and fast exploration of the relevant regions at the low level description and a detailed potential for the high level description that 
can give realistic behavior of the system. 
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demonstrates that there is still no ideal solution in terms of 
the quality of the potential and speed of exploration (see, 
e.g., [32-40]).  

 In order to explore the phase space of systems larger than 
small peptides one should decrease the complexity of the 
model through the elimination of some degrees of freedom. 
This reductionist approach, known as coarse-graining (CG), 
condenses groups of atoms into single interacting sites. An 
important effort has been made over the last years to develop 
cheaper but still physically realistic models for the descrip-
tion of proteins with different scopes on their application 
[41-43]. Several models using a different number and defini-
tion of beads to provide a coarse grain description of the 
peptide fragments have been proposed [42-43].  

 Many approaches have been considered to construct CG 
models. One possibility is the use of all-atom simulations in 
order to derive parameters for CG models that are able to 
span larger lengths and time scales. In this way, the multis-
cale coarse graining (MS-CG) methodology is a bottom-up 
approach in which atomistic MS simulation data can be di-
rectly incorporated into the CG force field. In a typical ex-
ample of the application of the MS-CG approach in a dy-
namical context, Zhou et al. describe the equilibrium proper-
ties of two simple peptides, the Ala15 helix and the V5PGV5 
� hairpin [44]. Two-bead and four-bead per residue mapping 
schemes were tested on their ability to reproduce structural 
features of the all-atom simulation. The sidechain is repre-
sented with one bead and the backbone is modeled using 
either a single bead or three beads, i.e., one for the NH, one 
for the HC�, and one for the CO. Each water molecule is 
represented explicitly by one bead. The effective FF interac-
tions are divided into bonded and non-bonded terms. The 
former involves sites separated by 1, 2 or 3 bonds, defined 
based on chemical connectivity and described by employing 
standard functional forms (harmonic terms for bonds and 
angles, cosine series for dihedral angles) that are pa-
rametrized to fit probability distribution functions from all-
atom trajectories. Nonbonded interactions were evaluated 
using the MS-CG force-matching method. As a consequence 
all nonbonded (electrostatic and van der Waals) interactions 
are subsumed into a short-range effective FF, which are 
computed and tabulated (they are not fitted to classical ana-
lytical forms) to be used in CG simulations. While the two-
bead model was able to capture the behavior of the Ala15 
helix it was insufficient to mimic the asymmetries inherent to 
the � hairpin. The resolution of this model is also too low to 
differentiate between stereoisomers [45]. On the other hand, 
the four-bead model reproduced the structural features of 
both peptides correctly even over-stabilizing the secondary 
structural elements. All these models with simplified repre-
sentations have been found useful when analyzing physical 
based hypotheses like the principle of minimal frustration, 
but are problematic when trying to reproduce detailed muta-
tional experiments by the nature itself of the coarse graining 
itself. The method also has poor transferability, so it may 
need to be determined separately for different proteins and 
even for different thermodynamic states. 

 On the contrary, the Martini CG FF [46] is a top-down 
approach where the parameters are fitted to thermodynamic 
data, in particular oil/water partitioning coefficients, thus 

providing a transferable CG FF. This forcefield is well suited 
for processes such as protein-protein recognition which de-
pend critically on partition coefficients between polar and 
nonpolar environments. On the negative side, the need to 
apply constraints to preserve the protein structure stability 
during simulation prevents the FF from being applied to the 
exploration of conformational changes and protein folding. 
Slightly separate from this classification are normal mode 
analysis and related approaches, which can be referred to as 
examples of harmonic or quasi-harmonic static descriptions 
of the PES by bead-based representations of protein struc-
tures [47].  

 Despite their limitations, these methods become powerful 
when combined with some sort of knowledge-based poten-
tial. The OPEP (Optimized Potential for Efficient prediction 
of Protein Structure) [48] is a 6 particle-based coarse grained 
model inspired by Levitt and Warshel’s early work [49]. The 
backbone is represented explicitly, while sidechains are ac-
counted for by specific beads, and the energy function is 
adjusted to discriminate native from nonnative structures. It 
is of interest that the OPEP-generated free energy landscapes 
of small proteins are fully consistent with experimental data, 
providing further support of the capability of this forcefield 
to also reproduce thermodynamics. In a similar manner, 
Messer et al.[41] have recently proposed an update of the 
original 1975 CG FF [49] (see Fig. (2)) that is the basis for 
the discussion in the synthesis section below. Typically, 
though, approaches based on statistical potentials lack the 
powerful decomposition schemas which form the basis of 
common molecular mechanics potentials, although some 
efforts to rationalize such decompositions are already avail-
able[50].  

 In CABS, the coarse-grained forcefield developed by 
Kolinski in 2004 [51], the atomic structure of a protein is 
radically changed and replaced by a number of interaction 
centers. In particular, the aminoacid side-chains are removed 
and two interaction centers are placed at the former alpha 
and beta carbons, which gives the forcefield its name (car-
bon-� carbon-� side chain). The forcefield uses heuristic 
potential functions which are derived from a statistical 
analysis of structural regularities in folded proteins. The al-
pha carbons are restricted to a position on a sufficiently fine 
grained lattice so as to prevent any strong lattice artifacts, 
while side chains are allowed to move off-lattice. Computa-
tions of micromodifications of the structure are intrinsically 
faster than in similar coarse-grained forcefields, as they 
merely consist of a few references to precomputed tables of 
allowed conformational transitions. The same group studied 
amyloid protein aggregation [52] using a topologically simi-
lar, but methodologically different representation called 
REFINER [53]. It differs from CABS by not employing lat-
tice restrictions, but it also simplifies the protein backbones 
and side chains with a similar amount of beads. By using this 
type of representation and a replica exchange protocol, they 
studied the amyloid aggregation of a selection of artificial 
peptides, which in their native basin all adopt helix struc-
tures, but also adopt beta-form structures in the higher en-
ergy misfolded and metastable basin. Both basins are sepa-
rated by a conformational energy barrier. The results of these 
simulations showed that under normal conditions the most 
stable structure always remains a two-helix bundle, while 



Multiscale Molecular Dynamics of Protein Aggregation Current Protein and Peptide Science, 2011, Vol. 12, No. 3    225 

dimerization simulations with one of the peptides frozen in 
the already misfolded beta-form structure causes the other 
peptide to also misfold in the majority of cases. 

 Our understanding of how proteins fold is in part derived 
from the so-called "principle of minimal frustration", by 
which protein molecules reduce, through evolution, the 
prevalence of conflicting interactions that would lead to al-
ternate configurations [54]. Thus, native contacts are coop-
eratively responsible for the minimum free energy folded 
state and, because of this, using them to bias the potential 
energy surface towards native like conformations may help 
accelerate folding or aggregation simulations. This leads to 
the design of so-called G�-like models, in which the simula-
tion is biased towards the native structure. Of course, again, 
such bias can be achieved by the use of statistical potentials, 
obtained from the analysis of a huge number of structures 
from the protein data bank (PDB), although unfortunately 
typical G�-like models are specifically parametrized for the 
protein being studied and thus lack generality. Some CG 
models consider only the native interaction energies as the 
driving force in the folding problem, neglecting non-native 
interactions. Although this approach has been successful in 
qualitatively reproducing the general features of the transi-
tion state structure for small proteins, there are two prob-
lems. First, G�-like models typically consider all native con-
tacts to have the same importance (although B-factors or the 
protein contact number [55] can be used to weight them); 

and second, they do not consider the energetic contribution 
of non-native contacts, which is essential for understanding 
misfolding and aggregation. More precisely, non-native in-
teractions may play an important role in shaping the early 
stages of the folding landscape, in the formation of on-
pathway intermediates, in restricting the accessible configu-
rational space in the unfolded state and in the formation of 
the transition state.  

 The work of Clementi and collaborators nicely illustrates 
the change in the paradigm from folding to misfolding and 
aggregation studies, and the importance of incorporating 
non-native interactions. Matysiak et al. [56] proposed a G�-
like model that only takes into account native contacts to 
represent the protein, with one bead per amino acid. Such 
models have been previously used with good qualitative re-
sults for two-state folding proteins. In order to get better 
quantitative agreement with experiments, they tuned the 
weight of the different native interactions to reproduce ex-
perimental data for kinetic folding/unfolding. The procedure 
was inspired by the reverse Monte Carlo method originally 
proposed by Lyubartsev & Laaksonen [57]. In [56], the one 
bead CG force field was parametrized with experimental 
data on S6 (wild type -WT- and P13-14 permutation mutant), 
a 97-residue ribosomal protein consisting of a four-stranded 
B-sheet and two alpha helices. Folding/unfolding of S6 can 
be shown to occur by two-state kinetics, and their model was 
able to reproduce experimental data on a different permutant, 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The coarse grain model proposed by Warshel and collaborators[41]. Its interest lies in the proper combination of native-like con-
formations by forcing the Ramachandran plot to be repro- duced and in the detailed inclusion of the permanent dipoles of the protein back-
bone, critical for secondary structure formation. 
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P68-69. Next, Das et al. [58] modeled the protein as a sum of 
pairwise interactions between 20 aminoacid "colors", not 
removing a priori non native interactions. The parameters 
were optimized to get a minimally frustrated Hamiltonian 
driving the model to fold into a known protein structure, 
resembling pure G�-like approaches. The effective residue-
residue interactions were modulated by "colors" representing 
the amino acid’s chemical and physical diversity, and the 
geometry of different amino acids was implicitly considered 
by using equilibrium distances per amino acid pair (taken 
from distributions observed in the PDB) rather than a con-
stant value (as was used before). As recognized by the 
authors, the incorporation of sequence details and energetic 
frustration into an overall minimally frustrated protein land-
scape opens the possibility of a realistic study of the delicate 
balance between energetic and topological factors in shaping 
the folding free-energy landscape. With this model, Das et 
al. were able to correctly reproduce experimental data on 
protein folding for SH3, a protein showing two-state kinetics 
and for which the folding mechanism can be qualitatively 
mimicked by using completely unfrustrated models. Never-
theless, several studies had highlighted the important role 
played by non native interactions in shaping the folding land-
scape. The incorporation of non-native interactions into the 
model allows for this hypothesis to be tested, and indeed 
they found that taking them into account results in faster 
folding rates (lower energy for the transition state). Extend-
ing the work in [58], Matysiak and Clementi [59] studied the 
effect of multiple mutations on the folding mechanism of S6. 
This time, the inclusion of nonnative interactions in the CG 
model allowed it to be used not just for folding but also for 
misfolding and aggregation studies. They found perturba-
tions in the free energy landscape of S6 upon the mutation of 
4 gatekeeper residues, providing an interpretation for the 
increased propensity to form protein aggregates: the muta-
tion of these residues exposes the protein to partial misfold-
ing. Non-native interactions play an important role in desta-
bilizing the native state while stabilizing misfolded traps. 
Interestingly, the simulation in ref. [59] of multiple copies of 
the WT protein does not produce any changes on the free 
energy landscape, while running the same simulations on the 
mutant leads to the formation of stable aggregates (corre-
sponding to new minima in the free energy landscape), in-
cluding one form that is reminiscent of an amyloid protofi-
bril.  

2.2. Sampling the Potential Energy Surface 

 As explained above, multiscale methods aim at providing 
efficient tools for sampling the explicit potential phase space 
through serial or parallel integration of information at several 
levels. For example, classical MD approaches employed to 
study the correlation between the states sampled by small 
peptide monomers with their tendency to form amyloid 
structures [60-63] are no longer valid when dealing with 
more complex systems. Coarse grain potentials help in pro-
ducing a better exploration of the potential energy surface in 
two ways: they reduce the size of the system and thus the 
degrees of freedom to explore and the computing time for 
the forces at each time step; and consequently they smoothen 
the potential energy surface. Both effects help in accelerating 
the system dynamics.  

 Multiscalability is also reflected in the way the sampling 
of the PES is carried out. For example, in [64] two different 
methods developed for protein folding and docking are 
melted into a more general procedure that permits the blind 
prediction of intertwined complexes of proteins at near 
atomic resolution. Starting from an extended conformation, 
in a first stage a set of moves that perturb the backbone con-
formation and moves that perturb the symmetric docking 
arrangement of the monomers are performed. The conforma-
tional energy is determined by the low-resolution energy 
function and each move is accepted or rejected based on the 
standard Metropolis criterion. In a second stage, the 
sidechains are reconstructed within a context of a high-
resolution energy function. The lowest energy models are 
clustered and the five most populous are selected. The meth-
odology works properly for small peptides. However, for 
systems with a larger degree of freedom (> 60 residues), the 
protocol fails due to insufficient conformational sampling, a 
common problem encountered with classical Molecular Dy-
namics (MD) and Metropolis-Monte Carlo (MC) approaches.  

 In order to improve the exploration of the PES, several 
methods have been devised. Although the vast amount of 
enhanced sampling techniques available exceeds the scope of 
this review, some interesting tools that have been lately pro-
posed are worth mentioning. 

 The ART (Activation-Relaxation Technique) [65] is a 
method developed to identify transition states without prior 
knowledge of the final state. ART consists of four steps: 1) 
starting from a local minimum, the system is pushed slowly 
in a random direction, and then the direction of the lowest 
curvature is evaluated, until it becomes convex (negative 
eigenvalue of the PES at that configuration); 2) the configu-
ration is displaced along the direction of the negative eigen-
value while the energy is minimized in the orthogonal direc-
tions; 3) when the total force reaches zero, one has reached 
the saddle point; 4) move over the saddle point and minimize 
to the new minimum. The technique resembles other meth-
ods of uphill exploration of the PES. Although the method is 
able to generate a fully connected walk through the energy 
landscape, it should be noticed that such trajectories do not 
belong to a well-defined thermodynamical ensemble, and as 
a consequence an exact weighting of the various conforma-
tions is not possible. An interesting research line to explore 
is the use of this method within the context of the variational 
transition state theory [66] and the use of arbitrary reaction 
coordinates to describe the free energy profile [67]. In spite 
of its limitations, the combination of ART-OPEP was able to 
provide a quantitative match to experiments while consider-
ing protein folding and protein aggregation of amyloid-
forming proteins. It has proved to be especially useful in 
identifying the richness in the structure of small aggregates 
of short chains. The simulations also indicate that there is an 
important difference in the early steps of aggregation be-
tween short and long peptides. While the former visit fibril-
competent structures very often, the latter populate structures 
that are far from the amyloid fibril structure.  

 Lyman et al. [68] presented two methodologies to in-
crease the sampling in molecular dynamics simulations: 
resolution exchange (ResEx) and PseudoExchange (PsEx). 
The key idea behind ResEx is that one can swap a subset of 
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configurational coordinates. A well-chosen subset of coordi-
nates of a detailed model can make up the full set of coordi-
nates for a CG model. For instance, the backbone of the AA 
protein model can represent the full set of coordinates for the 
CG model. The process involves running two independent 
simulations of the protein and trying to swap the subset of 
coordinates common to both representations, according to 
Metropolis criteria. PseudoExchange, in turn, is a serial 
process where one first generates a well-sampled ensemble 
at the coarse-grained level and randomly reorders this trajec-
tory. While keeping the original distribution of states, it 
shows a key feature: extremely rapid barrier hops. One then 
performs a fine-grained simulation and exchanges are at-
tempted with the shuffled coarse-grained trajectory follow-
ing the same Metropolis criteria. The method has two limita-
tions. First, it does not enable exchange between continuum 
and explicit solvent representations. Secondly, in order to be 
exchangeable, the two models must be sufficiently similar 
and there should exist overlap between low-energy coarse 
variable conformations. The usefulness of these methodolo-
gies is demonstrated in the sampling of butane and a 
dileucine peptide represented in all-atom and united atom 
models. When trying to apply the ResEx procedure to sys-
tems bearing larger degrees of freedom, a new problem 
arises as rejection rate increases [69]. In order to increase 
acceptance rates one may minimize the high resolution trial 
before checking acceptance. As shown in their work, such 
solution violates the detailed balance condition by biasing 
the generating probability while not introducing any com-
pensating correction to the acceptance criterion. A work-
around is suggested by the authors where a ladder of incre-
mental models at intermediate resolutions is employed that 
allows the acceptance rates to be tuned to reasonable values 
(thus, not requiring a minization). This ladder is constructed 
as follows: starting from an all-atom model, in the next level 
only one residue is coarse-grained, next two residues, and so 
on and so forth until the whole chain is represented with a 
coarse-grained model. The implementation of such an in-
cremental ladder requires the construction of a potential 
function with mixed potentials between CG and AA repre-
sentations. Again, a top-down exchange scheme is used, i.e., 
first a coarse-grained model is used to achieve a converged 
trajectory, then configurations from this trajectory are ex-
changed with the trajectory from a lower level (more de-
tailed) in a serial approach until the all atom level is reached. 
A potential weakness of the ResEx method is that regions 
which are not sampled by the top level will be difficult to 
sample in any other level.  

2.3. Attempts for Integration of Different Levels 

 Multiscale simulations allow one to split the treatment of 
the hugely complex aggregation process between at least two 
levels, but this also includes the difficulty of linking them. 
This is a well known problem in enzyme reactivity and 
QM/MM approaches were developed as protocols to link 
quantum and molecular mechanics descriptions of different 
regions of the system [70-72], in a first example of a parallel 
multiscale approach. 

 Ayton et al. [15] extensively reviewed different multis-
cale methods implemented so far. They noted that multiscale 
methods can be broadly classified in two categories, serial 

and parallel approaches [15], according to the way that the 
information is transferred across different resolutions. In the 
former, the different models are used in sequence with no 
direct interaction between them. On the other hand, in paral-
lel approaches the different representations are treated at the 
same time, with information being transferred among them. 
They also noted that most methods at that time put emphasis 
on obtaining CG models (either from AA simulation or 
thermodynamic data) and not on the integration workflows.  

 We have seen in the previous section how coarse grain 
potentials are built to allow for an extensive exploration of 
the conformational space of the interacting protein frag-
ments. The possibility of extensively exploring such simpli-
fied potentials is at the basis of multiscale modelling, but a 
connection to the explicit potential (typically an all atom 
potential) is needed. The underlying assumption is that the 
CG potential allows for the sampling of relevant conforma-
tions of the protein. The reintroduction of atomic resolution 
into the model is desirable in order to zoom into the finer 
details of the process and to correct for deficiencies in the 
original CG model. 

 In this way, the MS-CG was further applied to the study 
of the peptide folding landscapes of the Ala15 �-helix and 
the V5PGV5 �-hairpin [45]. Here, MS-CG peptides exhib-
ited a preference for folded regions of configuration space as 
a consequence of the knowledge based potential employed. 
As a result, effective interactions in the CG systems are to 
some degree incompatible with regions of configuration 
space which differ from those typically explored by folded 
peptides. This effect biases sampled CG configurations to-
wards the original domain of all-atom integration by facili-
tating fluctuations that convey the system down the relevant 
free energy gradients. As a result, unfolded configurations 
are disfavored and progress towards the folded basin, resem-
bling a G�-like model (see below). In contrast though, the 
MS-CG representations were not explicitly constructed to be 
smoothly funneled towards the native state. It is thus surpris-
ing to find that these models are still able to reproduce char-
acteristics of partially unfolded regions on the free-energy 
landscape that lie outside of the original basin corresponding 
to the native structure used for deriving the CG parameters. 
This shows that the effective interactions are, to some de-
gree, transferable between configuration spaces.  

 Additionally, the authors also explored the ability to re-
construct missing all-atom detail from CG trajectories. It was 
observed that the free energy landscapes generated in this 
way exhibit reasonable stability in the vicinity of the minima 
originally observed in the MS-CG simulations. This demon-
strates that MS-CG represent refolding landscapes, providing 
further validation to the model. However, it should be noted 
that the reconstructed all-atom simulations were still unable 
to surmount the barrier to folding. As a conclusion, MS-CG 
can be used to explore the configuration space efficiently and 
the trajectories used to reconstruct all atom ensembles in the 
regions of interest, correcting deficiencies inherent to the 
original CG model, but still the study of folding and aggre-
gation barriers needs a more precise simplified potential. 

 A multiscale approach to the study of protein folding and 
misfolding was also considered by Heath et al.  [73-74]. 
They introduced the RACOGS method to generate all-atom 
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representations from C-alpha models and applied it to recon-
struct folding trajectories generated in previous studies on 
SH3 and S6 [58-59]. Their reconstruction procedure is able 
to efficiently produce relatively low-energy (i.e. statistically 
significant when Boltzmann-weighted) AA structures from 
most CG structures. The reconstructed structures are vali-
dated by their energy in a standard forcefield (AMBER99) 
with a GB/SA implicit solvent model. The final energy of the 
structure is used as input to the weighted histogram analysis 
method (WHAM) to calculate the free energy of the all-atom 
model. Although very different energy functions are associ-
ated with the CG and AA models, the free energy landscape 
obtained from both trajectories remain remarkably similar, 
proving that it is possible to use a good CG model as a ro-
bust starting point for an extensive sampling of protein com-
plex landscapes at an all-atom resolution. Upon addition of 
AA detail to the FEL of S6 Alz, it still shows a bulge in the 
landscape that is associated with a population of partially 
misfolded structures not present in the FEL of the wt protein 
[74]. Moreover, the population associated with misfolded 
structures becomes larger and more distinct, signaling that 
the misfolded states are partially stabilized in the AA struc-
tures and, thus, again shows the need for the inclusion of 
non-native interactions. A closer look at the misfolded struc-
tures in [74] yields information on the misfolding mecha-
nism. While �-strands 1 and 2 do not interact in the correctly 
folded structures, these strands pack against each other and 
are stabilized by the formation of multiple interactions be-
tween their side-chains in the overall repacking of the four �-
strands in the misfolded structure.  

 Urbanc et al. [27] used coarse-grained discrete molecular 
dynamics simulations to predict the aggregated dimerical 
structure of two A� peptide monomers. In a multiscale ap-
proach these predictions were retransformed into an all-atom 
representation and free energy differences between the 
monomers and the dimer were calculated. The coarse-
grained representation involved the modeling of the amino 
acids as 4 beads that correspond to the amide nitrogen, alpha, 
prime, and beta carbons. Coarse grained monomers were 
placed 40 A apart and simulations were performed under 
different temperature levels. The simulations resulted in ten 
dimer structures which were frequently reoccurring. These 
ten structures were tested for stability by performing free 
energy difference calculations between the dimers and corre-
sponding monomers with the CEDAR all-atom forcefield 
and the ES/IS method [75]. This methodology gave insights 
into A� monomer aggregation by showing that thermally 
induced conformational changes lead to dimer formation, 
corresponding to one of the ten dimer structures. The prob-
ability of which dimer is formed is dependent on the tem-
perature, with each dimer structure varying from parallel or 
anti-parallel beta sheets to nested structures. 

 Kolinski’s lab employed the CABS forcefield within a 
replica exchange Monte Carlo simulation protocol to study 
protein-protein docking [52, 76]. Their protocol included the 
positioning of both monomer structures in a random orienta-
tion relative to each other, each with its own replica, and a 
posterior multiscale analysis of the resulting dimer struc-
tures. Their multiscale approach included the clustering of 
discovered dimers and the selection of cluster centroids, as 
well as the best structure in terms of coarse-grained energy. 

These structures were subsequently converted into all-atom 
representations by firstly reconstructing the backbone atoms 
with BBQ  [77], secondly, the assembly of side-chains via a 
rotamer library and thirdly, all-atom minimization using an 
AMBER forcefield with implicit solvent. They observed that 
the all-atom energies correlated much better with the RMSD 
than the CABS energy which subsequently increased the 
accuracy of the prediction of the dimer. From 11 protein-
protein or protein-peptide dimerization experiments, all pre-
dictions were qualitatively correct with the percentage of 
native contacts each greater than fifty. 

 The explicit solvent / implicit solvent (ES/IS) [75, 78] 
methodology is a tool to calculate conformational free ener-
gies of proteins. It is a multiscale approach in which, during 
a short molecular dynamics simulation in explicit solvent, 
microstates are sampled for which free energies are com-
puted by using implicit solvent calculations. In an ES/IS 
simulation, the conformational free energy is compartmental-
ized into terms describing the intra-protein bonded and non-
bonded interactions as well as its entropy, and terms describ-
ing the free energies of creating an empty cavity in the sol-
vent, putting a protein into the cavity, and charging the pro-
tein, which also results in the polarization of the water and 
vice versa. While the conformational entropy can be easily 
estimated by a quasi-harmonic analysis of the covariance 
matrix of the protein’s fluctuating movements, and the intra-
protein enthalpic energies by averaging over microstates, the 
same is not true for the free energy of solvation. This is due 
to the need of approximating the partition functions of the 
protein in water, as well as the water itself, and a free energy 
perturbation from which the difference in free energy can be 
obtained. However, the perturbation is extremely costly due 
to long relaxation cycles of the water and, as such, it is not a 
feasible approach. By using the Poisson Boltzmann equation 
and calculating free energies implicitly with numerical Pois-
son Boltzmann solutions, Generalized Born [79-81] or Semi-
Explicit Assemblies [35, 82], free energies of solvation are 
cheaply available. Vorobjev and coworkers employed this 
multiscale methodology to calculate free energy differences 
between correctly folded and incorrectly folded proteins in 
order to determine if such a method could reproduce the fact 
that native conformations are energetically more favorable. 
Their experiments resulted in successful predictions of the 
native states of the proteins in their test set, showing that 
conformational entropy is responsible only for a small part of 
the overall free energy of the system. 

3. DISSECTING THE PIECES 

 From the previous section an overall schema for multis-
cale simulations of proteins in general and of protein aggre-
gation in particular can be extracted. The first step, the 
choice of a CG representation, requires taking into account 
several factors: good representation of the driving interac-
tions for the system under study, speed of the force calcula-
tions and ease of going back to full atomistic details. In the 
case of proteins, typical choices span the spectrum from 
coarse graining at the residue level all the way down to the 
coarse graining of non-polar hydrogens only. 

 Next, the CG model needs to be parametrized. Parame-
ters can be derived from several sources: from experimental 
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data (PDB structures, NMR constraints, thermodynamic 
data) that allow construction of a statistical potential; from 
parameter sweeps that reproduce in the CG representation 
some observed behavior of the system (e.g. folding); from 
full atomistic simulations that compute potentials of mean 
force or other thermodynamic quantities; directly from ato-
mistic potentials; and potentially using combinations of any 
of these. 

 Actual simulations with the CG model can benefit from 
standard simulation techniques. Depending on the process 
under consideration methods such as thermodynamic inte-
gration, umbrella sampling, and replica exchange can help 
overcome energy barriers and improve convergence of the 
CG simulation. In case better sampling of the CG potential is 
needed, other more complex approaches can be used as 
shown in the previous section. 

 The last step is to map the CG model back to a full 
atomic description. However, by the very nature of of the 
CG model there is not always a one to one correspondence 
between the CG model and the atomic model, nevertheless 
incorporating atomic details back into a CG model can guide 
the sampling of a CG simulation [68-69, 83] or help building 
a thermodynamic cycle to describe the FEL of the system 
[41, 84]. 

 In the next section, a complete protocol for multiscale 
simulations of protein aggregation and folding as being im-
plemented in Adun [4, 85] is described in more detail. 

4. A GENERAL PROTOCOL FOR MS OF PROTEIN 

AGGREGATION 

4.1. Thermodynamic Cycle for Protein Aggregation 

 We follow here the approach by Warshel and coworkers 
[41, 84] in which a basic thermodynamic cycle is exploited 
to describe a general multiscale framework that is able to 
calculate differences in free energy for an arbitrary process. 
The thermodynamic cycle as visualized in Fig. (3) describes 
a simulation from the reactant state to the product state either 
using an explicit all-atom representation of the involved 
molecules or a coarse-grained representation. Differences in 
free energy are meaningful statistics for the description of 
biological processes, however their evaluation in an explicit 
potential is very costly. With the rise of coarse-grained archi-
tectures, a way has emerged to speed-up the evaluation 
enormously. As shown above, refinement of the CG energies 
is a key issue to be addressed by any useful method. In our 
implementation, following [41], we combine a coarse-
grained simulation to explore the main features of the com-
plete conformational space of the protein with a free energy 
perturbation protocol (FEP) in which the partition functions 
of small windows of the coarse-grained and explicit land-
scape are calculated.  

 As described in detail above, the question remaining is 
how to utilize these coarse-grain models in a multiscale 
framework in the most advantageous way. 

4.2. Idea of a Simplistic Forcefield 

 The continuum of forcefields that are nowadays available 
and which have been in part presented in this review share 

all some common characteristics. First, computational de-
mand is greatly reduced by a massive reduction of degrees of 
freedom. In addition, the majority of small vibrational and 
rotational modes is eliminated and as such the energy land-
scape is smoothened. The latter removes local minima in 
which the simulation is not trapped, but unnecessarily 
stalled. The thermodynamic cycle asserts that for every state 
of the reaction coordinate a back-transformation from the 
coarse-grained representation to the explicit is possible. This 
property restricts the type of force field to be used. Heath 
and coworkers, for example, defined a general solution to the 
back-transformation problem that can be employed in any 
forcefield as long as the alpha carbons of the backbone are 
retrievable [74]. Although the idea of using the above ther-
modynamic cycle is independent of the coarse-grained and 
explicit forcefields, we will herein present in some detail the 
coarse-grained forcefield from Warshel and coworkers, 
which is based on the forcefield of Levitt and Warshel [49]. 
The details of this force field can be found in [41] and are 
shown in Fig. (2). However, we emphasize here some key 
aspects of the potential. 

 In contrast to most of the aforementioned CG models, the 
forcefield from Warshel and coworkers does not rely on a 
priori knowledge of native structures to perform molecular 
simulations. Besides the replacement of the solvent with a 
continuum dielectric and the coarse-graining of its side-
chains to spherical structural units, the atomic structure is not 
further modified and most notably, the backbone is left in-
tact. This has two implications. Firstly, computational de-
mand is greatly reduced due to the massive loss of atomic 
detail typical to all CG force fields. Secondly, important 
main-chain interactions i.e. hydrogen bonds can still be 
completely described with as much detail as their explicit 
counterparts. Side chains are represented by a single bead 
whose center overlapping with the former geometrical center 
of the heavy atoms, or in the case of ionized residues, with a 
point shifted to the charged center of the residue. At the posi-
tion of the former beta carbon, a dummy atom is placed 
which can be used in a back-transformation step in which the 
coarse-grained protein is converted into a full-atomic repre-
sentation. As mentioned earlier and in contrast to other 
coarse-grained forcefields, e.g. MARTINI, the solvent is 
completely removed. Solvation effects are instead described 
by three correction terms which are added to the forcefield 
function. Briefly, the force field function consists of mainly 
four sections. One corresponds to the aforementioned solva-
tion terms. The other three are concerned with energies due 
to interactions of the coarse-grained side-chains with other 
side-chains as well as the main-chain, and also explicit inter-
actions involving the full-atomic interactions of the main-
chain. These explicit interactions are modeled completely in 
agreement with the ENZYMIX forcefield. This basically 
means the employment of bond, angle, torsional van der 
Waals and electrostatic terms. For the side-chain potentials 
only interactions regarding van der Waals and electrostatics 
are taken into account. Both are calculated for the side chains 
and their interactions with the main chain. Van der Waals 
energies are calculated with a modified 8-6 Lennard Jones 
potential, with parameters being optimized to match in silico 
values for atomic distances and protein sizes of a number of 
different proteins. Electrostatic energies are computed with a 
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standard Coulomb potential. Charges used for this potential 
consist either of main-chain partial charges or residual 
charges which correspond to a residue’s net charge. Interac-
tions between side chains are treated with a high dielectric 
constant such as 40, while interactions between side chains 
and main chain are treated with a value of 10, and a value of 
4 used for interactions among main chain atoms only. These 
dielectric constants were chosen to include some of the sol-
vent’s effects into the forcefield. Furthermore the aforemen-
tioned correction terms were incorporated into the forcefield 
equation to emphasize secondary structures and explain in-
teractions with the environment. This includes a non-polar 
self energy term for transferring a side chain to the protein, a 
torsional potential to preferably form helices and beta sheets 
if � and � torsional angles are already in certain regions of 
the Ramachandran diagram, and a hydrogen bonding poten-
tial to stabilize those secondary structures. The solvation 
correction terms were tuned with the inclusion of several 
potential wells into their potential functions. A very detailed 
reproduction of, in this case, the coarse-grained solvation 
free energy landscape in consensus with the explicit counter-
part was possible. 

4.3. Obtaining Free Energy Differences 

 The forcefield can be employed to calculate differences 
in free energy �g for an arbitrary process in which the sys-
tem evolves from the reactant state to the product state. Due 
to the coarse-grained composition of the potential functions, 
the energies cannot be as detailed as in a fully explicit repre-
sentation. Another e.g. fully explicit forcefield is coopera-
tively used to counteract the loss of detail while maintaining 
the level of computational demand. Their liaison is visual-
ized as a thermodynamic cycle in Fig. (3) in which the proc-

ess is partitioned into four different sections. In the first, dif-
ferences in free energy �g

ep
 are directly evaluated with the 

explicit potential. In the other three, differences in free en-
ergy are evaluated by the employment of the coarse-grained 
potential �g

sp
 and the involved energies of changing from 

one forcefield to the other ��g
sp	ep

.  

 While differences of free energy for the coarse-grained 
potential are obtained directly from the simulation itself, the 
same is not true for the energies of moving between the 
forcefields, but these can be derived from the ratio of the 
partition functions of the explicit and coarse-grained poten-
tials. This ratio is given by:  
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ep sp

ep

Q
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Q
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    (1) 

 � being the inverse of Boltzmann’s constant multiplied 
by the temperature of the system and Q

sp
,Q

ep
 the partition 

functions of the coarse-grained (simplistic) and explicit rep-
resentations. This formula can be transformed to express the 
ratio related to the difference in energies of all sampled 
states in the coarse-grained potential and their counterparts 
in the explicit potential.  
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 Note that the partition functions are expressed by using 
energies derived from conformations represented by the sim-
plistic coordinate set R and the explicit coordinate set r,R.  
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Fig. (3). Thermodynamic cycle employed to calculate free energy differences in Warshel’s schema [41, 84]. The simulation on the coarse-
grained potential (see Figure 2) is corrected, with the cost of moving from the explicit to the coarse-grained representation made using a stan-
dard free energy perturbation approach. The key issue lies on exploring the relevant regions already in the CG potential. 
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Which is:  
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Q
exp G

Q
��� �= ��� 	

   (4) 

 This equation reflects the average over all differences in 
potential energy.  
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 This equation can now be sampled with the employment 
of a free energy perturbation method that uses the following 
mapping potential:  
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4.4. Going From Coarse-Grained to Explicit 

 From equation 3 we can conclude that for every sampled 
conformation R in the coarse-grained potential, its corre-
sponding energy in the explicit potential has to be calculated. 
In order to do so, the coarse-grained representation has to be 
retransformed into an explicit representation. As the explicit 
representation is more detailled, this transformation is not 
unambiguous and therefore no unique explicit solution ex-
ists. However, it is possible to find one that is energetically 
sound. The procedure for the forcefield of Warshel and co-
workers starts by replacing the dummy atom with the beta 
carbon of the corresponding explicit side-chain [41]. The 
new side-chain should comply to two requirements. Firstly, 
the displacement between the centers of the coarse-grained 
and the explicit side-chains should be minimal. Secondly, 
overall potential energy should be minimal. The side-chain 
rotamer configuration that accomplishes both goals with the 
employment of a random search followed by a steepest de-
cent torsional minimization is selected and has to undergo 
side-chain only all-atom minimization. The resulting all-
atom representation is then ready to be used. 

 If a different forcefield is used, it is still possible to 
achieve a back-transformation with the utilization of a gen-
eral approach like e.g. RACOGS [74]. The only information 
this algorithm needs and uses is the position of the alpha 
carbons of the protein backbone. The procedure starts by 
filling up the missing heavy atoms of the backbone using a 
statistical method based on the average distances of the 
heavy atoms to the alpha carbons. Systematically, side-
chains are attached to the growing structure by choosing the 
rotamer that minimizes the energy between the backbone and 
the other side-chains. After the side-chains have been assem-
bled, unnecessarily high energy configurations are elimi-
nated by finding the side-chains that cause them and per-
forming a side-chain only all-atom minimization with the 
rest of the protein held fixed. In its final step, the algorithm 

performs a short all-atom minimization for the whole protein 
in which the structure moves into the nearest local minimum. 

 So far we have introduced a method for all-atom recon-
struction of the solute, but have not mentioned what to do 
about the solvent. The previously presented forcefield ap-
proximates solvation effects as correction factors based on a 
continuous dielectric model. Its solvation technique is there-
fore classified as an implicit method. In order to restore the 
atomic representation of the solvent, water molecules have to 
be arranged around the solute in a physically sound way, 
which is firstly a very problematic task and secondly its sub-
sequent simulation is very time consuming, and as such, not 
native to our seamless approach to multiscale molecular dy-
namics. However, by not going completely “all-atom”, we 
open our protocol to a variety of macroscopic or semi-
macroscopic solvation models for otherwise explicit force-
fields which are nowadays excessively available [33, 79-81]. 
Focussing on generalized Born methods, the free energy of 
solvation is compartmentalized into two terms: polar and 
nonpolar. The nonpolar term is typically approximated by a 
value which is proportional to the solvent accessible surface 
area times a tension factor (
A), while the polar free energy 
of solvation is mostly determined by the buriedness of an 
atom, which describes the degree of electrostatic screening 
that atom is exposed to by the solvent. One major drawback 
of the GB-based methods is that the geometry of macro-
molecules is largely neglected. Unfavorable volume to sur-
face ratios give nonphysically free solvation energies. In 
protein aggregation as well as protein folding, single water 
molecules can lead to unexpected but potentially essential 
effects that cannot be captured by a continuous model. Semi-
explicit assembly (SEA) is a new implicit solvation method 
which explicitly takes into account the geometry of macro-
molecules and was developed recently to approximate the 
behavior of explicit solvation [35, 82]. Like the previously 
mentioned 
A terms for the nonpolar part of solvation free 
energy, SEA uses the solvent accessible surface area for the 
same purpose, but employs it to weight previously calculated 
free energy values obtained from model atoms that are com-
pletely exposed to the solvent. These nonpolar free energy 
precalculations were performed for a number of Lennard 
Jones spheres with varied well depths and equilibrium dis-
tances by solvating them in TIP3 water. SEA calculates the 
polar part of solvation free energy as the sum of the solute’s 
interaction with the first water shell and its bulk interaction 
with anything that goes beyond the first shell. In that sense, it 
is very different from GB methods as the discreteness of 
water and geometrical properties are directly taken into ac-
count in first shell interactions. With the computation of the 
electric field around a single atom, a dipole can be placed 
accordingly and the location of temporary solvent molecules 
established. Electrostatic effects are then accumulated for all 
solvent molecules and all atoms in the macromolecule and 
added to the overall free energy. 

CONCLUSION 

 Multiscale simulations of molecular aggregation are a 
promising field of research. Computational experiments like 
the critical assessment of predicted protein interactions 
(CAPRI), despite the advances made in recent years [86], 
demonstrate the difficulty in reaching quantitative protein-
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protein interaction predictions from unbound proteins. The 
conformational flexibility of proteins, demonstrated by their 
ability to explore quasi-stable states with different free ener-
gies in the bound and unbound states see Fig. (1) in ref. [24]) 
precludes rigid body docking schemas from producing quan-
titative predictions of protein-protein interactions. Thus, al-
though a variety of primary amino acid sequences of poly-
peptides are compatible with amyloid formation, some basic 
properties such as conformational exploration, solubility, 
charge state, or the ability to pack in amyloid fibers, differ-
ently affect their propensity to aggregate [87]. This means 
that both dynamics and energetics need to be properly ex-
plored in molecular simulations of peptide aggregation, in 
the same way this is critical for enzyme reactivity analysis 
[12, 14]. In this sense it is interesting to recall here the dif-
ference between transient and permanent protein-protein 
interactions. The former, because of their lability, are pro-
duced by a delicate balance between protein-protein and pro-
tein-water interactions [88], and in many cases are mediated 
by water bridges. In the case of permanent interactions, be-
cause of their more hydrophobic nature [89], unbound pro-
teins suffer from stronger strain energies and are thus ex-
pected to undergo wider conformational changes upon bind-
ing. Thus, in both situations, docking protocols that consider 
rigid fragments or implicit solvation at most, are expected to 
yield incorrect predictions of protein complex structures. It 
is, accordingly, necessary to turn the attention towards mo-
lecular simulations with some finer granularity and consid-
eration of explicit water molecules or, at least, their direc-
tionality, entropic effects and correct electrostatics [35, 90]. 

 Performing standard molecular dynamics simulations on 
protein aggregation is a challenge that, despite the amazing 
advances in computer architecture, is far from generating 
quantitative results comparable with experiments. Thus, as 
occurred in the field of enzymatic reactivity, smart algo-
rithms for the integration of several layers of detail are 
needed. In the case of the computational evaluation of free 
energy profiles for enzymes, a central region of the problem 
should be treated with quantum detail while the rest of the 
system can be taken into account with mean field effects and 
different degrees of accuracy [72]. It would correspond to 
what Ayton et al. identifies as "serial multiscale simulations" 
[15]. When dealing with protein-protein interactions, we may 
think in a "parallel multiscale simulations" schema [15] in 
which different resolution replicas are taken into account 
simultaneously, or we can decide using a progressive focus 
during the simulation, starting with a coarse grain description 
of the two approaching moieties that is then transformed into 
an all-atom description when the objects get closer. 

 The contents of this review suggest that both approaches 
are going to be successful in the upcoming years, and we 
predict that the convergence of powerful machines and simu-
lation algorithms, smart protocols for multiscaling and, al-
though sometimes obscure by the technology but especially 
important, a deep understanding of the physico-chemical 
properties of protein and peptide interfaces [91] are going to 
produce accurate predictions of complex formation. In this 
direction, computational tools that are able to integrate dif-
ferent algorithms and facilitate the researcher’s work are 
going to become central, as well as formats and protocols to 
share methods, systems and simulations. Basic science and 

applied technology are becoming obligated partners in other 
disciplines, and obviously molecular simulations will benefit 
from the same synergy in the years to come as well as they 
have been doing in the past. 
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